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Abstract: In this paper we investigate a real-time traffic surveillance system based on a multi
class first-order traffic flow model called Fastlane. We demonstrate a dual extended Kalman
Filtering approach in which the model state and parameters can be estimated simultaneously
from real-time data. The innovation is that although Fastlane maintains the dynamics of
multiple vehicular classes (e.g. trucks, buses, cars), only the total mixed-class density is corrected
by the filter, which is ‘translated’ into multi-class state corrections by means of state-dependent
person car equivalents and class flow shares. Results on real data from a densely used freeway
show that the DEKF procedure is able to reproduce accurate speeds and flows and physically
plausible parameters.

1. INTRODUCTION

Modeling and predicting traffic conditions (speeds, travel
times, flows, etc) in traffic networks is one of the main
research areas in current traffic and transport science.
Traffic prediction is also a crucial component in many real
world applications within traffic and transport practice,
such as travel information services, traffic management &
decision support systems, freight and fleet management
systems, etc. On a network scale, the most appropriate
tools for predicting traffic conditions (and possibly op-
timizing traffic measures) are traffic simulation models
(TSMs), which range from low-detail macroscopic (analyt-
ical) models to high detail microscopic simulation models.
A good example of a real-time network surveillance and
decision support system is the Renaissance system (Wang
and Papageorgiou [2005]), which is centered on a so-called
second order macroscopic analytical TSM.

For such a real-time traffic surveillance tool one requires
- besides a network TSM - a data assimilation technique
which connects the inputs (demand, turn fractions), state
variables (densities, flows, speeds) and/or parameters used
(e.g. capacities and critical densities) in the TSM to real
time data from for example induction loops (Antoniou
et al. [2005], Wang and Papageorgiou [2005], Wang et al.
[2006]).

The differences between the most commonly used data
assimilation techniques such as the EKF, UKF and PF
(particle filter) lie in their assumptions. For example, EKF

⋆ This research is supported by the Dutch Technology Foundation
STW, applied science division of NWO and the Technology Program
of the Ministry of Economic Affairs under grant DCB 7814.

approaches assume that a TSM can be linearized around
the prevailing state (e.g. cell densities), and that all model
and measurement errors can be approximated by Gaussian
white noise processes. These are clearly strong assump-
tions, which in many real traffic situations may not hold.
UKF and (U)PF approaches relax these assumptions in
various degrees, but are computationally much more de-
manding than the EKF, since they typically require Monte
Carlo sampling procedures (or variations on these) to
derive a reasonable approximation of the posterior (model
and measurement) probability densities. As a result, the
gain in estimation accuracy might pose constraints on
the real-time applicability of such a TSM-UKF or PF
traffic surveillance system. Munoz et al. [2006] provide
other arguments which support the use of the EKF in real
time traffic modeling over its more elaborate variants. In
(Munoz et al. [2006]), it is shown that (local) linearization
does not necessarily lead to an unrealistic (first order)
traffic flow model. These authors describe and calibrate a
linear version of the LWR model (Lighthill and Whitham
[1955], Richards [1956]) and conclude that this linearized
version in fact reproduces approximately the same (basic)
phenomena as the original model.

In this paper we investigate a real-time traffic surveillance
system, which uses a so-called dual extended Kalman filter
(DEKF, see e.g. Haykin [2001]) in conjunction with a first-
order multi-class traffic flow model Fastlane. In a DEKF
the network state (in terms of densities) is estimated, and
subsequently some (or all) of the model parameters based
on this corrected network state. This paper is organized as
follows. The next section briefly introduces a new multi-
class first order traffic flow model Fastlane, to which
this DEKF approach is applied. The section thereafter
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overviews the DEKF method, while in the remainder some
results on real data are provided. The paper closes with
a critical discussion, conclusions and recommendations for
further research.

2. MULTI CLASS TRAFFIC FLOW MODELING:
FASTLANE

In this paper we use an analytical macroscopic network
traffic flow model Fastlane (First-order fAST muLti-
class mAcroscopic traffic flow model for simulation of
NEtwork-wide traffic conditions - van Lint et al. [2007],
van Lint et al. [2008]), which specifically addresses the het-
erogeneity of network traffic. Heterogeneity here depicts
differences drive behavior and dynamics in (classes) of
vehicles, e.g. person cars and trucks. The Fastlane model
differs from earlier multi-class models (see e.g. Logghe
[2003] in that it calculates traffic dynamics (of the total
heterogeneous traffic flow) in terms of dynamic person car
equivalents (η’s). These pce values are hence state-specific,
that is, they are a function of the prevailing class-specific
speeds.

