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Abstract: Automated brain MR image segmentation is a challenging pattern recognition problem that 
received significant attention lately. The most popular solutions involve fuzzy c-means (FCM) or similar 
clustering mechanisms. Several improvements have been made to the standard FCM algorithm, in order to 
reduce its sensitivity to Gaussian, impulse, and intensity non-uniformity noises. This paper presents a 
modified FCM-based method that targets accurate and fast segmentation in case of mixed noises. The 
proposed method extracts a scalar feature value from the neighbourhood of each pixel, using a context 
dependent filtering technique that deals with both spatial and grey level distances. These features are 
clustered afterwards by the histogram-based approach of the enhanced FCM algorithm. Results were 
evaluated based on synthetic phantoms and real MR images. Test experiments revealed that the proposed 
method provides better results compared to other reported FCM-based techniques. The time complexity of 
the proposed method is situated well below the traditional FCM algorithm. The achieved segmentation and 
the obtained fuzzy membership values represent excellent support for deformable contour model based 
cortical surface reconstruction methods.  

 

1. INTRODUCTION 

The segmentation of an image represents the separation of its 
pixels into non-overlapping, consistent regions, which appear 
to be homogeneous with respect to some criteria concerning 
grey level intensity and/or texture. 

The fuzzy c-means (FCM) algorithm is one of the most 
widely used method for data clustering, and probably also for 
brain image segmentation (Bezdek and Pal, 1991). However, 
in this latter case, standard FCM is not efficient by itself, as it 
fails to deal with that significant property of images, that 
neighbour pixels are strongly correlated. Ignoring this 
specificity leads to strong noise sensitivity and several other 
imaging artefacts. 

Recently, several solutions were given to improve the 
performance of segmentation. Most of them involve using 
local spatial information: the own grey level of a pixel is not 
the only information that contributes to its assignment to the 
chosen cluster. Its neighbours also have their influence while 
getting a label. Pham and Prince (1999) modified the FCM 
objective function by including a spatial penalty, enabling the 
iterative algorithm to estimate spatially smooth membership 
functions. Ahmed et al. (2002) introduced a neighbourhood 
averaging additive term into the objective function of FCM, 
calling the algorithm bias corrected FCM (BCFCM). This 
approach has its own merits in bias field estimation, but it 
gives the algorithm a serious computational load by 
computing the neighbourhood term in every iteration step. 
Moreover, the zero gradient condition at the estimation of the 

bias term produces a significant amount of misclassifications 
(Siyal and Yu, 2005). Chuang et al. (2006) proposed 
averaging the fuzzy membership function values over a 
predefined neighbourhood and reassigning them according to 
a trade-off between the original and averaged membership 
values. This approach can produce accurate clustering if the 
trade-off is well adjusted empirically, but it is enormously 
time consuming. 

Aiming at reducing the execution time, Szilágyi et al. (2003), 
and Chen and Zhang (2004) proposed to evaluate the 
neighbourhoods of each pixel as a pre-filtering step, and 
perform FCM afterwards. The averaging and median filters, 
followed by FCM clustering, are referred to as FCM_S1 and 
FCM_S2, respectively (Chen and Zhang, 2004). Once having 
the neighbours evaluated, and thus having extracted a scalar 
feature value for each pixel, FCM can be performed on the 
basis of the grey level histogram, clustering the grey levels 
instead of the pixels, causing a significant reduction of the 
computational load, as the number of grey levels is generally 
smaller by orders of magnitude (Szilágyi et al., 2003). This 
latter quick approach, combined with an averaging pre-filter, 
is referred to as enhanced FCM (EnFCM). All BCFCM, 
FCM S1, and EnFCM suffer from the presence of a 
parameter denoted by, which controls the strength of the 
averaging effect, balances between the original and averaged 
image, and whose ideal value unfortunately can be found 
only experimentally. Another disadvantage emerges from the 
fact, that averaging and median filters, besides eliminating 
salt-and-pepper and Gaussian noises, also blur relevant edges. 
Due to these shortcomings, Cai et al. (2007) introduced a 
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new local similarity measure, combining spatial and grey 
level distances, and applied it as an alternative pre-filtering to 
EnFCM, calling this approach fast generalized FCM 
(FGFCM). This approach is able to extract local information 
causing less blur than the averaging or median filters, but 
failed to eliminate the experimentally adjusted parameter, 
denoted here by gλ , which controls the effect of grey level 
differences. 

