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Abstract: This paper presents a method to increase the reliability of UAV sensor fault detection in a multi-
UAV context. The method uses additional position estimations that augment individual UAV fault 
detection system. These additional estimations are obtained using images from the same planar scene taken 
from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, 
dynamic replanning of the multiUAV team can be used to obtain a better estimation in case of faults 
caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI 
in the UAVs. Experimental results with data from two real UAVs are also presented. 

 

1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) and aerial robotics have 
attracted a significant interest in a wide range of applications 
(Ollero and Merino, 2004). In many applications, the active 
cooperation of several UAVs may have important advantages 
(Merino, et al., 2006). 

Reliability is a main issue in aerial vehicles Fault Detection 
and Identification (FDI) techniques play an important role in 
the efforts to increase the reliability of the system. Most FDI 
applications to UAVs that appear in the literature use model-
based methods, which try to diagnose faults using the 
redundancy of some mathematical description of the 
dynamics. FDI have been applied to individual fixed wing 
UAVs (Napolitano, et al., 1998) and helicopter UAVs 
(Drozeski, et al., 2005; Heredia, et al., 2008).  

Differential GPS receivers are able to achieve accuracies of a 
few centimeters using carrier-phase measurements, which 
make them a good choice for UAV positioning main sensors. 
Since they are the only absolute position sensors that are 
usually employed in UAV positioning, the reliability of their 
measurements is critical for UAV missions. If DGPS 
readings are erroneous or differential mode is lost, position 
estimation may accumulate large drift errors. This paper will 
concentrate in FDI for DGPS. 

Ideally, FDI uses all available information to detect 
malfunctions in UAV subsystems. But there exist positioning 
errors that cannot be detected using all the sensors onboard 
the UAV. In multi-UAV missions it is possible to exploit the 
capabilities of the team of UAVs to augment the FDI system 
of each individual UAV. This way, the sensors of other 
UAVs can be used to obtain additional data that can be used 
by the UAV FDI system to detect faults in its own sensors. 

If the UAVs are equipped with visual cameras, different 
UAVs may identify, using their cameras, common objects in 
the scene, for instance using a robust feature extraction 
technique capable of identifying natural landmarks of the 
scene (Merino, et al., 2006), and the correspondences 
between the same landmarks obtained by two UAVs provide 
the relative pose displacement between both UAVs. Thus, for 
example, if the DGPS of UAV-A is faulty, this fault can be 
detected by using the DGPS of UAV-B and the relative 
position estimation computed from the images. The proposed 
idea is to estimate the position of UAV_A using the known 
position of UAV_B and the estimation of the relative position 
of UAV_A and UAV_B using the method described above. 
Unfortunately, these vision-based position estimations have 
different accuracy and noise levels depending on several 
factors. Thus, a variable threshold strategy has been adopted 
in this paper for the fault detection process. Furthermore, in 
multi-UAV missions, the probability of having the same 
scene in the field of view of two or more UAVs when 
executing a plan is not very high. Thus, in this paper we 
propose the application of replanning techniques with the 
automatic generation of new tasks for the multi-UAV team in 
such a way that the above required condition for fault 
detection is satisfied for two UAVs. Particularly, the 
application of a market-based approach for multi-robot task 
allocation (MRTA) is proposed.  

The paper is organized as follows. Section 2 presents the 
techniques for fault detection and identification in helicopter 
UAVs. Section 3 describes multi-UAV vision-based relative 
position estimation. Section 4 presents the method 
implemented to dynamically replan the mission in order to 
improve the accuracy of the estimation. Section 5 presents 
the experimental data and the obtained results. Finally, the 
conclusions and future trends in section 6 complete the paper. 
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2. SENSOR FDI IN SMALL AUTONOMOUS 
HELICOPTERS 

Several small autonomous helicopter prototypes have been 
developed in recent years at different research centers 
throughout the world (Ollero and Merino, 2004). Helicopter 
autonomous flight needs precise position and attitude 
information for control and stabilization. Small autonomous 
helicopters carry a pack of sensors that in a typical case 
includes an inertial measurement unit (IMU) with 3 gyros, 3 
accelerometers and 3-axis magnetometer for attitude 
determination, a centimeter-precision kinematic DGPS and 
an ultrasonic or barometric altitude sensor for take-off and 
landing. A fault in one of the sensors may induce position 
and attitude estimation errors if undetected. Reconfiguration 
in these cases usually consists in isolating the faulty sensor 
and using the other sensors to get the best estimation of 
position and attitude.  

