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Abstract: Human arm movement control theories are reviewed in the current paper. The motor planning 

problem stated as a generation of a time plan for the execution of a movement task, is a major concern of 

the current paper. It will be suggested that computational models of motor control have a strong potential 

for the use in the area of human motor rehabilitation. Their use can be discriminated in three main areas 

of application: the generation of correct trajectories to be demonstrated to human subjects during 

physiotherapy; the assessment of motion disorders and movement quality; and the devising of 

challenging interaction exercises to promote recovery. 

 

1. INTRODUCTION 

This paper will review the major theories pointed out for the 

purpose of describing human arm movement control. In 

particular, computational theories are presented, that is, 

mathematical models for motor control that can be simulated 

in a computer and compared against measured data. The aim 

of this paper is to extract knowledge from these theories that 

can be useful for the purpose of research in the field of motor 

rehabilitation. 

Human arm motor control has been an issue of investigation 

for several decades, during which some issues have been 

identified as themes of high interest (Flash and Sejnowski, 

2001). Among these are problems such as planning, 

execution and learning. In a broad sense, the motor control 

problem can be stated as the generation of the muscle 

activations that best fit the purpose of a movement or 

manipulation task, given the proprioceptive and external 

world information available through the body sensors. The 

complexity of the motor control problem is strongly due to 

the redundancy of the human motor system as well as the 

redundant nature of movement tasks.  

Even in a simple task such as reaching a target in free space, 

a multitude of possible solutions are available, each one 

being a path that takes the hand from the initial to the final 

position. Infinite solutions exist not only for this path but also 

for the velocity profile used to track it.  

The freedom to choose both the path and the velocity profile 

defines the underlying redundancy in a movement task. 

However, redundancy arises not only in the nature of 

movement tasks but also as an intrinsic and beneficial feature 

of the human body, which provides for more flexibility to 

carry complex tasks. One aspect of this redundancy results 

from the 7 degrees of freedom (DOF) of the kinematic 

structure of the human arm, which exceeds the minimum 

necessary number (6 DOF) to move the hand in the three 

dimensional space (Guigon et al., 2007). The problem of 

kinematic redundancy was first pointed by Bernstein (1967), 

and labelled the DOF problem. In the perspective of 

computational modelling, the kinematic redundancy is 

viewed as a problem since most hand positions can be 

achieved by infinite combinations of the joints. The number 

of possible solutions for movement planning increases further 

if it is considered muscle commands as and additional 

variable to be predicted by the theoretical models  for motor 

planning. In fact, due to the muscle configuration in human 

arm, several muscles are involved in each joint movement 

and, therefore, it is possible to imagine different 

combinations of muscle activations that produce the same 

torque (Wolpert, 1997).  
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Fig.1. Hierarchical levels of specification for a movement. 
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These redundancy issues define sub-problems in motor 

control theories that are interrelated according to a hierarchy 

as depicted in Fig. 1. Even though the structure of this 

hierarchy is consensual, the sequence by which sub-problems 

are solved is conceived differently by different models. Some 

trajectory formation models postulate that the different levels 

of redundancy can be solved independently and usually focus 

only on the hand trajectory planning.  

Other models are formulated on the basis that these problems 

are solved interactively and simultaneously. This difference 

defines the first major line separating motor control theories, 

as stated in Todorov and Jordan (1998). Since the former 

theories ignore the musculoskeletal system that is under 

control, it is accepted that these can not aim at explaining 

completely the underlying biologic principles that give rise to 

the apparent behaviour. Instead they have the less ambitious 

goal of providing algorithms which produce trajectories that 

fit well with the observed behaviour. These theories can 

therefore be called Descriptive Models. The latter theories 

provide computational models which embody all the 

fundamental processes carried out by the CNS (Central 

Nervous System) to produce movement. These models can be 

assigned the label Complete Models. 