In this paper we propose a novel method for MR brain image 
segmentation that simultaneously targets high accuracy in 
image segmentation, low noise sensitivity, and high 
processing speed. The remainder of the paper is organized as 
follows. Section 2 gives a detailed presentation of 
background works, including standard and spatially 
constrained FCM. Section 3 deals with the proposed context 
sensitive filtering and segmentation method. Some 
considerations regarding partial volume artefacts also 
exhibited here. The performance evaluation via experimental 
comparison is presented in Section 4, while Section 5 gives 
conclusions and several topics for future works. 

2. BACKGROUND 

The fuzzy c-means algorithm has successful applications in a 
wide variety of clustering problems. The traditional FCM 
partitions a set of object data into a number of c clusters 
based on the minimization of a quadratic objective function. 
When applied to segment grey level images, FCM clusters 
the scalar intensity level of all pixels )...1,( nkxk = . The 
objective function to be minimized is: 
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where 1>m  is the fuzzyfication parameter, iv  represents the 
prototype value of cluster i , ]1,0[∈iku  is the fuzzy 
membership function showing the degree to which pixel k  
belongs to cluster i . According to the definition of fuzzy 
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FCM has invaluable merits in making optimal clusters, but in 
image processing it has severe deficiencies, such as failing to 
take into consideration the position of pixels, which is also 
relevant information in image segmentation. This drawback 
led to introduction of spatial constraints into fuzzy clustering. 

Ahmed et al. (2002) proposed a modification to the objective 
function of FCM, in order to allow the labelling of a pixel to 
be influenced by its immediate neighbours. This 
neighbouring effect acts like a regularizer that biases the 
solution to a piecewise homogeneous labelling. The objective 
function of BCFCM is: 
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where rx  represents the grey level of pixels situated in the 
neighbourhood kN  of pixel k , and kn  is the cardinality of 

kN . The parameter α controls the intensity of the 
neighbouring effect, and unfortunately its optimal value can 
be found only experimentally. Having the neighbourhood 
averaging terms computed in every computation cycle, this 
iterative algorithm performs extremely slowly. 

Chen and Zhang (2004) reduced the time complexity of 
BCFCM, by previously computing the neighbouring 
averaging term or replacing it by a median filtered term, 
calling these algorithms FCM_S1 and FCM_S2, respectively. 
These algorithms outperformed BCFCM, at least from the 
point of view of time complexity. 

Szilágyi et al. (2003) proposed a regrouping of the processing 
steps of BCFCM. In their approach, an averaging filter is 
applied first, similarly to the neighbouring effect of Ahmed et 
al. (2002): 
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followed by an accelerated version of FCM clustering. The 
acceleration is based on the idea, that the number of grey 
levels is generally much smaller than the number of pixels. In 
this order, the histogram of the filtered image is computed, 
and not the pixels, but the grey levels are clustered (Szilágyi 
et al., 2003), by minimizing the following objective function: 
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where lh  denotes the number of pixels with grey level 
equalling l , and q  is the number of grey levels. The 
optimization formulas in this case will be: 
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EnFCM drastically reduces the computation complexity of 
BCFCM and its relatives (Szilágyi et al., 2003; Cai et al., 
2007). If the averaging pre-filter is replaced by a median 
filter, the segmentation accuracy also improves significantly 
(Szilágyi, 2006; Cai et al., 2007). 
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Based on the disadvantages of the aforementioned methods, 
but inspired of their merits, Cai et al. (2007) introduced a 
local (spatial and grey) similarity measure that they used to 
compute weighting coefficients for an averaging pre-filter. 
The filtered image is then subject to EnFCM-like histogram-
based fast clustering. The similarity between pixels k and r is 
given by the following formula: 
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where )(s
krs  and )(g

krs  are the spatial and grey level 

components, respectively. The spatial term )(s
krs is defined as 

the ∞L -norm of the distance between pixels k  and r . The 
grey level term is computed as  

[ ])/()(exp 22)(
kgrk

g
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where 2
kσ  denotes the average quadratic grey level distance 

between pixel k  and its neighbours. Segmentation results are 
reported to be more accurate than in any previously presented 
case (Cai et al., 2007). 