The presence of faults is detected by means of the so-called 
residuals, i.e., quantities that are over-sensitive to the 
malfunctions. Observer-based and parameter estimation are 
the most frequently applied methods for residual generation 
in FDI (Patton and Chen, 1997). Most published work in 
recent years on FDI systems for autonomous vehicles also 
use observer-based methods. Neural networks have also been 
used to detect sensor and actuator faults in aircrafts 
(Napolitano, et al., 2000) and UAVs (Drozeski, et al., 2005). 

The FDI system implemented in individual helicopters is 
described in detail in Heredia et al. (2008). The structure of 
the sensor FDI system is based on a bank of output estimators 
as shown in Fig. 1. The number of these estimators is equal to 
the number of system outputs. A residual is generated for 
each sensor, comparing the estimator output with the sensor 
output. Each residual is not affected by the other sensors, and 
therefore fault identification is straightforward: each residual 
is only sensitive to a single helicopter sensor. 

The FDI system with the above structure has been 
implemented using ARX input-output estimators.  A number 
of ARX Multi-Input Single-Output (MISO) models have 
been identified from input-output data. These models are of 
the type: 
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The number of identified MISO ARX models is equal to the 
number m of the output variables. The model order n and the 
parameters αij and  βijk with i = 1, … , m, of the model have 
to be determined by the identification approach. The term  
εi(t) takes into account the modeling error, which is due to 
process noises, parameter variations, etc. The ARX models 
are chosen with the structure that achieve the smallest 
Akaike's Information Theoretic Criterion (AIC) (Ljung, 
1999), according to a simple search algorithm, in which the 
first half of data is used for estimation and the second for 
cross validation. 

 

Fig. 1. Bank of estimators for output residual generation. 

Independent residuals are constructed for each different 
sensor failure. If no fault is present, the residual ideally 
would be zero. In practice, the residual will take non-zero 
values due to estimation errors, sensor noise, etc. Usually, the 
residual for a specific sensor will be bounded, and therefore a 
“threshold level” can be defined so that the residual is always 
below it in absence of failures. 

The system has been tested with different sensors and failure 
types. The implemented sensor FDI system is able to detect 
many of these errors. Consider for example the Differential 
GPS absolute position sensor. In practice, there are several 
failure types that may arise in DGPS sensor readings. Some 
errors may be caused by non-optimal satellite signal 
reception (signal blocking may occur when the vehicle is 
moving because of buildings, foliage and hilly terrain), and 
by the loss of differential corrections. Most DGPS receivers 
can provide an estimation of the accuracy level of the 
calculated position, but this accuracy estimation can be 
erroneous in some cases.  

 

Fig. 2.  Outlier GPS-z sensor failure detection. Upper plot: 
residual signal. Lower plot: fault detection signal. 
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Moreover, position estimations from DGPS receivers may 
present a priori unknown-source errors. These errors are not 
detected by the receiver, and include groups of 2 to 5 
contiguous points with a 30-60 centimeters error and outlier 
points with several meters error. A possible explanation can 
be receiver algorithm errors. Goodman (2003) suggests 
another error source: GPS receivers have thousands of lines 
of code, many of which are legacy code that is not fully 
tested and can lead to unpredictable errors. 

Fig. 2 shows the detection of a one-meter outlier-type fault in 
the GPS-z sensor of the helicopter. In the upper plot of Fig.2 
the residual signal of the GPS-z sensor generated by the ARX 
estimator is shown. The fault has been declared at t=18 sec. 
Shortly after the fault, the residual goes above the threshold 
value (dashed line). The lower plot shows the fault detection 
signal (equals 1 when a fault is detected).  

But there are some cases in which the individual helicopter 
FDI system can not detect the failure. For example, slow 
growing errors in absolute positioning estimations (due to 
loss or corruption of differential corrections unnoticed by the 
receiver) are difficult to detect using incremental sensors as 
gyros or accelerometers, since DGPS is the only absolute 
positioning sensor that is used in UAVs. Fig. 3 shows an 
example of this case: at t=2 s., a slow growing error is present 
in the GPS-z sensor, but the FDI system is not able to detect 
it using the other onboard sensors. 

