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Abstract: This work presents an efficient control strategy for robot manipulators with constraints and 
affected by uncertainties and disturbances. The controller uses a combination of model predictive control 
(MPC) with an adaptive robust feedforward term. The predictive controller is based on interpolations 
between different simple solutions to guarantee the feasibility of the final solution applied to the 
manipulator. The proposed method improves the existing techniques in terms of robust capabilities. 
Feasibility is preserved with the MPC and applicability is also guaranteed as the computational load of the 
interpolation algorithm is low. The benefits of the strategy, compared with other existing controllers, are 
shown with simulation results obtained with a PUMA-560 manipulator.  

 

1. INTRODUCTION 

The problem of controlling robot manipulators is a well-
known topic that has been dealt since the 80’s with 
satisfactory performance for the regulation and tracking 
problems. Several strategies based on adaptive (Whitcomb et 
al., 1993; Spong, 2003) and robust control (Spong, 1992; 
Alonge et al., 2004) have been designed to take into account 
the model uncertainties. Their main drawback is that they 
assume some bounds in the uncertainties and disturbances, in 
order to tune the controller parameters. In the case of a 
manipulator with rigid elements, the defined techniques are 
efficient, but they have to be revised with flexible and low-
mass structures, where uncertainties and disturbances affect 
more decisively the global performance of the structure. The 
constraints affecting the manipulator are also an important 
point for global performance. This problem is traditionally 
accomplished by the trajectory planner. However, constraints 
violation can occur if, for instance, unbounded uncertainties, 
unknown payload mass or disturbances are present.  

This work gives a global solution to these control problems, 
thus increasing the performance of the closed-loop system. 
Particularly, some new control strategies for constrained 
manipulators in presence of unmodelled uncertainties and 
unbounded disturbances are defined. They are based on the 
application of an efficient and low-cost predictive controller 
and an adaptive robust term for disturbances and uncertainties 
rejection 

This paper is presented as follows: next section shows MPC 
definition and its main drawbacks. Section 3 describes a low-
cost solution to avoid constraints violation. Sections 4 and 5 
present the new proposed strategies: IAPC and RIAPC. The 
results obtained with these controllers are shown and 
compared with existing controllers in section 6. Finally, some 
conclusions are presented. 

2. ADDING CONSTRAINTS TO CONTROL ALGORITHM 
FOR MANIPULATORS: MPC 

As it is well known, the state of the robot is restricted by 
mechanical constraints (maximum values for the positions and 
velocities of the links). The maximum input to the actuators is 
also important because input saturations could cause 
instability of the closed-loop system or poor tracking 
performance. Although several approaches exist in the 
literature, constrained control of robot manipulators has not 
been solved efficiently in terms of computational load. 

MPC is a simple and efficient way to take into account the 
constraints in the control algorithm. The algorithm has to 
solve on-line an optimisation problem which involves system 
constraints. Due to the need of small sampling times, in order 
to get an accurate prediction model, the optimisation problem 
has to be solved with a low-cost algorithm.  

The two main drawbacks of the MPC formulation are the 
feasibility of the MPC solution and the computational load of 
the strategy. In one hand, feasibility is assured if an infinite 
horizon problem is solved, but this is not applicable in a real 
system. The other problem is the computational load due to 
complexity and high dimension of the optimisation problem. 

3. LOW-COST MPC ALGORITHM 

In order to solve the drawbacks seen in the previous section, 
this work proposes an efficient, low-cost strategy, based on 
interpolation between two or more simple solutions, which  
reduces the MPC computational cost without changing its 
main properties like optimality, performance and feasibility. 

The original MPC unconstrained problem with infinite 
horizon leads to the optimal, linear and quadratic solution LQ. 
In order to consider the constraints, several suboptimal 
strategies have been proposed (Kouvaritakis et al., 1997; 
Scokaert and Rawlings, 1998) based on the reduction of the 
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dimension of the problem N. Its main drawback is that high 
values of N are needed in order to get a feasible solution, so 
the computational load of the algorithm strongly increases. To 
accomplish this, some strategies based on interpolations 
between the LQ solution and the, so called, “mean level” 
(ML) or the “tail” solutions are proposed (Rossiter et al., 
1998; Méndez et al., 2000). This results on several 
algorithms, referred as LM (LQ+ML), LT (LQ+Tail), and 
LMT (LQ+ML+Tail).  