3. METHODS 

Probably the most relevant problem of all techniques 
presented above, BCFCM, EnFCM, FCM_S1, and FGFCM, 
is the fact that they depend on at least one parameter, whose 
value has to be adjusted experimentally.  

The zero value in the second row of Eq. (9) implies that in 
FGFCM, the filtered grey level of any pixel is computed as a 
weighted average of its neighbour pixel intensities. Having 
renounced to the original intensity of the current pixel, even 
if it is a reliable, noise-free value, unavoidably produces 
some extra blur into the filtered image. Accurate 
segmentation requires this kind of effects to be minimized 
(Pham, 2003). 

3.1 Context Dependent Filtering 

In this paper we propose a set of modifications to 
EnFCM/FGFCM, in order to improve the accuracy of 
segmentation, without renouncing to the speed of histogram-
based clustering. In other words, we need to define a complex 
filter that can extract relevant feature information from the 
image while applied as a pre-filtering step, so that the filtered 
image can be clustered fast afterwards based on its histogram. 
The proposed method consists of the following steps: 

A. As we are looking for the filtered value of pixel k , we 
need to define a small square or diamond-shape 
neighbourhood kN  around it. Square windows of size 3×3 
and 5×5 were used throughout this study, but other window 
sizes and shapes are also possible. 

B. We search for the minimum, maximum, and median grey 
value within the neighbourhood kN , and we denote them by 
mink, maxk and medk, respectively.  

C. We replace the grey level of the maximum and minimum 
valued pixel with the median value (if there are more than 
one maxima or minima, replace them all), unless they are 
situated in the middle pixel k . In this latter case, pixel k  
remains unchanged, just labelled as unreliable value. 

D. Compute the average quadratic grey level difference of the 
pixels within the neighbourhood kN , using the formula 
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E. The filter coefficients will be defined as: 
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The central pixel k  will have coefficient 0 if its value was 
found unreliable, otherwise it has unitary coefficient. All 
other neighbour pixels will have coefficients ]1,0[∈krC , 
depending on their space distance and grey level difference 
from the central pixel. In case of both terms, higher distance 
values will push the coefficients towards 0. 

F. The spatial component )(s
krc  is a negative exponential of 

the Euclidean distance between the two pixels k  and r : 
)),(exp( 2
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follows: 









>−

≤−


















 −
+

=

kkr

kkr
k

kr
g

kr

xx

xx
xx

c
σ

σ
σ

π

40

4
4

cos1
2
1

)( . (13) 

The above function has a bell-like shape within the interval 
]4,4[ kk σσ− , and is constant zero outside the interval. 

G. The extracted feature value for pixel k , representing its 
filtered intensity value, is obtained as a weighted average of 
its neighbours: 

∑
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The algorithm can be summarized as follows: 

1. Pre-filtering step: for each pixel k of the input image, 
compute the filtered grey level value kξ , using (11), (12), 
(13), and (14). 

2. Compute the histogram of the pre-filtered image, obtain 
the values lh , ql ...1= . 

3. Initialize iv  with valid grey level values, differing from 
each other, ci ...1= . 

4. Compute new ilu  fuzzy membership values, using (7). 
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5. Compute new iv  prototype cluster values, using  (8). 

6. If there is relevant change in the iv  values, go back to step 
4. This is tested by comparing any norm of the difference 
between the new and the old vector v with a preset small 
constant ε . 

The algorithm converges quickly, however, the number of 
necessary iterations depends on ε  and on the initial cluster 
prototype values. 

