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Abstract: In this work, the implementation of optimal and robust decisions in the presence of
various uncertainties comprising the model parameters, external conditions and the closed loop
behavior of basic controllers is presented. In order to compute optimal and reliable decisions, a
chance constrained optimization problem is formulated. The efficient solution approach is based
on the relaxation of the original stochastic problem formulation to a standard NLP problem.
By this means, nominal optimal solutions are relocated in order to guarantee both feasibility
and process operation as close to the true optimum as possible. The solution implicates the
minimization of additional costs which result from conservative strategies so as to compensate
for uncertainty. The experimental verification of the developed approach is carried out on a
distillation pilot plant for the separation of an azeotropic mixture.

1. INTRODUCTION

Several approaches have been suggested to formulate and
solve optimization problems under uncertainty, differing
in how uncertainty is handled. Conventional deterministic
optimization strategies treat uncertain variables by their
expected values and the resulting nominal optimal deci-
sions are not robust. The common procedure in industrial
practice is to select an extremely conservative strategy.
This implicates that the operation costs will be much
higher than required and the strategy applied is far from
the optimum. Accordingly it is desirable to include uncer-
tainty explicitly in the problem formulation.

In general, the uncertainty nature and its significance de-
termine the formulations of the objective function and the
constraints. To treat the objective function in an optimiza-
tion or control problem under uncertainty, minimizing the
expected value and the variance of the objective function is
usually adopted (Sahinidis [2004], Flemming et al. [2007]):

minE [f(x,u, ξ)] + ωD [f(x,u, ξ)] (1)

Here, x, u and ξ are state, decision and random vectors,
respectively. E and D are the operators of expectation and
variance, ω is a weighting factor between the two terms.

Nagy and Braatz [2003] derive an analytical expression
that provides an estimate of the distribution of the states
and outputs as a function of time. For this purpose, the
description of the probability distribution of the uncertain
parameters is carried out by a bounded set and the worst
case deviation is computed using a series expansion of the
model equations. In Govatsmark and Skogestad [2005] the
robustness of the operation of a plant is realized choosing
the right control structure. By this means, the variation
of the objective function value is minimized acounting for
uncertainties.

The true process optimum for operation of chemical pro-
cesses often lies on the boundary of the feasible region

defined by active constraints. Thus, the process optimum
and the set-points can be infeasible ignoring uncertainty in
the parameters, the measurement and the implementation
of optimal decicions. Here, the compliance with constraints
on process outputs is more challenging than those on
process inputs. Moreover, if uncertainty can not be com-
pensated by feedback, the use of conservative margins,
called back-off, is necessary to ensure feasibility (Srinivasan
et al. [2003]). The back-off describes the distance between
the nominal optimal solution and the correction adding a
conservative distance. For constrained process states which
are measured online, a direct back-off can be implemented
and considered in the optimization problem (Barz et al.
[2006], Govatsmark and Skogestad [2005], Visser et al.
[2000]). Moreover, under the assumption that the set of
active constraints is known a priori, an online measure-
ment based optimization strategy can be implemented
(Srinivasan et al. [2003]), which tracks the necessary con-
ditions of optimality (NCO-tracking). In this way not only
infeasibility but also a highly suboptimal operation can be
avoided.

However, many variables in the engineering practice can
not be measured on-line. These variables often represent
the product quality and, thus, their control is desired. The
same problem exists with predictive control applications.
Here optimal and robust trajectories regarding the com-
pliance of output constraints have to be calculated (Visser
et al. [2000]). One approach for the consideration of uncer-
tainties in contraints on output variables is to formulate
chance or probabilistic constraints (Arellano-Garcia et al.
[2007], Wendt et al. [2002]). Thus, it is required to evaluate
the probability of violating these constraints at the decided
operation point. Besides, they have to be satisfied with a
user defined probability level.

Pr {hi (x,u, ξ) ≤ 0, i = 1, · · · ,m} ≥ α (2)

Pri {hi (x,u, ξ) ≤ 0} ≥ αi, i = 1, · · · ,m (3)
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The value α ∈ [0, 1] represents the probability level.
Since α can be defined by the user, it is possible to
select different levels and make a compromise between
optimality of costs and the risk of constraint violation.
Equation (2) denotes the simultaneous formulation (joint
chance constraints) with α being a defined probability
of holding all constraints at once, while (3) corresponds
to the formulation of single probabilities ensuring each
inequality separately. In this form, different confidence
levels αi can be assigned to different outputs based on
their requirements.

