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Abstract: A problem of feedback stabilization of hybrid systems with time-varying delay and
Markovian switching is considered. Delay-dependent sufficient conditions for stability based on
linear matrix inequalities (LMI’s) for stochastic asymptotic stability is obtained. The stability
result depended on the mode of the system and of delay-dependent. The robustness results of
such stability concept against all admissible uncertainties are also investigated. This new delay-
dependent stability criteria is less conservative than the existing delay-independent stability
conditions. An example is given to demonstrate the obtained results.
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1. INTRODUCTION

Due to the fact that most of the real world processes aris-
ing in biology, chemistry, economics, mechanics, viscoelas-
ticity, physics, physiology, population dynamics, as well as
in engineering sciences include some form of delays, study
of time-delay systems has always been an important issue
in control systems research (Richard [2003]). In addition,
modern complex systems are increasingly implemented as
distributed control systems, where distributed sensors and
actuators are used, and the control loops are closed over a
communication network or a field bus. In this case, there
will inevitably be time delays induced by the communi-
cation network. As the performance requirements of the
control system increase, the delays in the control system
become a more important issue (Nilsson et al. [1998]).

On the other hand, a surge of interests in studying the
class of Markov jump linear systems (MJLS) has been
observed for the past decades. The MJLS are dynamical
systems subject to abrupt variations in their structures.
Since MJLS is natural to represent dynamical systems
that are often inherently vulnerable to component failures,
sudden disturbances, change of internal interconnections,
and abrupt variations in operating conditions, they are an
important class of stochastic dynamical systems (Mariton
[1990], Boukas [2006], Dragan et al. [2006], Sathananthan
[2001], Sathananthan et al. [2008], Ladde and Siljak [1983],
Lawrence [1994]) and the references therein.

The feedback stability and stabilizability of time-delay of
this important class of Markov jump linear systems is an
interesting problem and has been attracting the attention
of many researchers in the area of system science. This
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important class of systems with fixed time delay has been
extensively studied and are classified into two categories
such as delay-dependent and delay-independent stability
and stabilizability conditions, see (Boukas and Liu [2002],
Boukas and Al-Muthairi [2006], Mao [2006], Mahmoud
[2007]) and the references therein. Due to the use of the
information on the length of delays, the delay-dependent
criteria is considered to be less conservative than the delay-
independent criteria. On the other hand, similar problems
with time-varying delay for systems without Markovian
switching are encountered in (Mahmoud [2000]). Some ro-
bustness results for fixed-delay is considered in (Yuan and
Mao [2004]). Time-varying delay without LMI-conditions
for stabilization problems are investigated in (Mao [2002]).
Robust stability for time-varying delay systems and a
good comparison of existing methods without Markovian
switching is considered in (Wu et al. [2004]). Mean-square
stability results and optimal-control results for MJLS with
time-varying delay are investigated in (Kolomanovsky and
Maizenberg [2001a,b]). Exponential stability results are
reported in (Yue et al. [2003], Yue and Han [2005]).

In this paper, sufficient conditions for feedback stochastic
stability and stabilizability of the class of Markov jump
linear systems with time-varying delay is considered. Ro-
bust stability and stabilizability of such linear uncertain
systems with Markovian jumps and time-varying delay are
also investigated. A technique to design a state feedback
that achieves stochastic stability for MJLS with a time-
varying delay is provided. Our delay-dependent sufficient
conditions are written in matrix forms which are deter-
mined by solving linear matrix inequalities (LMIs). The
LMI approach is proved to have significant computational
advantage over any other techniques. This is the main
strength and advantage of our method compared to exist-
ing methods. A second interesting feature of our method is
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that we considered time-varying delay compared to fixed
delay which is apparent in most of the existing work for
MJLS. Our new criteria is shown to be effective, over-
come some of the conservativeness associated with delay-
independent results (for comparison of existing methods,
see (Wu et al. [2004]) and contain the results of fixed
time-delay of (Boukas and Liu [2002]) as a special case.
An example is given for illustration.