2.1 Link dynamics

In this paper a traffic network is described by a directed
graph G = (N, A) of nodes n ∈ N and links a ∈ A.
Similar to earlier LWR based multi class traffic flow
models (see e.g. Logghe [2003] for an overview), the core
of the Fastlane traffic flow model is the class-specific
conservation of vehicle equation 1. In the ensuing, the
subscript u will denote the user-class (e.g. person-cars,
trucks). For each class u we have (for each link a) 1 :

∂ku

∂t
+

∂qu

∂x
= 0 (1)

In (1), ku = ku(t, x) denotes the class-specific density and
qu = qu(t, x) = ku(t, x) · vu(t, x) denotes the class-specific
flow at time instant t and location x. The boundary condi-
tions (inflow at the entry of the link and the outflow at the
link exit) are determined respectively by the upstream and
the downstream links, expect for the case where a is an ori-
gin or a destination link. The class-specific speed is defined
by vu(t, x) = Vu(K(t, x)),K(t, x) = κ(k1(t, x), ..., kU (t, x))
where Vu denotes the class-specific equilibrium speed as
a function of the effective density K. In turn, K(t, x) is
described by a function of the class-specific densities

K(t, x) =
U

∑

u=1

ηu(t, x)ku(t, x) (2)

in which the person-car equivalents ηu, are state specific
and specified by:

ηu(t, x) =
su + TuVu(t, x)

su0
+ Tu0

Vu0
(t, x)

(3)

In (3), su denotes the class-specific gross stopping dis-
tance (i.e. vehicle length + distance to predecessor at zero
speed), and Tu denotes the class-specific minimum head-
way. The subscript u0 depicts the reference class (person
cars). The equilibrium speed Vu is chosen such that for

1 We omit the link index a to keep notation simple

effective densities K larger than some critical density Kc,
the speeds of all classes u are equal to the critical speed vc.
In free-flow conditions, different classes move with different
average speeds. More specifically, we have:

Vu(K) =















v0
u − K

(v0
u − vc)

Kc

,K < Kc

vcKc

K

(

1 −
K − Kc

Kjam − Kc

)

,K ≥ Kc

(4)

in which the parameter Kjam denotes the effective jam
density. Clearly, since

Capacity[pce/h] = max(q) = vcKc

the vehicle composition (e.g. percentage of trucks) and the
prevailing speeds (governing the pce values) determine the
capacity in veh/h of a link.

2.2 Numerical solution and node dynamics

To solve the Fastlane equations a new numerical solution
approach was developed based on the generalization of the
well-known Godunov scheme Lebacque [1996]. Each link a
is divided into a number of cells i (usually of 100 - 500
m). For each cell, the scheme determines a class-specific
demand and a mixed-class supply. The mixed-class supply
of downstream cell i+1 is then distributed over the classes
according to the so-called shares in the demands of the
upstream cell i.

qi→i+1
u =

1

ηi
u

min
(

Di
u, λi

uSi+1
)

(5)

In the network description, three node types are consid-
ered: link-to-link nodes, merges and diverges (Fig.1a, b
and c). Below, a discussion of the traffic dynamics across
these nodes will be given.

Fig. 1. Normal nodes, bifurcations and diverges

A link-to-link node (Fig.1a) depicts a simple interface
between two network links a and b, describing a discon-
tinuity, such as a lane drop, or a change in speed limits.
To determine the resulting traffic dynamics, the class-
specific demands Da

u of an incoming link a are compared
to the mixed-class supply Sb of the outgoing link b. Put
simply, traffic demand is transferred from link a to link
b proportional to the traffic composition on link a, and
constraint by the maximum possible (total) flow which can
enter in link b. This is modeled by means of class-specific
shares (proportions) λu, which are calculated as follows

λu(t, x) =
ηu(t, x) · qu(t, x)

∑

u

ηu(t, x) · qu(t, x)
(6)

At the origins, these shares are equal to the traffic compo-
sition (e.g. truck percentage) set by the user. As a result,
we get the following expression for the class-specific flow
between link a and b:

qa→b
u =

1

ηa
u

min
(

Da
u, λa

uSb
)

(7)
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At bifurcation nodes (Fig.1b) with two incoming links a
and a′ and one outgoing link b, we need to determine how
the supply (the amount of traffic able to enter outgoing
link b) is distributed not only across the classes u through
shares λa

u, but also across the incoming links a and a′

through proportions κa
u. In the current version of the

model, we make the (rough) assumption that the available
supply is distributed according to the effective capacity of
the incoming links, that is

qa′
→b

u =
1

ηa′

u

min
(

Da′

u , κa′

λa′

u Sb
)