 

Fig. 3.  Slow-growing drift GPS-z sensor failure detection. 
Upper plot: residual signal. Lower plot: fault detection signal. 

3. MULTI-UAV VISION-BASED RELATIVE POSITION 
ESTIMATION 

A method for the estimation of the ego-motion of a single 
UAV by means of monocular vision has been presented in 
Caballero, et al. (2006). This method assumes that the 
imaged scene is approximately flat or, in fully 3D 
environments, that the UAV flies at relative high altitude 
compared to the deviations from the flat model. Its robustness 
would be reduced if the UAVs are flying at low altitudes in 
urban areas or hilly terrains, so the planning system should 
take this issue into account. 

The estimated position may present drifts along the sequence 
of images. This effect is mainly derived from the 
accumulative errors in the homography computation used to 
estimate the planar motion. Mosaicking can help to reduce 
the registration errors and, hence, to increase the accuracy of 
the position estimation. 

This method can be extended to estimate the relative position 
among several UAVs. Thus, if two UAVs are registering 
approximately the same scene and it is possible to match a set 
of features, the relative displacement between the UAVs can 
be obtained by computing the plane-induced homography 
matrix that relates their cameras. 

The technique described in Caballero, et al. (2006) obtains 
the relative displacement between two views of the same 
planar scene. The relations presented also hold if the views 
are taken by different calibrated cameras. In this case, the 
homography that relates both views, 1 and 2, of the same 
planar scene (see Figure 4) is given by: 

( ) 1
2221

12 −⋅−⋅⋅= AntIRAH Tw  
(4) 

where A1 and A2 are the intrinsic calibration matrices of both 
cameras, t2 is the relative translation of the second camera 
point of view in the first camera coordinate frame, n is an 
unitary vector normal to the plane in the first camera 
coordinate frame (in the outward camera direction), w=1/z, z 
being the distance from the first camera to the plane and R2 is 
the rotation matrix that transforms a vector in the first camera 
coordinate frame into a vector expressed in the second 
camera coordinate frame. Thus, the relative displacement 
between two UAVs is obtained by computing the plane-
induced homography matrix between their cameras (H12). 

 

Fig. 4.  Scheme of the geometry of multiple views of the 
same plane z. 

The computation of matches between images taken from very 
different points of view may be a hard limitation of this 
approach. Robust and repeatable features, with some degree 
of invariance, should be used, as affine invariant 
neighborhoods or maximally stable extreme regions. In our 
implementation, the algorithm proposed in Merino, et al. 
(2006) for blob matching and robust homography estimation 
is used. The idea is to use this algorithm to compute the 
homography that relates two images of the same scene taken 
by different UAVs. 

Thus, it is assumed that at a certain time instant (the time of 
image 0) the same scene is viewed by two UAVs, for 
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instance UAV 1, which is taken as the reference UAV, and 
UAV 2. The robust matching procedure is applied with the 
aim to match image 0 of the reference UAV with its most 
recent captured image of UAV 2. If a number of good blob 
matches are obtained, the relative displacement between 
UAV 1 and UAV2 at that time is computed by means of the 
motion estimation algorithm. Otherwise, the images are 
discarded. 

 

Fig 5.  Scheme of relations between homographies. 

In general, the probability of having the same scene in the 
field of view of two or more UAVs is not very high. In Fig. 5 
H12 is the homography matrix that relates two images 
gathered by UAVs 1 and 2 for image 0 computed by blob 
matching. H j

0i, the homography matrix between image i and 
image 0 for UAV j is computed by composing the 
homography matrices between consecutive images. For 
instance, H 2

02=H 2
01 H 2

12. Combining the homographies  
H2

0i with H12 determine the homography matrices of UAV 2 
at different time instants along its trajectory with respect to 
the view of UAV 1 at image 0. 

If the position of the reference UAV in a global frame is 
known, it will be easy to estimate the position of all the 
UAVs in the global frame. For instance, the location of UAV 
2 at time of image 2 with respect the reference UAV at time 
of image 0 is given by H12H2

01H2
12. More details are given in 

Merino, et al. (2006). 