3.1 Interpolation based predictive control 

Some basics of these interpolation algorithms are exposed 
below. The control problem is, given the state vector at time 
instant k ( ), and the input vector ( ), to find the input 
sequence that minimizes a cost function like this: 

kx ku
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++ +=
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where the sub-indexes min y max refer to the minimal and 
maximum values of each variable. The linear model of the 
system, needed to compute the predictions for the inputs, is 
added as an equality constraint. The strategy of the predictive 
controller consists of computing the input sequence 
{ }pk nk ,...,0, =u  at each sample time that minimizes (1), 
being np the prediction horizon. Once the optimisation is 
performed, only the first input value of the sequence  is 
applied and the procedure is repeated at the next sample time. 

0u

Without inequality constraints, the optimisation leads to the 
solution , where the gain  is obtained by 
considering the minimisation of (1), subject to the constraints 
(2), by using a Ricatti formulation (Lewis, 1984). 

kLQk xKu -= LQK

3.2 LQ+ML interpolation (LM) 

The LQ is the optimal solution if it is feasible, but this does 
not usually occur. Let’s call mean level solution, , to the 
solution obtained by considering the minimisation of the cost 
function (1) when the weight of the command, R, is much 
higher than the weight of the state Q. In this way, the 
feasibility of the solution is always guaranteed. The LM 
algorithm consists of doing an interpolation between the LQ 
solution and the ML solution as follows: 

MLu

 
( ) 10,1 ,,, ≤≤+−= ααα MLkLQkLMk uuu  (4) 

and doing the minimisation of (1) with respect to  to 
compute the α value. The input predictions are given by: 

MLku ,

( ) 00, 1 xφKxφKu αα k
MLML

k
LQLQLMk −−−=  (5) 

 

where  is the gain obtained from the optimal control 

problem without inequality constraints and  is the gain 
corresponding to the ML problem. Moreover, 

LQK

MLK

LQLQ BKAφ −=  and , where  y B  are 
the state matrixes corresponding to the system (2). 

MLML BKAφ −= A

3.3 Other interpolation algorithms 

To solve the problem of the convergence of the cost function, 
the addition of the “tail” to the previous controllers has been 
proposed. The tail is the solution (predicted inputs) obtained 
in the previous time instant, except for the applied input. As it 
belongs to a feasible control law that minimises (1), it is a 
feasible sub-optimal solution for the input in the next time 
instant. This helps cost function to converge. 

With this solution, two interpolation methods have been 
proposed: the LT (LQ+Tail) and the LMT (LQ+ML+Tail) 
algorithms. These interpolation algorithms (Mendez et al., 
2000, Kouvaritakis et al., 2000) are not used in this work 
because the LM algorithm is enough to achieve the control 
specifications. 

4. EFFICIENT CONTROL ALGORITHM FOR 
MANIPULATORS WITH CONSTRAINTS: IAPC 

This section shows the controller used in this work to 
accomplish the control of the manipulator in the presence of 
disturbances, uncertainties and constraints. This method is 
called IAPC: Interpolation based Adaptive Perturbation 
Controller. It is based on the well known adaptive 
perturbation controller, where the linear contribution to the 
control law is given by an interpolation predictive controller. 

4.1 Adaptive perturbation scheme 

The control technique applied in this work is based on the 
scheme shown in figure 1. This method uses a linearisation of 
the model around the desired (or nominal) trajectory. Then, 
the torque applied to the links has two contributions: a direct 
contribution, calculated from the computed torque controller, 
and a feedback contribution, where a linear interpolation 
predictive controller, using the linearised model of the plant, 
tries to correct the deviations from the nominal trajectory, 
obtained by means of a trajectory planner. The non-linear 
control problem of the robot arm is then reduced to a linear 
control problem with respect to a nominal trajectory. 