In spite of the complexity that the number of redundancy 

levels suggests, humans show amazingly regularities when 

generating movement. The strong experimental evidence for 

such regularities as lead researchers to believe that one 

unifying principle might be used by humans to resolve 

redundancy and would underlie the observed consistency in 

behaviour. The history of motor control research as therefore 

been marked by a search for this unifying principle. Early 

researchers have focused directly on the kinematic 

regularities, developing theories that were expressed in terms 

of the kinematic variables and therefore fall under the 

Descriptive Models class.  

Although they showed high predictive accuracy in free 

movement, these models were weak in accounting for tasks 

where external forces were present. This inconsistency in 

Descriptive Models led researchers to turn to dynamic 

variables to find a unifying principle that would fit a broader 

range of movements. In accounting for the dynamics of the 

arm, these models did address all levels of redundancy, 

therefore falling under the Complete Models category. Within 

this category, the first influential model hypothesised that the 

minimisation of torque change was the principle underlying 

movement invariants (Uno et al. 1989). Because this and 

subsequent theories introduced dynamic variables in the 

optimization procedure, they are known as Dynamic Models.  

A major breakthrough in understanding the nature of human 

motor control was introduced by Harris and Wolpert (1998), 

who suggested that noise in control signals within the 

sensorimotor loop was a determinant factor in overall motor 

behaviour. The theories that account for this factor are 

referred to in this paper as Stochastic Models. As more 

complex movement tasks, such as in visually distorted 

experiments or movement in different dynamic environments, 

were confronted with the existing models, the limitations of 

these became evident, notably the neglect of visually 

feedback or the lack of a mechanism of adaptation to 

different dynamics. In order to account for these phenomena, 

further models borrowed concepts from Control Theory to 

present a complete framework that would explain the success 

of human sensorimotor control in such a diversity of 

conditions (Schaal, Schweighofer, 2005). The central concept 

within these theories is the internal model, a computational 

function in the control system that represents the dynamics of 

the body or the environment. These theories assume that a 

desired trajectory is computed by a trajectory planner, and 

focus on how the human kinematic structure should be 

controlled in order to fulfil the specified task. These theories 

are therefore referred to as Motor Execution Models. 

In the next two sections Descriptive and Dynamic Models 

will be described separately. Following that, the models for 

motor execution will be addressed. In the later section some 

considerations regarding the presented theories will be made. 

An in the last section some concluding remarks are provided. 

2. DESCRIPTIVE MODELS 

Descriptive models have the purpose of describing the 

apparent behaviour of human motion. Contrarily to Complete 

Models (discussed below), descriptive models do not attempt 

to mimic the underlying biological principles that give rise to 

the observed motion features. Instead, these models are 

computational tools that aim at providing predicted 

trajectories with a good match with experimental ones. 

Among the empirical relations that have been identified in 

human arm movements are the Fitts law, the bell shaped 

velocity profiles in straight movements and the 2/3 power 

law. Fitts law concerns rapid, goal directed movements and 

quantifies the observed and rather intuitive relation that exists 

between the duration of this kind of movements with the 

distance and dimension of the target. Mathematically this 

relation is expressed as follows (Mackenzie, 1991): 

MT = a + b log2(2A/W)   (1) 

where,  MT = movement time, a,b = regression coefficients, 

A = distance of movement from start to target center and W = 

width of the target  

The 2/3 power law states that, in curved movements, the 

velocity (v) is related to the inverse of the curvature radius (k) 

by the expression: v(t)=γk(t)
-1/3

, where γ is a constant factor 

which has been experimentally estimated as 0.33. This law 

basically implies that in curved movements the velocity 

decreases with increasing curvature. The original form of the 

power law has the limitation of not being applicable to paths 

showing straight segments or inflection points (in these cases, 

velocity goes to infinity). Additionally, the power law is 

inaccurate at low velocities and cannot predict the velocity 

reduction at the end of the path (Todorov and Jordan, 1998). 

One common feature to the subsequent models is the use of 

optimal control as the strategy to mimic the biologic 

processes by which human motor control is achieved. It is 

widely accepted that optimisation provides a substantiated 

framework to explain human motor control because it may 

reproduce important biological processes, such as learning 
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and natural evolution, that enhance behaviour much in the 

same way as an optimisation procedure does (Todorov and 

Jordan, 2002).  