For linear systems with uncertain parameters character-
ized by Gaussian PDF, different solutions have been pro-
posed. Visser et al. [2000] presents a cascade scheme for
the computation of a robust set-point trajectory where
margins from constraints are introduced. Loeblein and
Perkins [1999] and Schwarm and Nikolaou [1999] use the
information of the uncertainty directly in a model pre-
dictive control algorithm in order to guarantee feasibility
concerning output constraints. In engineering praxis the
process model gM and thus the relations between uncer-
tain parameters and output variables are highly nonlinear.

gM (x,u, ξ) = 0 (4)

While the inputs have known stochastic properties, the
output probability distribution is unknown. This issue is
emphasized in Figure 1 for the vapour-liquid-equilibrium
of a binary azeotropic mixture (acetonitrile-water). It is
demonstrated that for variations in temperature T in form
of a Gaussian distribution, the output variable concen-
tration xAc shows a strongly non-symmetric behaviour
which is not Gaussian. One possible way is to evaluate

Fig. 1. Effect of controller deviations in Temperature
(known input) on the concentration (unknown process
state): Prediction based on a simple VLE-Model for
acetonitrile/water.

the integral over the uncertain output variable space by
efficient sampling methods and an approximated integra-
tion Wendt et al. [2002]. An alternativ efficient approach
is discussed in this paper.

1.1 Implementation of Robust Optimal Decisions in an
hierarchical automation scheme

The development and implementation of optimal control
strategies is normally achieved through a hierarchical sys-
tem of layers (Govatsmark and Skogestad [2005]). In the
optimization upper layer, decisions about the optimal pro-
cess states with respect to various objectives are taken.
The results are then sent in form of set-points to the
regulatory control layer where the optimal strategies are

implemented keeping the system state at the optimal op-
erating point (Fig. 2). Overstepping existing constraints
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Fig. 2. Hierarchical process control scheme with basic
regulatory control and optimization layer.

makes the operation infeasible, which not only means a
loss of quality but also a safety risk. However, the inherent
plant disturbance spectrum leads inevitably to controller
performance deviations from their optimal set-points. To
guarantee robust implementation of optimal decisions for
all process states, the controller deviations and model
uncertainties are required to be part of the control sys-
tem i.e. to integrate implementation errors and stochastic
parameters. By this means, effects of disturbances and
model uncertainties can be compensated and robust set-
points for the regulatory control layer are then obtained.
Accordingly, the challenge of plant operation optimization
lies in reducing the conservative distance to the constraints
and pushing the plant to its limits without exceeding
critical limitations in the presence of uncertainty.

2. CHANCE CONSTRAINED SOLUTION
APPROACH

For this purpose, in this work, chance constrained opti-
mization is proposed, i.e. the objective function (e.g. costs)
is improved and the constraints are then to be satisfied
with a predefined confidence level (chance constraints).
Thus, the resulting robust decisions ensure the probability
of satisfying constraints, i.e. the reliability of being feasi-
ble. The essential challenge lies then in the computation
of the probabilities of complying with the constraints,
and their gradients, which means a multivariate integra-
tion over the unknown PDF of the constrained output
variables. In order to relax the stochastic optimization
problem to a standard NLP problem two steps are required
Wendt et al. [2002]. First, the constraints of the prob-
lem formulation are reduced to the inequality constraints
only. This is realized following the sequential solution ap-
proach and solving the equality constraints (mostly model
equations gM) in an extra simulation layer. Second, the
chance constrained region of the outputs is mapped to
a bounded region of the uncertain input variables with
known PDF. The method relies upon the sufficient condi-
tion of a monotonic relationship between the constrained
output variables yi ∈ Yi with yi = hi(x,u, ξ) and at least
one uncertain input variable, here ξs ∈ Ξs where Ξs is a
subspace of Ξ. So, for instance if ξs ↑⇒ yi ↑, then:

Pr {yi ≤ ymaxi } =

ξmax
i∫
−∞

ρ̃ (yi) dyi (5)
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= Pr {ξs ≤ ξmaxs } =

ξmax
s∫
−∞

ρ (ξs) dξs

And for the multivariate case:

Pr {yi ≤ ymaxi } = Pr {ξs ≤ ξmaxs } (6)

=

+∞∫
−∞

· · ·
+∞∫
−∞

ξmax
s∫
−∞

ρ (ξ1, · · · , ξs−1, ξs) dξs dξs−1 · · · dξ1

where ρ(ξ) is now the joint distribution function of ξ.
The input boundary ξmaxs is computed through reverse
projection based on the output value of ymaxi in the
simulation layer.