In this scheme, [ ]Tknkk ,,1 ,...,ττ=τ  are the input torques to the 
system and  are the nominal torques. The inputs applied 
to the system are given by: 

k,Nτ
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kkk τττ N
~

, +=  (6) 

 

where kτ
~  are the feedback torques computed by the 

predictive control algorithms proposed in 4.3. 

Fig. 1: Control scheme applied in this work: adaptive 
perturbation controller. 

4.2 Prediction model 

To obtain the linear model of the system, a local linearisation 
method is used. Following this method, once defined          the 
state of the manipulator , with 

, being n the number 
of degrees of freedom of the structure, 

[ T
nxx 21 ...=x ]

nnnn xxxx θθθθ && ==== − 2121211 ,,...,,
nii ...1, =θ , the 

positions, and  the velocities of the links, and 
considering the current manipulator state as the equilibrium 
point, a first order Taylor expansion gives the following 
equation for the linearised model: 

nii ...1, =θ&

kkk τBxAx ~~~
1 +=+  (7) 

 

where  y B  are the state matrixes of the approximated 
linear model. This linear approximation is valid for the 
deviations with respect to the nominal trajectory. 

A

4.3 Optimisation problem 

The feedback torques are computed by applying a linear 
predictive controller based on interpolation. Avoiding the 
notation for the time instant, the control law is:  

( ) ( ) xKxKτττ ~~1~~1~
MLLQMLLQ αααα +−=+−=  (8) 

 

Input and state predictions are given by: 

( ) ( ) xφKxφK ~~1~ j
MLML

j
LQLQkjk αατ +−=+  (9) 

( ) ( ) xφxφx ~~1~ j
ML

j
LQkjk αα +−=+  (10) 

 

with , being  the control horizon. In this case, 
the constraints are the maximal input to the manipulator and 
the maximal allowed deviation with respect to the reference 

trajectory. Let 

cnj ,...,0= cn

{ }Nxxx −=+ max~
max  be the maximal positive 

overshooting allowed for the state with respect to the 
reference trajectory  and Nx { }xxx −=−

Nmax~
max  the 

maximal negative overshooting. Let  be the maximal 
value for the input (and 

Mτ

Mτ−  the minimal). After some 
simple steps, the optimisation problem to solve is the 
following linear programming problem: 
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The value oα  obtained when solving (11) is used in the 
current time instant in the control law (8). This assures an 
optimal performance of the controller without violating the 
constraints. The full algorithm IAPC is exposed below: 

Step 0) Fix the constraints values +
max

~x , −
max

~x  and . Mτ

Step 1) Compute the nominal torques  using              the 

reference trajectory given by 
Nτ

[ ]TdndN xx ,2,1 K=x  

and . Set k=1. dθ&&

Step 2) Measure , with 
T

kkk ⎥⎦
⎤

⎢⎣
⎡= θθξ &~~

kdkk θθθ −= ,
~

 

and . kdkk θθθ &&& −= ,
~

Step 3) Evaluate the linearised model at the current time. 

Step 4) Obtain the gains  and  solving the 
corresponding unconstrained infinite-time 
optimisation problems. 

LQK MLK

Step 5) Obtain LQLQ BKAφ −=  and MLML BKAφ −= . 

Step 6) Solve (11) to obtain the optimal value oα  of the 
interpolation parameter α . 

Step 7) Evaluate the input (8) and apply to the system. 

Step 8) Set k=k+1 and wait until the following sampling 
time. Go to Step 2. 

 

As can be observed, nominal torques are computed off-line 
using the reference trajectory. This reduces the computational 
cost of the algorithm. Once the linear model is obtained, the 
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LQK  and  gains have to be computed. This does not add 
computational cost because the simple and efficient Riccati 
algorithm is employed. The problem with respect to the 
computational cost is the solution of the linear programming 
problem. Its complexity increases with the control horizon n

MLK

c 
because of the number of constraints to evaluate. One strategy 
to reduce the computational cost of the algorithms consist of 
evaluating the linearisation every several sampling times, 
maintaining the current linearised model over a period of time 
in which the gains and the variables  and  are not 
changed. Thus, the linear programming problem only changes 
in the new state values. 