The optimal control methodology requires the definition of a 

cost function, which is based on a quantity that must be 

minimised in order to achieve the best performance. The cost 

function is usually expressed as an integral of that quantity 

over a period of time. The variables of interest that are used 

to formulate the cost function define the strategy for 

trajectory planning. 

The bell shaped velocity profile of straight movements is one 

of the most consistent features of human arm behaviour. 

Flash and Hogan (1985) presented a model in which the 

reproduction of bell shaped profiles was a main concern. The 

authors concluded that considering smoothness of movement 

as the goal underlying movement control, some apparent 

features of arm trajectories are explained. In order to address 

the optimisation of smoothness, a quantitative measure of this 

property was adopted, which is defined as the derivative of 

acceleration and named as ‘jerk’. Besides the bell shaped 

velocity profile feature, the model was also motivated by the 

observation that reaching movements tend to be performed in 

a straight fashion, regardless of the region in workspace 

where the movement is performed or its orientation. The fact 

that these position and velocity features seem to be invariant 

exclusively when these variables are expressed in hand 

coordinates (Cartesian space), lead the authors to describe 

minimum jerk in hand coordinates instead of joint 

coordinates. For the purpose of addressing planar 

movements, the magnitude of jerk (J) was defined as follows: 
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Optimal control theory was applied to this cost function, 

subject to the differential equations of movement and several 

other constraints related to the desired movement. These 

constraints are the initial and final positions and also the time 

duration (tf) for movement execution. In curved or obstacle 

avoidance movements, a via-point was also specified. The 

differential equations of the system are simply the differential 

relations between position, velocity, acceleration and jerk. In 

that study, only planar horizontal movements were addressed 

namely point-to-point movements and curved unconstrained 

movements, which could represent obstacle avoidance 

situations.  

Applying the optimisation procedure to the point-to-point 

movements, the authors fond 5
th

 order polynomials 

describing both x and y coordinates, which specified a 

straight line in space with a 4
th

 order polynomial velocity 

profile.  

Concerning the curved movements, two 5
th

 order polynomials 

were derived for each coordinate, one specifying the 

trajectory before reaching the via-point and another for the 

remaining trajectory to the final position. The results of this 

study were extremely consistent with empirical trajectories, 

since the predicted point to point movements were straight 

lines, which is a good approximation of the roughly straight 

observed paths and the velocity profile is bell-shaped as 

empirical ones. Moreover, the predicted velocity profiles for 

curved movements showed a curvature-velocity relation in 

good agreement with empirical movements.  

In a practical sense, the minimum-jerk model is very 

appealing due to its simplicity and the ability to predict the 

global features of reaching movements. However, this model 

shows inaccuracy when applied in particular situations, 

namely curved movements and through point movements 

(Todorov and Jordan, 1998). Noting that this model may fail 

to predict the movement path but is accurate in predicting the 

velocity profile, Todorov and Jordan (1998) presented a 

variation on this model, called constrained minimum jerk 

model. This model requires that the movement path be 

predefined and focuses on the generation of the velocity 

profile. Contrarily to the original minimum jerk model, it 

does not aim at predicting the path but only the velocity 

profile. In this aspect, this model is similar to the 2/3 power 

law, since both predict the velocity, for a given hand path. 

This model proposes to minimize the following cost function: 

( )[ ] dttsr
dt

d
J ft

∫=
0

2

3

3

   (4) 

where r(s) is the coordinate vector of the path points and s(t) 

is the distance travelled along the path. According to the 

given cost function, the purpose of the model is to minimize 

jerk under the constraint of a path that is pre-defined. The 

model was applied to a number of experimental and 

simulated tasks which evidenced the similarities in speed 

profiles obtained with this model and the 2/3 power law. 