(8)

with

κa′

=
Ca′

Ca + Ca′
, κa = 1 − κa′

Furthermore, if the demand of one of the incoming links
is less than the assigned supply, the remaining supply will
be assigned to the other link. Finally, the traffic dynamics
at a diverge or bifurcation node (Fig.1c) are described by
the turn fractions γb

n, which depict the distribution of the
total flow over the outgoing links. As a result, for merges
we have

qa→b
u =

1

ηa
u

min
(

γb
nDa

u, λa
uSb

)

(9)

3. A DUAL EXTENDED KALMAN FILTER FOR
STATE AND PARAMETER ESTIMATION

3.1 General structure of the Dual EKF

Since Fastlane - like most analytical traffic flow models
- can be cast into a discrete state-space form, it can
be connected to real-time data with an (D)EKF in a
straightforward manner.

Consider the following discretized non-linear state space
system (note that from here on t depicts discrete time
instants)

xt = f (xt−1,wt−1,ut−1) + rx,t−1 (10)

dt = h (xt,wt) + rd,t (11)

in which (10) depicts the process equation which describes
the dynamics of state xt+1 as a function of xt and
external disturbances ut plus a zero mean Gaussian error
term rt. The function f contains (possibly time-varying
parameters) wt. Equation (11) depicts the observation
equation h which relates the system state to (observable)
outputs dt. Details on the EKF algorithm can be found
in many textbooks (e.g. Simon [2006]), here we briefly
highlight the main issues.

3.2 Step 1: state estimation

In the prediction step a prior state estimate x−

t is cal-
culated with (10). A prior estimate for the state error
covariance P is calculated with

P−

t = FPt−1F
T + Qt (12)

in which F = df
dx

|
x=x

−

t

depicts the derivative of the process

equation (10) to the state.

In the correction step a posterior estimate of x is calculated
through

x̂t = x−

t + Gt

(

dt − h
(

x−

t

))

(13)

Pt = (I − Gt)P
−

t (14)

in which G depicts the so-called Kalman Gain matrix
calculated by

Gt = P−

t HT
(

HP−

t HT − R
)−1

(15)

where H = dh
dx

|
x=x

−

t

depicts the derivative of the observa-

tion equation (11) to the state

3.3 Step 2: parameter estimation

Let us assume the parameters wt in equations (10) and
(11) are also time-varying, according to a known Gaussian
noise process, in the simplest case a random walk

wt+1 = wt + rw,t (16)

Equations (16) and (11) again constitute a discrete state-
space system which can be solved in the same manner as
above.

There are roughly two approaches to combine online state
and parameter estimation. In the first approach (joint
estimation) the two systems are solved in parallel. The
state vector in that case is augmented as in [xT

t ,wT
t ]T .

The second approach updates the state and parameter
vectors sequentially. This sequential procedure is referred
to as dual estimation (Haykin [2001]). Fig.2 schematically
illustrates this procedure.

The main benefit of the dual EKF (DEKF) procedure
is that the parameters are now estimated on the basis
of a corrected (filtered) state estimate, which as argued
in (Haykin [2001]) leads to smoother and more stable
parameter estimates. Implementation-wise there are also
benefits. Separating state and parameter estimation allows
the modeler to use coarser time and space discretisation
for the parameters. This makes sense physically, since
these parameters reflect average drive behavior which
fluctuates on a much coarser (space-time) scale than the
state variables (densities). This is also reflected by the fact
that the process noise for the parameters (16) is typically
an order of magnitude smaller than that for the state
(10). On the downside, the DEKF procedure ignores the
(possibly strong) cross-correlation between state-variables
and parameters, which are captured in the joint estimation
procedure.

Implementation of the DEKF procedure is straightfor-
ward. In the parameter correction step two modifications
are required. First, equation (11) is replaced by

dt = h (x̂t,wt) + rd,t (17)

Secondly, the matrices F and H in equations (12) and (15)
now depict the derivatives with respect to the parameters,
that is, df

dw
and dh

dw
respectively.