ξmaxs = gM−1 (ξ1, · · · , ξs−1, ymaxi ,u) (7)

The boundaries of the infinite integrals in (6) are chosen
as a function of the standard deviation σ, to [−3σ,+3σ].
In principle, the solution approach can be used to solve
problems under uncertainties with any kind of joint cor-
related multivariate distribution function, provided that
the density function is available or can be approximated.
Using equations (6) and (7) a single probability (3) can
be computed. The extension for the joint probabilities (2)
is discussed in (Arellano-Garcia et al. [2006], Wendt et al.
[2002]).

2.1 Illustrating example

A simple example with one uncertain parameter ξ is con-
sidered in problem (8). Whereas the objective function
J is only a function of the decision variables u1, u2, the
constraint dependent variables y1 and y2 are affected also
by the uncertain parameter ξ. The uncertainty ξ possesses
a strong nonlinear influence on the constraints Py1, Py2.
Thus, a chance constrained optimization problem is for-
mulated with the additional parameters α1, α2 defining
the probability level of satisfying each constraint Py1 and
Py2 (3).

min
u1,u2

J (u1, u2) (8)

s.t. 0.75 ≤ u1 ≤ 1.75, 1 ≤ u2 ≤ 3.5

Py1 := Pr {y1 (u1, u2, ξ) ≤ 0} ≥ α1

Py2 := Pr {y2 (u1, u2, ξ) ≤ 0} ≥ α2

and ξ ∼ N (µ = 0, σ = 2/7)
The required monotonic relationship between both stochas-
tic outputs and the uncertain parameter is fulfilled within
the feasible region. In this example, a positive monotony
between ξ and y1, y2 is given. Since all relations are
given in an explicit form, the effect of ξ on the original
constraints y1 and y2 can be plotted (Fig. 3). They are
marked as straight and dashed lines for different values
ξ = [−3σ : σ : +3σ]. From Figure 3 can be seen that
while the uncertain parameter ξ changes the exponential
trait of the constraint y1, for the quadratic constraint
y2 a term of third degree becomes active and the feasi-
ble area can become non convex for certain values of ξ.
The objective function is displayed by (dotted) isolines of
J(u1, u2) and can be interpreted as heights with respect

to the u1-u2-plane. Before solving the chance constrained
optimization problem, the stochastic variable ξ is replaced
by its expected value, here µ = 0. Doing so, the nominal
optimal decisions can be obtained solving an deterministic
optimization problem with the constraints:

y1(u1, u2, ξ = 0) ≤ 0 (9)

y2(u1, u2, ξ = 0) ≤ 0

For the nominal solution both output constraints are
active and the minimum of J at u = [0.7, 2] can not be
achieved (see Fig. 3). Moreover, if the stochastic nature of
ξ is considered, a feasible operation can not be guaranteed.

The solution of the chance constrained problem for-
mulation is given for different probability level αi =
[0.1, 99.9]%. It should be noted that α1 und α2 are varied
here simultaneously. However, it is also possible to define
different values α in order to consider one constraint as
more relevant than the other (e.g. for safety reasons). It
should though noted that like in the nominal case both
constraints are active for a wide range of αi = [2, 98]%.
For αi ≥ 98% only Py2, for αi ≤ 2% only Py1 remains
active. In addition to the nonlinear relation between u, ξ
and y, the probability integration of the unknown PDF
causes also a strong nonlinear effect on Py1 and Py2.
Thus, the solution exhibits discontinuity around αi ≈ 98%.
Following this, the realized back-off is the distance be-