However, this model showed globally better performance and 

was intrinsically able to deal with the limitations shown by 

the 2/3 power law. In commenting the results of experiments, 

the authors mentioned above pointed the fact that the studied 

movements were of short duration (1-2 seconds) which may 

had accounted for the good accuracy of the predicted 

velocities. The authors also remark that the model assumes an 

implicit relation between path and velocity profile and thus is 

valid when applied to a particular movement execution but its 

meaning is lost if applied to an average path of a number of 

trials. 

The above models are concerned strictly with the description 

of hand trajectories in space, leaving aside the problem of 

joint trajectories prediction. If these models are used in a 

complete simulation of the human arm, additional strategies 

must be employed in order to compute the joints values for 

each hand position. This problem has been addressed by 

different studies, which focus primarily on joint redundancy 

resolution. Several studies have investigated the hypotheses 

that joint redundancy might be simplified by Donders’ law 
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(Marotta, 2003). Donders law was formulated to describe the 

redundancy resolution policy observed in the positioning of 

the eye. Donders’ law states that any possible vector 

describing a rotation of the eye can not occupy an arbitrary 

position in space, instead it is constrained to lie in a plane. By 

applying this law, the number of DOF of the eye is reduced 

from 3 to 2 and any gazing direction is univocally related to a 

rotation vector of the eye. Due to the similarities of the 

problems (excess of DOF) and the fact that both the eye and 

arm are controlled by the CNS, some authors speculated that 

the same law might also be applicable to the positioning of 

the arm. This motivation led to a number of studies which 

explored the usability of Donders’ law in the joint 

redundancy problem. The reported results indicate that the 

application of Donders’ law in the arm is limited and that a 

more complex strategy that is yet to be identified probably is 

used instead (Marotta, 2003). However, in particular tasks it 

was observed that Donders’ law was accurate, which 

indicated that this law may be a special case of that general 

strategy. 

3. COMPLETE MODELS 

The most influential model described in the previous section, 

the minimum-jerk model, relies on a cost function based on 

the kinematic variables to find the solution for trajectory 

planning. Additionally, this model focuses only on the 

generation of trajectories in Cartesian space, leaving open the 

question of how joint space redundancy is solved. Complete 

Models, addressed in this section, comprise theories that 

consider the arm dynamics and therefore include in the cost 

function torques and external forces values. As a 

consequence of dealing with the whole arm dynamics, which 

is non-linear and depends on joint kinematics, a by-product 

of the minimization of a cost function is the resolution of all 

levels of redundancy.  Dynamic models, first addressed in this 

section, make a break from the minimum-jerk model tradition 

by introducing dynamic variables in the cost function. More 

recently, new approaches suggest that human movement can 

be explained more consistently within a framework where the 

noise in control actions (muscle commands) is considered. 

These models can be regarded as Stochastic Models and are 

the subject of the second subsection. 

3.1 Dynamic Models 

Dynamic models take into account the dynamics of the arm 

and focus on joint torques, external forces and motor 

commands (Wolpert, 1997). Three major models were 

presented and named, according to the variable of interest, as 

‘minimum torque change’, ‘minimum motor command 

change’ and ‘minimum commanded torque change’. 

Minimum torque change model, the most influential dynamic 

model, was presented in Uno et al. (1989). The authors 

pointed out that kinematic models accept the improbable 

assumption of considering that trajectories depend solely on 

the initial and final positions, disregarding the physical 

apparatus to execute them, or the external forces. It has been 

suggested that movement planning should consider dynamic 

aspects of the arm and the task which lead the authors to test 

different dynamic variables inside the cost function. The 

torque change was accepted has the cost function variable 

that yields the best agreement with observed behaviour. The 

cost function was defined as: 

dt
dt

dz
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where zi is the torque generated at joint i. This objective 

function was minimised under the constraints of the 

musculoskeletal dynamics. For the purpose of addressing 

planar movements, the authors approximated the arm 

dynamics by a two-joint planar robot dynamics, with inertial, 

geometric and viscosity parameters representative of the 

human arm characteristics. Due to the highly nonlinear nature 

of this system, it is much more complex to find the unique 

optimal trajectory in this case than in the kinematic model 

case, in which the system is described by linear kinematic 

relations. This difficulty was overcome by employing a 

computational iterative method to determine the optimal 

solution. In this method the determination of hand 

coordinates trajectories involves the computation of the lower 

level torques at the joints. This is a fundamental implication 

of dynamic models, in which the three levels of motor control 

can not be computed in isolation. Instead, the computation of 

the hand trajectory is embedded with the lower levels of joint 

trajectory and joint torque computation. As the output of the 

movement planning, hand trajectory, joint trajectory and 

torque are produced simultaneously. 