LQφ MLφ

5. ADDING ROBUSTNESS TO CONTROLLER: RIAPC 

The previous method can be improved by adding a term to 
reinforce the robustness of the controller. The typical robust 
control algorithms for uncertainties and disturbances rejection 
are based on the Lyapunov Direct Method and also on the 
Variable Structure Sliding strategy. First of them gives an 
expression for the controller as the following: 
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where , being  and I , respectively, a zero 
matrix and the identity matrix of adequate dimensions, Q  is a 
definite positive matrix and 

[ ]TI0D = 0

ρ  is referred as the uncertainty 
bound parameter. The robust term rk ,

~τ  is added to a 
stabilising control law sk ,

~τ  (PD, PD plus gravity 
compensation, LQ, etc.) to add robustness to the controller in 
presence of model uncertainties (Spong, 1992). The 
discontinuous definition of the robust term comes from the 
avoidance of the problem of chattering when the tracking 
error tends to zero. This law assures that the trajectories tend 
to a hyperplane around the sliding subspace . 
The hyperplane dimensions depend on the parameter

0Qξ =kDz = T
k

ε . 

The performance of this controller depends on the uncertainty 
bound parameter kρ . This parameter is tuned using 
information of the bounds for the model uncertainties. But in 
certain circumstances this is not possible, for instance, when 
an unknown payload mass is manipulated by the robot.  

A recent work (Torres et al, 2006) proposes a new method for 
on-line tuning of the parameter kρ . The adaptation law of the 
parameter kρ  is based in a descendent gradient method, 
which updates it to get a good rejection of the uncertainties 
and disturbances. It is given by: 

1
1

−
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∂
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k
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γρρ  (13) 

where )( 1−kkJ ρ  is an adequate quadratic cost function and  γ  
is the learning rate of the adaptation law. The steps to obtain 
the expression for the adaptation law can be seen in Torres et 
al (2006). Finally, the adaptation law is given by: 
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ε/QDM T=  (16) 
 

being  and  the matrixes obtained from the state equation 
(7) and the output equation 

B C

kk xCθ ~~
= .  

In this work, the term sk ,
~τ  is computed by the IAPC 

algorithm. The resulting control algorithm, referred as RIAPC 
(Robust IAPC), rejects efficiently the uncertainties 
maintaining the properties of feasibility and low 
computational cost. 

6. RESULTS 

The controller defined in this work gives an efficient solution 
to the problem of a manipulator in presence of uncertainties, 
disturbances and constraints. The linear predictive controller 
takes into account the constraints which are present in the 
system, normally input saturations due to actuators and state 
constraints due to mechanical aspects.  

In the standard solution, the trajectory planner gives a 
reference far enough from the constraints, even in presence of 
uncertainties of the assumed model of the manipulator. But if 
there are unmodelled or unbounded uncertainties (i.e. very 
different and unknown values of the payload mass), or in 
presence of disturbances, the constraints can be violated. In 
this case, the proposed IAPC and RIAPC strategies give some 
low-cost, feasible and efficient solutions.  

Next subsections show the benefits of this strategy, comparing 
the results between different controllers with the results 
obtained with the IAPC and RIAPC. First, an LQ controller 
with a robust term is used. Then, the IAPC strategy is used. 
Finally, in case of uncertainties, RIAPC strategy is used to 
improve the previous controller. To verify the performance of 
these strategies, some simulations on a PUMA-560 robot, 
with and without uncertainties, are shown. 

6.1 Robot model without uncertainties  

In this case, the model used to compute the manipulator 
dynamics is also used as prediction model. The disturbances 
affecting the system lead to constraints violation in the 
standard solution.  This  simulation  shows that the IAPC (and 
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Fig. 2: Reference trajectory represented in the task space of 

the PUMA-560 manipulator. 