2. PROBLEM FORMULATION

Consider the continuous-time delay system

ẋ(t) = A(ηt)x(t) + A1(ηt)x(t − τ(t)) + B(ηt)u(t) (1)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state vector and con-
trol input, respectively and A1(·), A(·), B(·) are matrices
of appropriate dimensions and τ(t) is an unknown time-
varying continuous delay factor satisfying:

0 ≤ τ(t) ≤ τ0, τ̇(t) ≤ τ+ < 1

where τ0, τ+ are known bounds. The initial condition
of the system is specified as (η0, φ(.)) with x(s) = φ(s),
s ∈ [−τ0, 0]. Define

xs(t) := x(s + t), for − τ0 ≤ s ≤ 0.

Note that {(xt, ηt), t ≥ 0} is a Markov process defined on
a complete probability space (Ω,F ,P) with an associated
nondecreasing family of σ-algebras F(t) ∈ F . Note that
the jump dynamics described by the Markov chain S =
{1, 2, .., N} are the multiple modes of u(t, x(t)). Let us
introduce the indicator function of the regime of S by
ξ(t) ∈ ℜs with components

ξηt
(t) =

{
1, ηt = i
0, otherwise

(2)

for i = 1, 2, ..., N , whose dynamics or transitions is given
by a Markov chain

dξ(t) = ΛT ξ(t)dt + dM(t) (3)

where M(t) is an F(t)-martingale and Λ is the chain
generator an N × N matrix. The entries λij for i, j =
1, 2, · · · , N of Λ are interpreted as transition rates

P {ηt+∆ = j | ηt = i} =

{
λij∆ + o(∆), for i 6= j
1 + λii∆ + o(∆), for i = j

(4)

The main objective of this paper is to establish delay-
dependent sufficient conditions for stochastic stability, and
its robustness results of (1) that can be evaluated by LMI
techniques. To proceed, we first introduce the following
definition of stability criteria.

Definition 1. System (1) with u(t) ≡ 0 is said to be
stochastically stable if there exists a constant T (η0, φ(·))
such that

E





∞∫

0

‖x(t)‖2dt : (φ(·), η0)



 ≤ T (η0, φ(·)) (5)

3. PRELIMINARIES

Let, V be a vector-functional satisfying the following
property:

For any function φ(s) that is continuous for −τ0 ≤ s < 0
the function

V̂ (t, x, η(t)) = V (t, x, φt(s), η(t))

is twice continuously differentiable with respect to x and
continuously differentiable at least once with respect to t.
Here, x = φ(t), and

φt(s) =
{
φ(t + s),−τ0 ≤ s < 0

}
.

The class of functionals V that yields these proper-
ties with respect to V̂ is denoted by D. We will also
write V (t, x, η(t)) when we drop the argument φt from
V (t, x, φt(s), η(t)).

To establish the infinitesimal generator, we associate a
vector Lyapunov functional V̂ (t, x(t), η(t)) to the system
(1) with the average dini derivative defined as follows:

LV̂ (t, x, k) = lim
h→0+

1

h

{

E[V̂ (t, x + hf(t, xt, x, ηt)),

η(t + h)) | x(t) = x, η(t) = k] − V̂ (t, x, k)
}

where

f(t, xt, x, ηt) = A(ηt)x(t) + A1(ηt)x(t − τ(t)).

The following lemma estimates this average derivative
(differential generator) by virtue of the system (1) at the
point(t, x, k).

Lemma 1. (Sathananthan et al. [2008]) Suppose that

V̂ (t, x(t), η(t)) ∈ C
[
J × ℜn × C × S,ℜN

+

]
, ∂V̂ (t,x,j)

∂t
,

∂V̂ (t,x,j)
∂x

exist and are continuous for (t, x) ∈ J ×ℜn. Let
η(t) be a right continuous Markov chain with transition
intensity matrix Λ = (λij)s×s. Then

LV̂ (t, x, k) =
∂V̂ (t, x, k)

∂t
+

[

∂V̂ (t, x, k)

∂x

]T

· f(t, x, xt, k)

+

s∑

j=1

λkj

[

V̂ (t, x, j) − V̂ (t, x, k)
]

4. STABILITY AND STABILIZATION CRITERIA

Before we state the stability conditions, we consider the
following matrix inequality.