A similar approach has been taken at the Virtual Soldier 

Research Program to solve the redundancy in joint position 

(Yang et al., 2004a). This research group has been 

developing techniques for the modelling of human motion 

and particularly for the prediction of human postures. The 

proposed method consists in computing the joint positions by 

minimising a cost function which contemplates the major 

factors that come to play in a given task (Mi, 2004). This cost 

function is built up by the sum of particular cost functions 

quantifying each of the performance factors. The variables 

that have been considered include effort, torque, potential 

energy and joint displacement. The individual cost functions 

based on each variable are weighted and summed to build the 

global cost function for a task. In the studies carried out using 

this technique, a very complete model of the human arm was 

used, which allowed for the prediction of a wide range of 

different arm configurations (Yang et al, 2004b). However, in 

these studies it is not obvious how the weights should be 

computed in order to represent the relative importance of 

each performance measure in a particular task. 

3.2 Stochastic Models 

In spite of its simplicity and accuracy predicting planar 

trajectories, the kinematic minimum-jerk model was early 

criticised for not considering the dynamic aspects of 

movement tasks (Uno et al., 1998). On the other hand, the 

dynamic models presented are not able to predict certain 

movement experiments and therefore are not consensual 

(Wolpert, 1997).  

Experiments performed under visual perturbed feedback and 

under force fields show evidence that support kinematics 
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approaches. It was demonstrated that when subjects are 

provided with visual feedback which is altered in the region 

between the initial and final position, they adapt the hand 

path in order to correct the trajectory under the new visual 

perspective. Kinematic approaches predict this adaptation but 

dynamic models do not, since in the dynamic framework the 

trajectory depends only on the initial and final hand positions 

and not on intermediate positions. Under force fields the 

dynamics of the arm are modified. Nevertheless humans 

show adaptation that allows recovering of the normal 

trajectories. This behaviour is in accordance with kinematic 

theories, which assert that the major concern in motor control 

is to maintain a minimum-jerk hand trajectory. Contrarily, 

dynamic models predict movement modifications under force 

fields that do not re-establish the original paths. 

A different study showed behaviours that are not predicted by 

kinematic models (Sabes and Jordan, 1997). Experiments 

concerning obstacle avoidance movements showed that 

humans describe trajectories in which the closest point to the 

obstacle is achieved when the arm is in the most inertial 

stable position (Sabes and Jordan, 1997). This conclusion can 

only be produced by a model that accounts for the dynamics 

of the arm. 

In Harris and Wolpert (1998) a different concept of 

movement planning was presented, which has been regarded 

as an integration of kinematic and dynamic concepts. Firstly, 

it has been suggested that movement planning does not rely 

on the minimisation of jerk or torque change, but on the 

minimisation of the final position variation. This approach 

also uses an optimisation procedure, taking the end-point 

variance as the quantity to minimise. When humans perform 

several trials of reaching movements, the trajectories show 

the well known kinematics features presented in section 2, 

but are never performed the same way. Harris and Wolpert 

(1998) point the fact that muscle commands are corrupted by 

noise, which explains the variation observed in repeated 

movements. Moreover, the noise increases linearly with the 

amplitude of the command signals, which implies that the 

minimisation of the final position variance will require not 

only kinematics but also dynamic adjustment. The mentioned 

authors show that the minimisation of final position variance 

will lead to the well known kinematics features of the jerk 

minimisation, the 2/3 power law and Fitts law. 