αi = [0.1, 99.9] %
i ∈ {1, 2}

u1

u
2 99.9 %

98 %

2 %0.1 %

nom. sol.→

← y1(u1, u2, ξ=0)

y2(u1, u2, ξ=0)→
0.75 1 1.25 1.5 1.75

1

1.5

2

2.5

3

3.5

Fig. 3. Objective function J(u1, u2) (dotted isolines)
and constraint states y1(u1, u2, ξ), y2(u1, u2, ξ)
(straight/dashed lines for ξ = [−3σ : σ : +3σ]) and
nominal and robust solutions for different probability
levels αi.

tween the nominal solution and the solution obtained by
problem (8) and a function of the probability level αi. For
high values of αi additional costs (in the sense of the ob-
jective J) are necessary in order to hold the constraints in
the presence of the considered uncertainty on ξ. The worst
result is obtained for the highest probability of holding the
constraints αi ≈ 99.9% (see Fig. 3). For lower values of
αi, the objective function value J increases. Predictably
for αi ≤ 50% the solution is less conservative as for the
nominal result.
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3. EXPERIMENTAL CASE STUDY: OPERATION OF
A HIGH PRESSURE DISTILLATION COLUMN

3.1 The pilot plant and its basic regulatory control layer

The distillation pilot plant is composed of 28 bubble cup
trays and is embedded in a coupled two-pressure column
system for the complete separation of a binary homoge-
neous azeotropic mixture (acetonitrile-water). The column
is operated at a pressure of ptop = 2bar and the feed is sup-
plied into the column with an acetonitrile concentration
below the azeotropic point. The high boiling point compo-
nent (water) is removed from the bottom whereas at the
column top maximal separation is defined by a distillate
concentration equal to the concentration of the azeotropic
point, which is a function of the column top pressure
xazAc = f(ptop). Feasible operation of the column is defined

LC

PC

cooling water

top product

reflux

High 
Pressure 
Column

FC FC

FFC

TC

TC

feed

top product

LC

TC

bottom product

heat input

Fig. 4. Basic regulatory control of the column.

by the bottom and top product specifications which can
only be measured off-line by a gas-chromatograph. Thus,
no direct feed-back control can be applied. Figure 4 shows
the individual high-pressure column and the control loops
corresponding to the regulatory control layer. Whereas
the top specification is controlled in a pure feed-forward
mode, setting the reflux ratio, the bottom product concen-
tration is indirectly controlled by the stabilization of the
temperature profile in the stripping section. This is done
by a temperature control loop controlling the sensitive
temperature on a selected tray (set-point: TSP = 110◦C).

3.2 The optimization problem

High top and bottom product purities can only be achieved
at a high expense of reflux and reboiler heat being their
maximal value xtopAc → xAzAc(2bar) and xbottomAc → 0mole%.
The optimal operation is characterized by a minimal heat
input satisfying the product specifications. Considering
only continuous decisions, the nominal optimal operating
point is defined by the active constraints of bottom and

top product specifications. The formulated optimization
problem is given in (10). For this specific case the min-
imization of the reboiler duty Q̇ can be replaced by the
reflux ratio r. Doing so, the objective J is independent
from the uncertainties ξ, which are considered later. As a
result, the objective function can be treated as in a stan-
dard NLP problem (see also Barz et al. [2006], Flemming
et al. [2007]). No expected value or variance have to be
calculated.

min
r,YF eed

l
,Ysens

k

J = Q̇ ⇒ J = r (10)

s.t. model equations gM
xtopAc ≥ 63.2mol%
xbottomAc ≤ 0.5mol%

∨
l∈DF eed


Y feedl

F feedl = 15 ltr/h
F feedi = 0, i ∈ Dfeed\{l}

Dfeed = [2 : 2 : 10, 16 : 2 : 24]


Yfeed
l ∈ {True, False}, l ∈ Dfeed

∨
k∈Dsens


Ysens
k

Tk = 110 ◦C
Tj = gM(r,Yfeed

l ,Ysens
k )

j ∈ Dsens\{k}, Dsens = [1 : 1 : 5]