Lemma 2. (Mao [2006]) Let x ∈ ℜn, y ∈ ℜm, N ∈ ℜn×m,

N̂ ∈ ℜn×m, and α > 0. If NT N ≤ N̂ , then

2xT Ny ≤ α|x|2 +
1

α
yT N̂y (6)

We now establish sufficient conditions for the stochastic
stability of (1).

Theorem 1. The system (1) with u(t) ≡ 0 is stochastically
stable if one of the following two equivalent conditions
hold:

(i) If there exists symmetric, positive-definite matrices

P = (P (1), P (2), · · · , P (N)) > 0, H2 > 0, H > 0

with Hτ = (1 − τ+)H, satisfying the algebraic Riccati
inequalities (ARI)
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[A(ηt) + A1(ηt)]
T P (ηt) + P (ηt)[A(ηt) + A1(ηt)]

+τ0H2 + τ0AT (i)HτA(i)

+2τ0P (ηt)A1(ηt)H
−1
τ AT

1 (ηt)P (ηt)

+

N∑

j=1

ληtjP (j) ≡ Ω(ηt) < 0

AT
1 (ηt)HτA1(ηt) ≤ H2

(ii) If there exists symmetric, positive-definite matrices

P = (P (1), P (2), · · · , P (N)) > 0, H2 > 0, H > 0

with Hτ = (1 − τ+)H, satisfying the LMI’s




J(i) τ0P (i)A1(i)

τ0AT
1 (i)P (i) −

τ0

2
Hτ



 < 0, (7)

[

−H2 AT
1 (i)Hτ

HτA1(i) −Hτ

]

< 0, ∀i ∈ S (8)

where

J(i) = [A(i) + A1(i)]
T P (i) + P (i)[A(i) + A1(i)]

+

N∑

j=1

λijP (j) + τ0AT Hτ (i)A(i) + τ0H2

Proof. Using the Leibniz-Newton formula, we can write

x(t) − x(t − τ(t)) =

t∫

t−τ(t)

ẋ(s)ds

Thus, substituting this in (1), the system (1) is equivalent
to the system

ẋ(t) = [A(ηt) + A1(ηt)]x(t) (9)

−

t∫

t−τ(t)

[A1(ηt)A(ηθ)x(θ) + A1(ηt)A1(ηθ)x(θ − τ)]dθ

with the initial condition of the system x(s) = φ(s),
s ∈ [−2τ0, 0]. Let us define the process {x(t), t ≥ 0}
defined on C[−2τ0, 0] as xs(t) = x(t + s), s ∈ [t − 2τ0, t].
Note that (x(t), ηt) is a Markov process. Consider the
Lyapunov functional of the following form:

V (x(t), ηt) = xT (t)P (ηt)x(t)

+

0∫

−τ0

t∫

t+θ

xT (s)H1(ηs)x(s)dsdθ

+

0∫

−τ0

t∫

t−τ(t)+θ

xT (s)H2x(s)dsdθ (10)

and

H1(ηt) = AT (ηt)HτA(ηt)

Let L be the infinitesimal generator of {(x(t), ηt), t ≥ 0}.
We use the inequality in Lemma 2 and after some algebraic
manipulations, we get

LV (x(t), ηt) ≤ xT (t)
[
τ0H1(ηt) + τ0H2(ηt)

]
x(t)

+xT (t)
[

(A(ηt) + A1(ηt))
T P (ηt) + P (ηt)(A(ηt) + A1(ηt))

+

N∑

j=1

ληtjP (j)
]

x(t) + xT (t)
[

τ0P (ηt)A1(ηt)H
−1
τ AT

1 (ηt)

+τ0P (ηt)A1(ηt)H
−1
τ AT

1 (ηt)
]

x(t) ≤ xT (t)Ω(ηt)x(t).