3.2  Partial Volume Estimation 

Whatever resolution an MR scanner may have, the scanned 
images will contain such pixels where more than one tissue 
classes are present. This phenomenon is referred to as partial 
volume effect (PVE). Although it is not granted, it is 
reasonable to assume that within a given pixel, PVE only 
occurs over two classes (Pham and Prince, 1998). Pixels 
involved in PVE are generally modelled using the mixel 
model (Ruan et al., 2000), which states that the grey level 
intensity of pixel k  is given by: 

kkkk vvx ηαα νµ +−+= )1( , (15) 

where kη  represents the noise of pixel k  that will be ignored 
after context dependent filtering, while µv  and νv  are the 
centroids of the two involved classes, assuming 

νµ vxv k ≤≤ . 

Fuzzy membership values given by FCM-based clustering 
techniques are reported to give a good estimate of the partial 
volumes (Zhang et al., 2001). Let us inspect now on 
theoretical basis, under what circumstances will the fuzzy 
memberships satisfy (15). In this order, we would like to 
have 
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which equals the desired value shown in (16) if and only if 
3=m . 

Consequently, if FCM is required to give estimation of partial 
volume ratios, the usage of fuzzification exponent 3=m  is 
recommendable. 

4. RESULTS AND DISCUSSION 

In this section we test and compare the accuracy of four 
algorithms: BCFCM, EnFCM, FGFCM, and the proposed 
method, on several synthetic and real images. All the 

following experiments used 3×3 or 5×5 window size for all 
kinds of filtering. 

The proposed filtering technique uses a convolution mask, 
whose coefficients are context dependent and thus computed 
for the neighbourhood of each pixel. Fig. 1 presents the 
obtained coefficients for two particular cases. Fig. 1(a) shows 
the case, when the central pixel is not significantly noisy, but 
some pixels in the neighbourhood might be noisy or might 
belong to a different cluster. Under such circumstances, the 
three pixels on the left side having distant grey level 
compared to the value of the central pixel, receive small 
weights and this way they hardly contribute to the filtered 
value. Fig. 1(b) presents the case of an isolated noisy pixel 
situated in the middle of a relatively homogeneous window. 
Even though all computed coefficients are low, the noise is 
eliminated, leading to a convenient filtered value 76. The 
arrow-indicated migration of weights from the local 
maximum and minimum towards the median valued pixel, 
caused by step C of the filtering method, is relevant in the 
second case and useful in the first. 

 

Fig. 1. Filter mask coefficients in case of a reliable pixel 
intensity value (a), and a noisy one (b). The upper number in 
each cell represents the intensity value, while the lower 
number shows the obtained weight. The arrows indicate that 
the coefficients of extreme intensities are contributed to the 
median valued pixel. 

 

Fig. 2. Segmentation results on phantom images: (a) original, 
(b) segmented with traditional FCM, (c) segmented using 
BCFCM, (d) segmented using FGFCM, (e) filtered using the 
proposed pre-filtering, (f) result of the proposed 
segmentation. 
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Fig. 3 shows the evolution of misclassifications obtained 
using three of the presented methods, while segmenting the 
phantom shown in Fig. 2(a), corrupted by an increasing 
amount of mixed noise (Gaussian noise, salt-and-pepper 
impulse noise, and mixtures of these). Moreover, not only an 
extra amount of noise is added to the image step by step, but 
also the original cluster centroids (the base intensities of the 
clusters) are moved closer and closer to each other. This 
complex effect is obtained using a variably weighted sum of 
three different noisy versions of the same image (all available 
at Internet Brain Segmentation Repository (Worth, 2000)). 
Fig. 3 reveals that the proposed filter performs best at 
removing all these kinds of noises. Consequently, the 
proposed method is suitable for segmenting images corrupted 
with unknown noises, and in all cases it performs at least as 
well as his ancestors. 

 

Fig. 3. A comparison of the numbers of misclassifications at 
rising noise level (from left to right). 