In an opinion article on Harris and Wolpert work, Sejnowski 

(1998) points out some important aspects of their theory, as it 

is based on the maximisation of precision while previous 

ones focused on the maximisation of smoothness or 

efficiency. While the theories based on the maximisation of 

smoothness have strong evidences to support them, 

Sejnowsky (1998) states that taking the optimisation of 

smoothness as the only goal to human motor control is not a 

well-grounded explanation for the self-adaptation of the 

nervous system. Later, Harris and Wolpert approach was 

named TOPS (Task Optimization in the Presence of Signal-

Dependent Noise) and applied to additional tasks, in order to 

validate the model in different important situations. The most 

successful was presented by Hamilton and Wolpert (2002) 

and addressed obstacle avoidance movements, in order to 

clarify the behaviour previously observed by Sabes and 

Jordan (1997). In this study, authors argue that optimisation 

under signal dependent noise is an extremely suitable 

approach to this problem. They used an optimisation 

procedure that aimed at minimising final position mean-

square error while maintaining probability of collision with 

the obstacle below a specified level. It was demonstrated that 

this approach yields optimal trajectories in accordance with 

empirical ones. However, it is recognised the fact that the 

approach did not consider feedback. It is stated that the 

average optimal feedforward trajectory is the same as the 

average optimal feedback trajectory in the case of linear 

systems, but not for non-linear, such as the human arm. Apart 

from providing insight about obstacle avoidance movements, 

the mentioned study was important because it demonstrated 

once more that optimisation under signal dependent noise 

was a valuable approach to the analysis of human movement.  

More recently, Todorov and Jordan (2002) presented a new 

theory which aimed at providing a framework to explain 

motor function. As in the TOPS model, the presence of noise 

plays a fundamental role in this theory. Not only the signal 

dependent noise in motor commands but also noise in sensors 

measurements is also accounted. A key notion introduced by 

this model is the use of optimal feedback control to explain 

motor behaviour. Previous models for motor planning 

assumed that planning was performed before execution, and 

movements were carried out in a feedforward manner.  

However, Todorov and Jordan (2002) claim that if the 

movement takes long enough, which is the case in many limb 

movement tasks, feedback is important. Moreover, 

feedforward strategies fail to explain on line corrections 

taken by humans when execution conditions change 

unexpectedly. In the view of these facts, a feedback optimal 

control method where trajectory planning and execution is 

assumed to take place simultaneously, have been presented. 

A second fundamental feature of this model is concerned 

with the integration of motor planning, coordination and 

redundancy resolution in the same approach. The authors’ 

findings regarding coordination and redundancy resolution 

were summarised in what they called the ‘minimum 

intervention principle’. Due to the redundancy in the human 

arm, a task can be achieved by a variety of possible arm 

postures. This fact can also be described as the dimension of 

the control space being larger than the task space.  

The minimal intervention principle states that the control 

system will only correct deviations in the task-relevant 

directions of the control space. The existence of a subspace 

that is not relevant to the task allows feedback to be focused 

on the important degrees of freedom while variability may 

accumulate in the degrees of freedom less relevant for each 

particular task. Since a movement between desired points can 

be performed through different paths, there is also 

redundancy in hand trajectory to achieve a given task. 

Todorov and Jordan (2002) demonstrate that optimal 

feedback can also take advantage of this redundancy, in a 

similar manner to what happens in empirical trajectories. 

Results showed that optimal feedback predicted a reduction 

of variance near the desired positions (via-point and end 
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point) at the expense of increasing variance along alternative 

regions of the path. These regions act like variability buffers, 

which is acceptable since no specified desired position was 

defined for them.  

4. MOTOR EXECUTION MODELS 

A level below trajectory planning lays the problem of motor 

execution, which is concerned with the computation of proper 

motor commands to achieve a desired task. Descriptive  

Models generate a trajectory defined by a time history of 

positions and velocities which later must be converted to 

actual torques for execution. In these models it is assumed 

that the trajectory is passed on to a lower level controller 

which is responsible for commanding the motor apparatus to 

follow the desired path. For this purpose, the minimum jerk 

model was associated with the equilibrium point model for 

joint control (Flash, 1987).  