Therefore, we obtain

LV (x(t), ηt) ≤ −min
i∈S

{−Ω(i)}xT (t)x(t). (11)

Integrating and taking expected value for both sides of
(11), we have

[

min
i∈S

λmin(−Ω(i))

]

E





t∫

0

xT (s)x(s)ds

∣
∣
∣
∣
∣
∣

(x(0), η0)





≤ E [V (x(0), η0)] .

Hence, we get

E





t∫

0

xT (s)x(s)ds

∣
∣
∣
∣
∣
∣

(x(0), η0)



 ≤
E [V (x(0), η0)]

mini∈S λmin(−Ω(i))

holds for any t > 0. This completes the proof.

Remark 1. If τ+ = 0, and τ0 is fixed this Theorem1
is identical to the delay-dependent stability criterion of
(Boukas and Liu [2002]) (Lemma 8.5, page 195) with
fixed-delay and Markovian switching. In other words, this
theorem is more generalized than (Boukas and Liu [2002])
(Lemma 8.5, page 195) with fixed-delay and Markovian
switching.

We now consider the problem of synthesizing a state
feedback controller

u(t) = K(ηt)x(t) (12)

that stochastically stabilizes the system (1). The following
theorem gives a stabilizability condition.

Theorem 2. If there exists symmetric positive definite ma-
trix

X = (X1,X2, · · · ,XN ) > 0,H2 > 0, H > 0

with Hτ = (1 − τ+)H satisfying





J1 J2 J3 Si(X)
J4 J5 0 0

τ0Xi 0 −τ0U1 0
ST

i (X) 0 0 −Xi(X)




 < 0 (13)

where

J1 := J0(i) + 2τ0A1(i)(1 − τ+)−1UAT
1 (i)

J2 := τ0[A(i)Xi + B(i)Yi]
T

J3 := τ0XT
i

J4 := τ0[A(i)Xi + B(i)Yi]

J5 :=−τ0(1 − τ+)−1U

and
[

−U1 U1A
T
1 (i)

A1(i)U1 −(1 − τ+)−1U

]

< 0, ∀i ∈ S (14)
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where

J0(i) = Xi[A(i) + A1(i)]
T + [A(i) + A1(i)]Xi

+B(i)Yi + Y T
i B(i)λiiXi

Si(X) =
[√

λi1Xi, · · · ,
√

λii−1Xi, · · · ,
√

λii+1Xi,

· · · ,
√

λiNXi

]

,

Xi(X) = Diag [X1, · · · ,Xi−1,Xi+1, · · · ,XN ] ,

U = H−1, U1 = H−1
2

then controller

u(t) = K(ηt)x(t) (15)

with

K(i) = YiX
−1
i (16)

stochastically stabilizes the system (1).

Proof. Substituting (15) into (1) yields the dynamics of
the closed-loop system described by

ẋ(t) = [A(ηt) + B(ηt)K(ηt)]
︸ ︷︷ ︸

Ā(ηt)

x(t) + A1(ηt)x(t − τ)

= Ā(ηt)x(t) + A1(ηt)x(t − τ). (17)

Then from Theorem 1, it suffices to show that there exists
symmetric, positive definite matrix,

P = (P (1), · · · , P (N)) > 0, H2 > 0, H > 0,

with Hτ = (1 − τ+)H such that

[
Ā(ηt) + A1(ηt)

]T
P (ηt) + P (ηt)

[
Ā(ηt) + A1(ηt)

]

+τ0H2 + τ0ĀT (i)Hτ Ā(i) (18)

+2τ0P (ηt)A
T
1 (ηt)H

−1
τ A1(ηt)P (ηt) +

N∑

j=1

ληtjP (j) < 0,

where

Ā(ηt) = A(ηt) + B(ηt)K(ηt). (19)

Suppose that

Xi = P−1(i) (20)

and

Yi = K(i)Xi, U = H−1, U1 = H−1
2 (21)

Using Schur complement, some algebraic manipulations
and the above expressions for Xi(x), Si(x) and Yi, we
obtain the inequality (13).