Assume that a UAV team is executing a mission, for example 
a surveillance mission. One of the purposes of this work is to 
outline the replanning necessary to achieve that one UAV 
estimate the relative position of other by means of applying 
the above method. As stated before, it is necessary the two 
UAVs take images of approximately the same scene.  

Given some invariant characteristic of the features used to 
establish matches between the two images (Forssen, 2004), it 
is possible to face significant rotations, translations and scale 
shifts. However, in order to reduce the complexity of the 
matching stage, it is recommended to locate the two UAVs at 
approximately the same altitude (to reduce the scale shift 
effect) performing an angle of no more that 45 degrees (see 
Figure 6.b).  

In addition, the uncertainty of the computed homography can 
be used as a measure of the accuracy of the relative position 
estimation. Particularly, the standard deviation of two 

parameters related with the uncertainty in the computed 
translation in the pixel space will be used (UDev, VDev), 
when the homography is scaled such as h33=1. This standard 
deviation has been computed with the data obtained in many 
experiments with the real vehicles. From these results it can 
be stated that, in general, the computation of the relative 
position is very good if these deviations are lower than 1, 
good between 1 and 4, acceptable if they are between 4 and 7 
and usually useless for values higher that 8. Notice that the 
correlation with the GPS has been intentionally discarded. 

4. PLANNING FOR MULTI-UAV FDI 

As it has been mentioned in Section 1, since accuracy and 
noise level of the estimation depend on several factors, 
dynamic replanning of the multi-UAV mission is applied to 
improve the estimation. This replanning is based on the 
automatic generation of new tasks for the multi-UAV team, 
which are dynamically allocated during mission execution. 

In general, the accuracy of the estimation is improved when 
the images of both UAVs are taken from points with similar 
altitude and camera orientation angles that differ less than 
45º. Then, a suitable re-planning strategy is that the UAV that 
request the multi-UAV fault detection generates a task 
consisting in visiting a waypoint with a given camera 
orientation following this criteria. Furthermore, a sufficient 
amount of texture in the images improves homography-based 
localization, and this can be used as an additional criterion to 
select the new waypoint. 

This new task is generated considering safety issues, which 
are important in multi-UAV missions. The best solution 
would be the implementation of sense-and-avoid techniques, 
but sometimes this is not possible due to payload limitations 
in small UAVs. Initial trajectory planning should take into 
account minimum inter-UAV safe distance, but in task 
replanning additional safety criteria should be considered, 
including prior relative position estimation information and 
time since they were taken.  

The new task is dynamically inserted during the mission 
execution in the distributed task allocation framework applied 
in our multi-UAV architecture. It uses market-based 
negotiation rules implemented with a variant of the Contract 
Net Protocol (CNP) (Sandholm, 1993; Smith, 1980). The 
main difference with the basic CNP protocol is that the bid of 
each UAV depends on its current plan and every time the 
local plan changes the negotiation continues until no bids 
improve the current global allocation. When a new task is 
generated, all the UAVs take part in the negotiation of this 
task with the only restriction that the current tasks in 
execution are not re-negotiated. The distributed algorithm 
allocates the new task trying to minimize its impact in the 
global cost of the mission (sum of the costs of all the UAVs).  

If a fault is detected in the sensors of a UAV, the planning 
system will issue an emergency procedure to safely land the 
faulty UAV, helped with the position estimation of the other 
UAV. It is not safe to continue with the mission using the 
position estimation provided by the other UAV, because it 
will be correlated. 
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Fig. 6.  An example illustrating the re-planning process: a) 
UAVs following the initial plan.  b) Dynamic replanning: 
UAV B plan changes to go to wp6. 

In order to illustrate our approach, let us consider a mission 
for three UAVs consisting in visiting five waypoints (see Fig. 
6a). After the initial distributed negotiation process, the 
allocation matrix is given by Table I. 