Table 1.  Misclassification rates in case of real 
brain MR image segmentation 

Noise EnFCM FGFCM Proposed
Original 0.767% 0.685% 0.685% 
Gaussian 4% 1.324% 1.131% 1.080% 
Gaussian 12% 4.701% 2.983% 2.654% 
Impulse 3% 1.383% 0.864% 0.823% 
Impulse 5% 1.916% 1.227% 0.942% 
Impulse 10% 3.782% 1.268% 1.002% 
Gaussian 4% + 
Impulse 5% 2.560% 1.480% 1.374% 

Gaussian 12% + 
Impulse 5% 6.650% 4.219% 4.150% 

 
We applied the presented filtering and segmentation 
techniques to several T1-weighted real MR images. A 
detailed view, containing numerous segmentations, is 
presented in Fig. 4. The original slice (a) is taken from IBSR. 
We produced several noisy versions of this slice, by 
artificially adding salt-and-pepper impulse noise and/or 
Gaussian noise, at different intensities. Some of these noisy 

versions are visible in Fig. 4 (d), (g), (j), (m). The filtered 
versions of the five above mentioned slices are presented in 
the middle column of Fig. 4. The segmentation results are 
shown in Fig. 4 (c), (f), (i), (l), (o), accordingly. From the 
segmented images we can conclude, that the proposed 
filtering technique is efficient enough to make proper 
segmentation of any likely-to-be-real MRI images in clinical 
practice, at least from the point of view of Gaussian and 
impulse noises. 

 

Fig. 4. Filtering and segmentation results on real T1-weighted 
MR brain images, corrupted with different kinds and levels of 
artificial noise. Each row contains an original or noise-
corrupted brain slice on the left side, the filtered version 
(using the proposed method) in the middle, and the 
segmented version on the right side. Row (a)-(c) comes from 
record number 1320_2_43 of IBSR, row (d)-(f) is corrupted 
with 10% Gaussian noise, while rows (g)-(i), (j)-(l), and (m)-
(o) contain mixed noise of 3% impulse + 5% Gaussian, 3% 
impulse + 10% Gaussian, and 5% impulse + 5% Gaussian, 
respectively. 

Table 1 takes into account the behaviour of three mentioned 
segmentation techniques, in case of different noise types and 
intensities, computed by averaging the misclassifications on 
12 different T1-weighted real MR brain slices. The proposed 
algorithm has lowest misclassification rates in most of the 
cases. 
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Fig. 5 presents one slice of real, T2-weighted MR brain 
image, and its segmentation using the proposed method. 
Visual inspection shows, that our segmentation results are 
very close to the IBSR expert’s manual inspection. 

 

Fig. 5. Segmentation results on real T2-weighted MR images: 
(a) original, (b) filtered using the proposed method, (c) result 
of the proposed segmentation. 

The efficiency of the algorithm against the clock is mainly 
assured by the histogram-based execution of the fuzzy c-
means clustering. As the number of grey intensities of an 
MRI image is well under the number of voxels present in a 
single slice or a stack of parallel slices (q << n), the time 
complexity of the segmentation is reduced from O(cnz) to 
O(cqz), where z represents the number of executed cycles. 
Taking the computation of the histogram and the proposed 
pre-filtering into account, even though the proposed filter is 
obviously 7–8 times slower than a fixed low-pass averaging 
or a simple 3×3 median filter, we still have a 10–20 times 
speed-up compared to the execution of the standard FCM 
algorithm. 

We applied the proposed segmentation method to several 
complete head MR scans in IBSR. The dimensions of the 
image stacks were 256×256×64 voxels. The average total 
processing time for one stack was around 10 seconds on a 2.4 
GHz Pentium 4. 

5. CONCLUSIONS 

We have developed a modified FCM algorithm for automatic 
segmentation of MR brain images. The algorithm was 
presented as a combination of a context dependent pre-
filtering technique and an accelerated FCM clustering 
performed over the histogram of the filtered image. The pre-
filter uses both spatial and grey level criteria, in order to 
efficiently eliminate Gaussian and impulse noises without 
significantly blurring the real edges.  

Several test series were carried out using synthetic brain 
phantoms and real MR images. These investigations revealed, 
that our proposed technique accurately segments the different 
tissue classes under serious noise contamination.  

We compared our results with other recently reported 
methods. Test results revealed that our approach 
outperformed these methods in many aspects, especially in 
the accuracy of segmentation and processing time. 

Further works target more precise treatment of partial volume 
artefacts, removal of intensity non-uniformity noises, and 
adaptive determination of the optimal number of clusters. 
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