5. ROBUST STABILITY AND STABILIZATION
CRITERIA

In the previous section, we investigated the stability and
stabilizability of the time-delay system with Markovian
switching given by (1). The conditions given are under
the assumption that no uncertainties are presented in
the system or system parameters. In this section, we
consider the case when the plant parameters are subject
to perturbations. Under this consideration, we study the

conditions for robust stability and robust stabilization of
the time-delay systems with Markovian switching.

Consider the system (1) with

A△(ηt) = A(ηt) + ∆A(ηt)

B△(ηt) = B(ηt) + ∆B(ηt) (22)

A1△(ηt) = A1(ηt) + ∆A1(ηt)

where

∆A(ηt) = D(ηt)∆(ηt)Ea(ηt)

∆B(ηt) = D(ηt)∆(ηt)Eb(ηt) (23)

∆A1(ηt) = D(ηt)∆(ηt)E1(ηt).

Note that A(ηt), B(ηt), A1(ηt), Da, Ea, Eb, E1 are
known matrices of appropriate dimensions. ∆(ηt) is an
unknown time-varying matrix of appropriate dimension
that represent the parameter uncertainties in the system.
We say that the uncertainty ∆(ηt) is admissible if it satisfy
the following condition:

∆T (ηt)∆(ηt) ≤ I (24)

Before we state the condition for robust stability, we
consider the following lemma which will be used to prove
the result.

Lemma 3. (Wang [1992]) Let A,D,∆, E be real matrices
of appropriate dimensions with ‖∆‖ ≤ 1. Then, we have

(i) for any matrix P > 0 and scalar ǫ > 0 satisfying
ǫI − EPET > 0,

(A + D∆E)P (A + D∆E)T (25)

≤ APAT + APET (ǫI − EPET )−1EPAT + ǫDDT

(ii) for any matrix P > 0 and scalar ǫ > 0 satisfying
P − ǫDDT > 0,

(A + D∆E)T P−1(A + D∆E)

≤ AT
(
P − ǫDDT

)−1
A +

1

ǫ
ET E (26)

We now state the LMI based sufficient condition for the
system (1) to be robust stochastically stable when u(t) ≡
0.

Theorem 3. If there exists symmetric, positive definite
matrices X = (X1,X2, · · · ,XN ), and scalars ǫi > 0
i = 1, 2, 3, 4 with U = H−1 > 0, U1 = H−1

2 > 0, satisfying
the LMI







J0(i) J12 J13 Si(X)
JT

12 −J22 0 0
JT

13 0 −J33 0
ST

i (X) 0 0 −χi







< 0, (27)

[
−U1 U1AT

1 (i) U1ET

1 (i)

A1(i)U1 −(1 − τ+)−1U + ǫ3D(i)DT (i) 0
E1(i)U1 0 −ǫ3I

]

< 0, (28)

for every i ∈ S where

J0(i) = Xi[A(i) + A1(i)]
T + [A(i) + A1(i)]Xi

+2τ0A1(i)(1 − τ+)−1UAT
1 (i) + 2τ0ǫ2D(i)DT (i)

+ǫ4D(i)DT (i) + λiiXi
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J12 =
[
XiA

T (i), A1(i)(1 − τ+)−1UET
1 (i)

]

J22 = Diag

[
(τ0)−1[(1 − τ+)−1U − ǫ1D(i)DT (i)]

(2τ0)−1[ǫ2I − E1(i)(1 − τ+)−1UET
1 (i)]

]

J13 =

[
Xi

Ea(i)Xi

(Ea(i) + E1(i))Xi

]T

J33 = Diag
[

(τ0)−1U1,
ǫ1

τ0
I, ǫ4I

]

,

then system (1) is robust stochastically stable when u(t) ≡
0.