Table 1. Task Allocation Matrix 

 wp1 wp2 wp3 wp4 wp5 

UAV A 1 1 0 0 0 

UAV B 0 0 0 1 1 

UAV C 0 0 1 0 0 

The execution starts and after visiting wp1, the UAV A 
requests a multiUAV fault detection process, and generates a 
new task consisting in visiting wp6 with a given camera 
orientation. UAV B and UAV C begin a negotiation process 
bidding with the insertion cost of the new task in their current 
local plans. As it can be seen in Fig. 6b, this cost is lower for 
UAV B as far as wp4 is nearer from wp6 than wp3. 
Therefore, UAV B changes its local plan inserting task wp6 
before task wp5. Once that UAV B has reached the waypoint 
wp6, relative position estimation is performed using the 
algorithms presented in section 3 using the images from both 
cameras. This position estimation is fed to the fault detection 
system, along with the covariance estimation, with the 
corresponding threshold level. 

5. EXPERIMENTAL RESULTS 

Experimental testing of fault detection systems is difficult 
because real experiments with faulty sensors or actuators can 
be very dangerous, particularly with aerial vehicles. One 
useful approach is to recreate offline experiments using real 

UAV flight data, introducing for example, a simulated fault 
in one sensor. Although it can not fully reproduce the 
experimental conditions, useful insights can be obtained from 
these experiments if faults are simulated properly. The results 
presented in this section have been done using real flight data 
and images obtained in experiments that were done in the 
framework of the COMETS project. In this project a 
distributed system for cooperative activities using UAVs was 
designed, implemented, and demonstrated for cooperative 
fire detection and localization. The objective is that a group 
of networked UAVs survey an area looking for fire alarms. If 
an alarm is detected, the team should localize it and confirm 
or discard it, taking benefit of the diversity of sensors. Since 
localization is one of the main objectives, UAV position 
accuracy is very important for the mission. 

In this experiment, real flight data recorded by the helicopters 
Marvin and Heliv were used. Marvin is an autonomous 
helicopter developed by the Real-Time Systems & Robotics 
Group of the Technische Universität Berlin, Germany 
(Remuss, et al., 2002). Marvin is built upon a conventional 
model airframe. Sensors for position and attitude 
determination include an IMU (with three magnetometers, 
three accelerometers, and three piezo-electric gyroscopes), an 
ultrasonic rangefinder looking down and a carrier phase 
differential GPS receiver. Marvin also has a digital camera. 

Heliv is the result of the evolution of a conventional remotely 
piloted helicopter, adapted by the Robotics, Vision, and 
Control Group at the University of Seville (Spain) by adding 
sensing, perception, communication, and control functions. 
Heliv has an IMU, a GPS receiver and an ultrasonic altitude 
sensor for positioning, and it is equipped with one visual and 
one infrared cameras.  

 

Fig. 7. Residuals for position estimation sequence with initial 
standard deviations of UDev=5.8 and VDev=6.1, and 
threshold level of 4.5. 

In the experiment carried out, Marvin and Heliv were 
commanded to patrol an area following their prescribed 
trajectories. A positioning error was artificially induced in the 
flight data recorded from Heliv. This error was a slow 
growing drift added to the position estimation. The fault 
detection of the individual UAV was not able to detect it. At 
fixed intervals, multi-UAV FDI tasks are executed, and 
Marvin is commanded to direct its camera to the same scene 
that Heliv is looking at. Following the procedure described in 
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section 3, the relative position of Marvin and Heliv is 
computed. The standard deviations of the homography are 
UDev=5.8 and VDev=6.1. The corresponding threshold level 
for this parameter is 4.5 (red dashed line in Fig. 7). These 
variable threshold levels have been previously identified 
empirically, looking at the maximum value of the residual in 
fault-free conditions. An estimation of the absolute position 
of Heliv is generated using Marvin sensors. The discrepancies 
between this estimation and Heliv’s own estimation are 
shown in Fig. 7, along with the threshold level corresponding 
to the standard deviations. 

No fault is detected, but, since the standard deviations of the 
homography are not very good, the mission planner generates 
dynamically a new task for Marvin to go to a new point 
nearer to Heliv, from which the homography of the taken 
images is expected to have better standard deviations. 

 

Fig. 8. Residuals for position estimation sequence with initial 
standard deviations of UDev=2.3 and VDev=1.5, and 
threshold level of 1.5. 