Ysens
k ∈ {True, False}, k ∈ Dsens

Taking into account the regulatory control layer imple-
mented at the pilot plant, the optimal set-point for the
reflux ratio r is calculated. Furthermore the optimal tray
k ∈ Dsens for the temperature control loop in the stripping
section has to be determined. Fixing the temperature on
the respective tray, the reboiler duty Q̇ is set by the
basic regulatory controller. Additionally, it can be chosen
between 10 different feed trays l ∈ Dfeed, in order to
supply the feed at the optimal feed plate into the column.
Following this, the optimization problem (10) involves
the continuous decision variable reflux ratio r as well as
discrete decisions for the optimal feed location Y feedl and
the tray for the temperature control Y sensk . In order to
prevent a simultaneous use of more than one feed tray or
temperature tray, respectively, disjunctive conditions are
formulated in (10). Stein et al. [2004] presented an ap-
proach for the elimination of the discrete decision variables
by adding a set of continuous variables and constraints
that represent the discrete decision space of the optimiza-
tion problem. By this means, a standard SQP algorithm
can be applied solving a sequence of NLP problems, where
the additional constraints are steadily tightened in order
to force the relaxed variables to their discrete solution.
In this work, the circle conditions applied in Stein et al.
[2004] are used for the reformulation of the disjunctive
feed conditions. However, it should be noted that it is not
possible to relax Y sensk as well. This is because the control
loop for the temperature control is either active or not. A
superposition of partially activated control loops is neither
in practise nor in a simulation feasible.

For the solution of (10) a steady state rigorous tray by
tray column model based on mass and energy balances
with a detailed description for the pressure loss is used
(Barz et al. [2006]). The physical properties of the mixture
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are calculated using equations from CHEMCAD whereas
for the phase equilibrium the Wilson model is used. This
results in a large-scale DAE system with 237 states.

3.3 Nominal optimal solution and impact of uncertainties

The solution of the nominal optimization problem (10)
gives a minimal reflux r ≈ 0.4. The location for the
temperature control loop is set to the first tray Y sensk =
{True} for k = 1 and the feed is introduced in the stripping
section at Y feedl = {True} for l = 8. This shows that the
column is rather over-dimensioned and reflux and reboiler
duty, respectively, can be minimized using as much trays
in the rectifying section as possible. While the top product
concentration lays directly on the specification limit xtopAc =
63.2mole%, the bottom product concentration is higher
than required, with xbottomAc ≈ 0.3mole%. This is due to the
discrete decision of the tray number for the temperature
control loop used for the indirect bottom concentration
control.

However, in the presence of uncertainties deviations from
the optimal process states are caused. For the quanti-
tative description, all uncertain variables are replaced
by normal-distributed model parameter ξ ∼ N (µ, σ).
In practice, besides uncertainties in model parameters,
also controller deviations and external uncertainties have
to be considered. Controller deviations around the set-
point, also called implementation errors (Govatsmark and
Skogestad [2005]), were obtained measuring directly the
closed loop variance for disturbances. Analysing industrial
data (Wozny and Jeromin [1991]) fluctuations of the feed
conditions were defined. It should be noted that both feed
concentration and flow can vary over a broad range during
few hours. This causes the continual adjustment of the
manipulated variables in the basic regulatory control layer
and disturbs other related control loops. Uncertainties in
model parameters were obtained using Maximum Likeli-
hood Parameter Estimation (MLE) for different steady
operating points. We found out that the Murphy tray
efficiency, which is defined for stripping ηS and rectifying
ηR section separately, assumes different values depending
on the liquid load of the column. Moreover, the pressure
resistance coefficient for the dry pressure loss cw had to
be adjusted in order to fit the experimental data properly.
This highlights structural uncertainties and means a lim-
ited scope of application for the model. Thus, we identify
the corresponding parameters as uncertain too. Table 1
shows all considered uncertainties characterized by their
mean σ and the confidence interval of 6σ. As it can be
seen the reflux temperature ∆T reflux, the performance of
the pressure and temperature control loop ptop, T sens and
the controlled reflux ratio r have been considered also as
stochastic parameters.