The equilibrium point model assumes that there is a desired 

position for the hand, named equilibrium position, towards 

which the actual hand position is attracted by means of a low 

level controller. This controller generates spring-damper 

forces related to the displacements around the equilibrium 

position. In order to generate movements, the equilibrium 

position is changed over time, along the trajectory previously 

planned. This concept was able to predict the slight curvature 

that is observed in actual trajectories and is not predicted in 

the minimum-jerk trajectory. 

Dynamic and stochastic models rely on optimisation 

procedures that include all levels of motor control. Therefore 

motor execution is implicitly included. However, there are 

substantial differences between the optimal models presented 

before.  While the TOPS model performs optimization in a 

feedforward fashion, the model introduced by Todorov and 

Jordan (2002) includes optimal feedback control. This means 

that the former is primarily concerned with trajectory 

planning, while the latter is adequate for planning and 

execution simultaneously.  

Even though the TOPS model is not suited for movement 

execution, Wolpert and colleagues have presented several 

studies on this issue, based on the concept of internal models 

(Wolpert et al., 1998b). Internal models in the brain are 

neural mechanisms that mimic the behaviour of a natural 

process. The suggestion of internal models in the brain was 

first proposed by Ito (1970) and later adopted by 

computational neuroscientists who integrated the concept 

their motor control models (Kawato, 1999; Shadmehr and 

Krakauer, 2008). Internal models may be discriminated in 

two categories, which play different roles in motor control: 

forward internal models can predict sensory consequences 

from outgoing motor commands; inverse internal models, on 

the other hand, may be used to compute the necessary 

feedforward motor commands to achieve a desired state. In 

other words one may say that forward models represent the 

causal flow in the modelled process, that is, they accept 

action inputs and output the predicted state; contrarily, 

inverse models invert the causal flow of the process, 

accepting the current and desired states and outputting the 

necessary actions to achieve the latter.  

Forward models are considered essential to overcome 

important limitations of the physiological motor system. 

Signals from sensors show long delays that would make 

feedback control impractical, especially in fast movements.  

 

The solution that has been hypothesised to explain how 

instability is avoided under sensory delays states that forward 

models are used to predict sensory outcome. In this sense, 

forward models would be integrated in a motor control 

algorithm having the structure of a Smith Predictor (Miall et 

al., 1993). As described in Fig 2.a, the forward model uses a 

copy of the motor commands to predict the outcome state of 

the present action, which is used as a fast feedback signal for 

closed loop control. The predicted state is also sent through 

an ‘output forward model’ which simulates delays in sensory 

signals, making the predicted state synchronized with actual 

sensory information for comparison. This error is fed back as 

correction for disturbances affecting the system, which is 

unavoidably delayed.    

Inverse internal models have also been pointed out as 

necessary to perform fast movements Wolpert et al. (1998b). 

When rapidly reaching for a target, delays in the feedback 

loop, which include not only sensory delays but also 

information processing and motor delays, would  commit a 

strictly feedback strategy to failure, especially considering 

that high gains would be necessary in such movements. A 

natural way to address this problem would be to build a plan 

of the motor commands to apply during the whole movement, 

and put little emphasis on feedback information. In this case,  
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Fig. 2. Hypothesised internal models in human sensorimotor 

control.  

 a) Forward models within a Smith Predictor scheme.  

 b) Inverse models in feedforward commands 

computation. 
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the control strategy would be of the open loop type, with 

thedesired trajectory being provided to the controller and the 

motor commands being computed by an inverse model of the 

body and environment (Fig. 2.b).  

An important feature of internal models is that they may 

represent not only the human motor apparatus but also the 

environment with which it is interacting. The existence of 

these representations would explain the high success humans 

show in manipulating environments in tasks as different as 

swimming in a pool, driving the wheel of a car, or cleaning a 

window. Wolpert and Kawato (1998a) suggest that there are 

multiple paired internal models that fit different dynamic 

tasks and can be combined to interact with a panoply of 

different situations. In that study, the authors propose an 

architecture, later named MOSAIC (Haruno et al., 2001), for 

simultaneously learning the multiple inverse models 

necessary for control and selecting the appropriate model to 

deal with a given environment. 