3.4 Application of the DEKF to Fastlane

Recall from (1) that Fastlane maintains user class spe-
cific densities and flows ku,t and qu,t (t now depicts discrete
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Fig. 2. Schematic representation of dual EKF procedure

time). We define the effective density Ki
t (2) as the system

state on each cell i and [vA′

c ,KA′

c ,KA′

jam] as the parameters
to be estimated for each set of links A′ ⊂ A. These subsets
A′ are chosen on the basis of common characteristics (e.g.
number of lanes, slope, etc). Assuming a traffic network is
discretized into N cells i, and M subsets A′ this implies a
N × 1 state vector and a 3M × 1 parameter vector.

The process equation in the state estimation step of
the DEKF-Fastlane procedure involves applying the
class-specific conservation laws for each cell i, which in
discretized form read

f : ki
u,t+1 = ki

u,t +
∆t

∆xi

(

qi−1→i
u,t − qi→i+1

u,t

)

(18)

In (18) the fluxes qi−1→i
u,t and qi→i+1

u,t are calculated by (7)-
(9). The effective density Kt+1 and class-specific speeds
and flows are then recomputed with (2)-(4). Calculating
the error covariance P−

t requires the calculation of matrix
F. Due to (2)-(4) this would involve applying the chain
rule

df

dK
=

df

dku

dku

dηu

dηu

dVu

dVu

dK

which is a [N × NNu] · [NNu × NNu] · [NNu × NNu] ·
[NNu × N ] matrix operation (Nu denotes the number of
user classes). A cheap and reasonable approximation is to
assume that on those cells where observations are available
the multi-class dynamics can be described in terms of a
single (average) class, so that

df

dK
≈

df

dk

dk

dK
= C

df

dk

in which C < 1 is a constant equal to 1/η̄t where

η̄i
t =

∑

u

ki
u,tη

i
u,t

∑

u

ηi
u,t

denotes the average pce value η of each vehicle in the
flow. After each update, the average corrected mixed-
class state is distributed over the class-specific states by
using the prior pce values and class flow shares. This
approximation is particularly usefull in cases where only
mixed-class average speeds and (total) aggregated flows
are measured. This is for example the case in the Dutch
dual loop motorway monitoring system. The mixed-class

average speed and total flow are related to the class-
specific speeds and flows as follows

vi
t =

∑

u

ki
u,tv

i
u,t

∑

u

ki
u,t

, qi
t =

∑

u

qi
u,t (19)

On the basis of these quantities the observation function
h for speeds (the speed density relation of equation (4))
now becomes a single (average) class function which reads

V (K) =















v0 − K
(v0 − vc)

Kc

,K < Kc

vcKc

K

(

1 −
K − Kc

Kjam − Kc

)

,K ≥ Kc

(20)

with an average weighted free-speed

v0 =

∑

u

ki
u,tv

0
u

∑

u

ki
u,t

(21)

The observation equation for flows follows directly from
(20) and reads

qt = ktV (Kt)

4. EXPERIMENTAL SETUP

4.1 Data and network

We will test the DEKF-Fastlane model on a 3.7 km
3-lane stretch of the southbound A13 freeway between
Delft-Zuid and Rotterdam Airport in the Netherlands.
This freeway stretch is equipped with dual carriage way
inductive loops which measure total flows and average
speeds in one minute intervals. For this example a typical
congested afternoon peak was selected (March 12, 2006)
Fig.3 schematically outlines this freeway stretch and de-

Delft-Zuid

Rotterdam Airport 

1

2 3 4
5

6

Fig. 3. Freeway stretch coded in Fastlane: A13 from
Delft-Zuid to Rotterdam Airport. The white blocks
indicate the locations of dual loop detectors.

picts the detector locations with small white numbered
blocks. In the next section the DEKF-Fastlane estimator
is ran with data from detectors 2, 5 and 6. Loop detector
1 is used to derive the upstream traffic demand. In this
example we have roughly estimated the demand at onramp
Rotterdam Airport at on average 5% of the main carriage
way flow, whereas the outflow to Rotterdam Airport is also
estimated at on average 5% of the main carriage way flow.

To asses the quality of the state estimate, the results of the
DEKF-Fastlane estimator at the locations of detectors
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3 and 4 are compared to the actual detector data on the
basis of the root mean of squared error (RMSE)

RMSE =

√

1

N

∑

N

(di − yi)
2

where di and yi depict the measured and predicted speed
or flow respectively. Also a more qualitative comparison
is made on the basis of graphs depicting empirical and
estimated speed-flow relationships on these detectors.