Figure 5 shows the theoretical effects of each individual
parameter on the top product specification. Based on the
nominal optimal decisions the distribution of the uncer-
tain output is plotted by Monte-Carlo sampling for 1000
simulation runs (steady state). Operating at the nomi-
nal optimum all uncertain parameters ξ can cause the
violation of the top specification. The largest influence
arises from the tray efficiency in the stripping section ηS ,
which is the result of the selected two-point concentration

Table 1. Model uncertainties

uncertain parameters ξ µ ±3σ

pressure resistance coef. cw (/) 1.5 1.0
subcooling condensat ∆T reflux (◦C) 70.0 9.0
controlled reflux ratio r (/) ropt 0.02
controlled temperature T sens (◦C) 110.0 7.0
controlled top pressure ptop (bar) 2.000 0.030
Murphy tray efficiency ηS , ηR (/) 0.45 0.24
feed flow F feed (ltr/h) 15.0 4.5

feed concentration xfeed
Ac (mole%) 45.0 12.0

control scheme. Furthermore, the characteristic nonlinear
behaviour of the product concentration is apparent. Based
on the analysis of the results for bottom and top con-
centration, four key uncertainties were identified show-
ing a maximal effect on the constrained states, namely:
ξ = [ηS , ηR, xfeedAc , T sens]T .

62.5 62.75 63 63.25 63.5 63.75
concentration acetonitrile - xAc (mole%)

← → ← →bottom spec. top spec.

xfeedAc

F feed
ηR

ηS
P top

T sens
r

∆T reflux
cw

Fig. 5. Effects of individual uncertain parameters on the
top product concentration.

3.4 Robust optimal decisions

As discussed above, operation with the nominal optimal
decisions can cause infeasible operation. Thus, some con-
servatism has to be introduced in order to guarantee
feasibility of the constraints depending on ξ. Thus, the
original formulation for the constraints corresponding to
the bottom and top concentrations in problem (10) are
replaced by:

Pr
{
xtopAc ≥ 63.2mole%

}
≥ α1 = 95% (11)

Pr
{
xbottomAc ≤ 0.5mole%

}
≥ α2 = 95%

The selection of the probability level α means to directly
decide on how conservative or aggressive the solution
should be (see also Fig. 3). Here, the required probabil-
ity of holding the constraints is set to α = 95%. Fur-
thermore, the tray efficiencies ηS , ηR are treated as one
uncertain variable η. By this means, the dimension of
ξ = [η, xfeedAc , T sens] and, thus, the computational effort
for solving the chance constrained optimization problem is
reduced (Wendt et al. [2002]). The solution of the robust
optimization problem gives an higher reflux r ≈ 0.74 in
order to compensate for the uncertainties. The robust and
optimal location for the temperature control loop is shifted
to the second tray Y sensk = {True}, k = 2 whilst the opti-
mal feed tray remains the same Y feedl = {True}, l = 8. As
expected both product concentrations are generally above
the required specification.
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3.5 Implementation and Validation

In order to demonstrate the application and to validate the
computed results both nominal and robust decisions were
implemented at the pilot plant. Here, additionally to the
considered uncertainties, other process parameters did not
match their assumed values. The biggest bias was observed
for the feed concentration xfeedAc ≈ 53mole% instead of
45mole% (a variation of 15 %), for the feed flow F feed

and the reflux ratio r with 7 and 2.5 %, respectively. Both
the computed optimal and robust concentration profiles
and the analysed samples are shown in Figure 6. The
robust optimal operation shows for both the analytical
and the experimental values a wider concentration profile,
which results from the more conservative operation. Hence,
an additional heat amount of Q̇ ≈ 6.3KW (instead of
Q̇ ≈ 5.6KW ) was measured.
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Fig. 6. Analytically vs. experimentally determined concen-
trations for nominal and robust optimal decisions.

Table 2 shows the results for the simulated and measured
product concentrations. The experimental data confirms
the analytical results and shows clearly the relevance of
the proposed approach.

Table 2. Results for the top and bottom prod-
uct xAc(mole%)

specification nominal operation robust operation
simul. experim. simul. experim.

xtop
Ac ≥ 63.2 63.2 62.7± 0.5 63.6 63.4± 0.5

xbottom
Ac ≥ 0.5 0.3 0.69± 0.5 0.05 0.38± 0.5

4. CONCLUSIONS

A chance constrained optimization approach has been dis-
cussed and experimental verified, which can be applied to
constrained process operation under uncertainty allowing
the user to make a direct decision about the strategy to

be applied w.r.t. reliability or costs. Optimal decisions are
then obtained by computing the probabilities of satisfying
the constraints. The resulting operating points are as close
as possible to the constrained output variables so that the
economical benefit can be maximized.
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