5. DISCUSSION 

Computational models of motor control present a strong 

potential for the use in the area of human motor 

rehabilitation. Their use can be discriminated in three main 

areas of application: 

1. The generation of correct trajectories to be demonstrated to 

human subjects during physiotherapy. The traditional 

approach in this matter has been the use minimum-jerk 

trajectories to produce the Cartesian path and velocity 

profiles. The drawbacks of the application of the minimum-

jerk model are the requirement to provide the duration of the 

movement and intermediate points in the case of curved 

movements. The minimum jerk model is highly suited for on-

line trajectory planning, due to its simplicity and closed form 

expression for the trajectories. Recent advances in motor 

control research have brought profound and striking changes 

to the understanding of this subject. The introduction of noise 

as a key factor in motor planning and optimal feedback as a 

well-grounded control strategy lead to theories aiming at 

unifying the problem of motor control. The TOPS model and 

optimal feedback model brought new insight to the 

computational perspective of motor control. These models 

suggest that the objective in human movement may not be 

gracefulness but the optimisation of more practical quantities 

such as precision, which as a side-effect may produce 

smoothness. The authors of these models also suggest that 

depending on the task, different quantities are probably 

chosen by the brain to be minimised. Moreover, the 

methodologies used in each model present strong 

consistency, since in the optimisation procedure important 

features of the controlled system are considered, namely its 

dynamics and signal noise. The current state of development 

of these models presents some obstacles to their application 

for the purpose of trajectory generation. The validity of the 

models has been shown in a very few situations and therefore 

the ambition of having trajectories for a wider range of tasks 

which are specified by different goals has not yet been 

fulfilled.  

2. The assessment of motion disorders and movement quality. 

Both the research in computational models of motor control 

and in motor rehabilitation present the same need of knowing 

what makes the quality of movements. The authors of the 

TOPS model and optimal feedback model point the fact that 

if the quantities to optimise are known, it would be possible 

to predict human movements in a wider range of tasks. 

Presently, the study of human arm movement has been 

focused mainly on tasks such as reaching, drawing and 

obstacle avoidance. Todorov (2004) suggests that an 

important missing study would be the identification of the 

characteristics of human movement in different tasks, in a 

way that the quantities being optimised would be recognised. 

This would allow for the test and validation of computational 

models in a wider range of tasks. A similar need exists in 

motor rehabilitation research. If the quantities to be optimised 

in a movement are known, the measures of assessment would 

compare the measured values of these quantities to desired 

values. Despite the suggestion from computational models 

that human movements can be specified from objective 

functions expressed on the quantities to optimise, the strict 

range of tasks addressed to date provides little knowledge 

that might be useful in assessment of motor skills and 

deficiencies. 

3. The devising of challenging interaction exercises that 

promotes recovery. If the human movement is viewed from 

the perspective of the internal models framework, some 

movement impairments can be compared to errors in the 

internal representations of the motor apparatus or the 

environment dynamics. If these deficiencies are identified, it 

should be possible to choose dynamic tasks that would 

stimulate the learning of the missing representations.  

6. CONCLUSIONS 

Recently, much research that involves VR and haptic devices 

has been conducted in medical rehabilitation and tele-

rehabilitation to enhance patients’ motor and cognitive skills, 

in a repetitive and progressive manner. However, there is still 

a gap between the design of such systems and their usage 

with real rehabilitation patients.  

Occupational Therapists need better control and 

configuration of such systems in order to, for example, select 

the amount of time delay, angle, zoom, difficulty, and other 

parameters that will be used as a form of tracking the 

patient’s progress. But more importantly, current haptic 

systems have hardware limitations that need to be overcome 

to make them practical for human motor rehabilitation. 

Hence, further research is needed in this field of knowledge 

and the present paper aims to be a contribution for that, 

reviewing the control methodologies that could be applied to 

haptic devices developed for human motor rehabilitation. 
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