When Marvin arrives at this point, a new sequence of images 
is taken from both helicopters, and the relative position 
estimation is calculated again following the procedure from 
section III. This time, the standard deviations of the 
homography are UDev=2.3 and VDev=1.5. Again, the 
discrepancies between this estimation and Heliv’s own 
estimation are shown in Fig 8, along with the threshold level 
corresponding to the standard deviations. In this case, the 
threshold level (dashed line) is lower, and it can be clearly 
detected that a fault is present in the sensors of the 
positioning system of Heliv. 

6. CONCLUSIONS 

Fault detection is an important issue in autonomous UAV 
navigation. Particularly, GPS transient failures, which are 
very usual in some scenarios, may have catastrophic effects. 
Computer vision can be used for relative position estimation 
in case of GPS failures. This paper has shown how computer-
vision and task-replanning techniques can be used to improve 
the reliability in multi-UAV systems. The proposed method 
has been validated experimentally by using the information 
generated in the COMETS multi-UAV fire detection and 
monitoring field experiments. Further work will include the 

application of the proposed method by using cameras in fixed 
locations or transported by people and other sensors. 

ACKNOWLEDGMENTS 

This work has been partially supported by the AWARE 
(European Commission, IST -2006-33579) and COMETS 
(European Commission, IST 2001-34304) European projects, 
and the AEROSENS (DPI2005-02293) Spanish National 
Research project. 

REFERENCES 

Caballero, F.; Merino, L.; Ferruz, J.; Ollero, A. (2006). 
Improving vision-based planar motion estimation for 
unmanned aerial vehicles through online mosaicing. 
Proc. of the IEEE International Conference on Robotics 
and Automation. Pp 2860-2865, May 15-19. 

Drozeski, G., B. Saha and G. Vachtsevanos (2005). A fault 
detection and reconfigurable control architecture for 
unmanned aerial vehicles. Proc. of the IEEE Aerospace 
Conference, Big-Sky, USA, March 5-12. 

Forssén, P.-E. (2004). Low and Medium Level Vision using 
Channel Representations. PhD thesis No.858, Linköping 
University, 2004. 

Goodman, J. (2003). The Space Shuttle and GPS – A Safety-
Critical Navigation Upgrade. Proc. of the 2nd 
International Conference on COTS-Based Software 
Systems, February 10-12, Ottawa, Canada. 

Heredia, G., A. Ollero, M. Bejar and R. Mahtani (2008). 
Sensor and Actuator Fault Detection in Small 
Autonomous Helicopters. Mechatronics. 18/2, pp. 90-99. 

Ljung, L. (1999). System Identification - Theory for the User. 
Prentice-Hall, Upper Saddle River, N.J., 2nd edition. 

Merino, L.; Wiklund, J.; Caballero, F.; Moe, A.; De Dios, 
J.R.M.; Forssen, P.-E.; Nordberg, K.; Ollero, A. (2006). 
Vision-based multi-UAV position estimation. Robotics 
& Automation Magazine, IEEE , 13, no.3, pp. 53-62. 

Napolitano M., D. Windon, J. Casanova, M. Innocenti and G. 
Silvestri (1998). Kalman filters and neural-network 
schemes for sensor validation in flight control systems. 
IEEE Trans.  Control Systems Technology, 6, 596-611. 

Napolitano M., Y. An and B. Seanor (2000). A fault tolerant 
flight control system for sensor and actuator failures 
using neural networks. Aircraft Design, 3, 103-128. 

Ollero, A. and L. Merino (2004). Control and perception 
techniques for aerial robotics. Annual Reviews in 
Control. No. 28. Pgs. 167-178. 

Patton, R.J. and J. Chen. (1997). Observer-based fault 
detection and isolation: robustness and applications. 
Control Engineering Practice, 5, pp. 671-682. 

Remuss, V., M. Musial and G. Hommel (2002). MARVIN—
An autonomous flying robot-based on mass market. 
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 
IROS 2002. Proc. W. Aerial Robotics (pp. 23–28). 

Sandholm, T. (1993). An implementation of the contract net 
protocol based on marginal cost calculations. Proc. of  
12th Int. Workshop on Distributed Artificial Intelligence. 

Smith, G. (1980). The contract net protocol: High-level 
communication and control in a distributed problem 
solver. IEEE Transactions on Computers, 29(12). 

t
0 10 20 30 40 50 60

0

0.5 

1

1.5 

2

2.5 

3

3.5 

4

4.5 

5

Residual 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12098