RIAPC) algorithms avoid the constraints violation. The 
parameters of the controller are the following. For the LQ 
controller, the weight matrices are V = diag(0.04*[120 30 120 
30 120 30 80 20 80 20 80 20]) and W = diag(0.0005*[5 5 5 1 
1 1]). These values are relaxed with respect the optimal values 
in order to clearly show the comparison between the 
controllers. For the LM controller, the weight matrixes are 
V’=0.1*V and W’=1e4*W, to guarantee a feasible solution. 
For the robust term, the parameters are ε=1 and Q =diag([0 0 
0 0 0 0,1 1 1 1 1 1 ]). This term is adapted on-line, using the 
parameters: γ =1, =h*diag(25*[1 1 1 1 1 1]), and 

=h*diag(100*[1 3.75 2.5 2.5 2.5 2.5 2.5 6 5 6 6 6]), 
being h=0.001 the sampling time. The reference trajectory is a 
typical pick-and-place trajectory and has been generated by 
joining four points in the task space of the PUMA 
manipulator. This trajectory can be seen in figure 2. And 
additive disturbance in the positions is added at t=4.8 sec and 
t=16.0 sec. The input and state constraints values are 

 and 

adR

adQ

[ ]TM 888113675=τ =−=+
max

−
max

~~ xx   

. [ ]T1.01.01.04.04.04.0=

Figures 3 and 4 show respectively the results obtained with 
the second and third links of the manipulator. The other links 
have a similar performance. It can be seen that, around t = 5.0 
sec., these links have a better performance with the IAPC than 
the LQ controller because input saturation is avoided. That 
saturation is produced by the presence of disturbances in the 
position values. LQ controller gives input saturation which 
carries the link to a maximum tracking error of 0.20 rads. In 
the case of IAPC controller, the input saturation is avoided by 
means of the interpolation with the ML solution. The tracking 
error is reduced nearly 25% (around 0.15 rads.). RIAPC 
strategy offers a little better performance due to the efficiency 
of the controller against the perturbations. But this effect will 
be clearly shown in the next subsection, where parametric 
uncertainties are taken into account. 

6.2 Robot model with parametric uncertainties  

This section shows the results with the same controller but 
considering parametric uncertainties in the model. These are 
deviations of the masses and lengths with respect to the real 

values, and the presence of payload unmodelled masses. The 
simulation is quite similar to the previous case, so the 
constraints violation is again produced by the disturbances 
during the experiment. 

Figures 5 and 6 show a different performance with respect to 
the previous section. Again in the second and third links, 
around t=5.0 sec., IAPC and RIAPC strategies offer a better 
performance than the LQ controller because they avoid the 
input saturation. But, in this case, the system with RIAPC 
strategy has a better performance due to the action of the 
robust term over the deviations produced by the uncertain 
predictions computed by the model. With IAPC strategy, the 
tracking errors produced after t=5.0 sec are higher than with 
the robust strategy RIAPC. 

Figure 7 shows the evolution of the uncertainties bound 
parameter in case of LQ controller and RIAPC strategy. As it 
can be seen, they are very similar but, due to the interpolation 
strategy produces smaller tracking error values, the evolution 
of this parameter in the second case is smoother. 
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Fig. 3: Evolution of the input, tracking error and 
interpolation parameter for the second link. No 
uncertainties are present in the model. 
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Fig. 5: Evolution of the input, tracking error and 
interpolation parameter for the second link. The model 
presents parametric uncertainties. 
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the LQ controller and RIAPC strategy in the simulations 
of figures 5 and 6. 

7. CONCLUSIONS 

Most of the high performance solutions proposed for 
manipulators control are difficult to implement. Their main 
drawbacks are the computational load and the poor 
performance in presence of unbounded uncertainties and 
disturbances. 

The algorithm proposed here combines the following three 
main properties: constraints handling, uncertainties and 
disturbances rejection, and low computational cost. The 
controller incorporates MPC techniques into an adaptive 
perturbation controller. The predictive controller is based on 
interpolation. A local linearisation algorithm is used in order 
to obtain a linear model of the system. With this scheme, the 
violation of the constraints is avoided. Additionally, a robust 
term is added to the control law in order to reject the model 
uncertainties. This term is adaptively changed for a better 
performance of the closed-loop where the uncertainties and 
disturbances are completely unknown and/or unbounded. 

Results included in this work show satisfactory performance 
of this strategy compared with other controllers in a PUMA-
560 manipulator. For the proposed simulations, the tracking 
errors were significantly reduced with respect to the 
alternative methods. The feasibility of the solution was also 
verified in the simulations. 
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