4.2 Model parameter settings

In this example, three classes of vehicles, trucks, vans and
person cars (the reference class) are defined according to
the parameters listed in Table 1. The initial values for the
dynamic mixed-class parameters were chosen as follows:
vc = 85 km/h, Kc = 25 pce/km, and Kjam = 1/su0

≈ 133
pce/km. As a result, the a priori capacity of a single lane
equals 2125 (pce/h).

Table 1. Class-specific parameters Fastlane

person cars vans trucks

percentage at origins (%) 75 15 10
su (gross distance gap in m) 7.5 10 18

Tu (time headway in s) 1.2 1.4 1.8
vu (free speed in km/h) 120 100 85

4.3 Filter scenarios

The Kalman Gain Gt in (16) governs the magnitude with
which both parameters and state variables are adjusted by
balancing the degree of uncertainty in the measurements
(rd) and the in the parameters and state variables (rx).
This implies that the ratio between these noise factors β
(∝ rd/rx) influences the responsiveness of the filter to new
measurements. A very small β will keep the model ”tight”
to the data, but might lead to an overly responsive and (in
terms of parameters) overfitted model. Vice versa, a large
β will lead to a less responsive and smoother filter, albeit
that the state and parameter may become biased.

In this example we assess the DEKF-Fastlane state / pa-
rameter estimator for three values of β (1, 10−2 and 10−4),
where we fix the process noise and scale the measurement
noise accordingly. In the example, we used rx = 1 [veh/km]
for the state process noise. The parameter process noise is
chosen two orders of magnitude smaller (10−2). In total we
assess 3 (number of noise (β) settings) × 3 (measurement
data used: speeds, flows or both) × 3 (state estimator
setup: only state, state and Kc, and state and Kc, vc,
Kjam) = 27 scenarios.

5. RESULTS

Fig.4 summarizes the RMSE results of the DEKF-
Fastlane estimator with respect to speed measured at
detectors 3 and 4. There are a number of interesting
observations to be made. First of all using just the speed
data (from detectors 1,2,5) yields by far the best results.
Moreover, when using just speed data it appears that
neither filter sensitivity (different β settings) nor dually
estimating one or three parameters have much effect on the
state estimation results. When also the flow data is used,

0

5

10

15

20

25

30

35

40

45

�=1 �=0.01 �=0.0001 �=1 �=0.01 �=0.0001 �=1 �=0.01 �=0.0001

state estimation state + critical density state + all parameters

R
M

S
E

 S
p

e
e
d

s
 [

k
m

/h
]

only flows

only speeds

speeds + flows

Fig. 4. RMSE speeds (on detectors 3 & 4) in different filter
and measurement scenario’s
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Fig. 5. Speed estimation results at detector 3 in case only
state variables are estimated.

dual estimation is beneficial, but only in case all mixed-
class parameters (Kc, vc,Kjam) are estimated. Overall,
on the basis of RMSE on speeds, a state estimator with
fixed parameters outperforms all other (dual estimation)
configurations by far. In a real-time control setting where
an accurate mean state estimate is relevant, this clearly is
the preferable filter scenario.

Fig.5 and 6 show the estimated speeds (top), flows (mid-
dle) and speed-flow relationship (bottom) at detector 3,
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Fig. 6. Speed estimation results at detector 3 in the dual
estimation case (state and parameters).

on the basis of single (only state) and dual (state +
parameters) estimation respectively. The differences in
the estimated speeds and flow time series appear small
(compare the top and middle graphs in Fig.5 and 6). How-
ever, the dual estimation procedure does result in a very
different speed-flow relationship (fundamental diagram).
In case the parameters are estimated sequentially, the
estimated speed-flow relationship is - like the one based
on detector data - widely scattered (Fig.6), which is a
result of the time varying fundamental diagram poaram-
eters (Kc, vc,Kjam) . Fig.7 shows the resulting effective
capacity (Ceff = vcKc) at detector 3. Clearly, during
the congested period (16:00-18:00) a significant drop in
capacity is estimated, which makes sense from a physical
point of view.

6. CONCLUSION

This paper showed that a first-order multi-class traffic
flow model (Fastlane) can be used in a traffic surveil-
lance system by means of a dual extended Kalman filter
(DEKF). Only the total (effective) density is corrected
by the DEKF, which is ”translated” into multi-class state
corrections by means of state-dependent person car equiv-
alents and class flow shares. Results on real data from a
densely used freeway show that the DEKF procedure is
able to reproduce speeds and flows in between detectors
accurately. Estimating the model parameters sequentially
does not improve the state estimation (between measure-

ments), but does lead to more plausible physical results,
such as a drop in capacity during congestion, and a widely
scattered fundamental diagram.
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