The following theorem provides an LMI-based sufficient
condition for the system (1) to be robust stochastically
stable with the feedback

u(t) = K(ηt)x(t). (29)

Theorem 4. If there exists symmetric, positive definite
matrices X = (X1,X2, · · · ,XN ), matrices Y = (Y1, Y2, .., YN )
and scalars, ǫi > 0, i = 1, 2, 3, 4, X = (X1,X2, · · · ,XN ),
and scalars ǫi > 0 i = 1, 2, 3, 4 with U = H−1 > 0, U1 =
H−1

2 > 0 satisfying the LMI






Ĵ0(i) Ĵ12 Ĵ13 Si(X)

ĴT
12 −Ĵ22 0 0

ĴT
13 0 −Ĵ33 0

ST
i (X) 0 0 −χi







< 0, (30)





−U1 U1A
T
1 (i) U1E

T
1

A1(i)U1 −(1 − τ+)−1U + ǫ3D(i)DT (i) 0
E1(i)U1 0 −ǫ3I



 < 0,(31)

for every i ∈ S.
where

Ĵ0(i) = Xi[A(i) + A1(i)]
T + [A(i) + A1(i)]Xi + B(i)Yi

+ Y T
i BT (i) + 2τ0A1(i)(1 − τ+)−1UAT

1 (i)

+ 2τ0ǫ2D(i)DT (i) + ǫ4D(i)DT (i) + λiiXi

J12 =

[
A(i)Xi + B(i)Yi

E1(i)(1 − τ+)−1UAT
1 (i)

]T

J22 = Diag

[
(τ0)−1

[
(1 − τ+)−1U − ǫ1D(i)DT (i)

]

(2τ0)−1
[
ǫ2I − E1(i)(1 − τ+)−1UET

1 (i)
]

]

J13 =

[
Xi

Ea(i)Xi + Eb(i)Yi

[Ea(i) + E1(i)] Xi + Eb(i)Yi

]T

J33 = Diag
[

(τ0)−1U1,
ǫ1

τ0
I, ǫ4I

]

,

with

Ā(ηt) = A(ηt) + B(ηt)K(ηt),

Ēa(i) = Ea(i) + Eb(i)K(i).

then system (1) is robust stochastically stable when

u(t) = K(ηt)x(t) (32)

with

K(i) = YiX
−1
i , i = 1, 2, ...S.

Example 1. Consider the delay-system

ẋ(t) = A(ηt)x(t) + A1(ηt)x(t − τ) + B(ηt)u(t)

Suppose ηt is a three-state Markov chain S = {1, 2, 3},
with

Λ =

[
−5 3 2

1 −3 2
4 3 −7

]

,

A(1) =

[
−4 0.25 3
−1 −1.50 1

0 2.00 −1

]

, A1(1) =

[
−1 1.75 1
−2 −1.50 5

1 1.00 −4

]

A(2) =

[
−0.20 1 −0.1

0.05 −4 2.0
0.10 0 0.1

]

, A1(2) =

[
−0.20 1 0.0

0.05 −3 −2.0
1.00 1 −0.9

]

A(3) =

[
1 0 0.5
5 −4 1.0
2 0 −4.0

]

, A1(3) =

[
−6 0 0.5
−2 2 3.0

2 1 0.0

]

B(1) =

[
1

−1
0

]

, B(2) =

[
−1

0
1

]

, B(3) =

[
0
1

−1

]

.

The random time-varying delay is shown in Fig. 1. We now
solve the LMIs above to obtain

K(1) = [−0.1299, 4.5837, 4.3058]

K(2) = [3.5787, 1.2674, − 1.4421]

K(3) = [13.0724, 7.5845, 11.5128].

The random switching sequence used is given in Fig. 2.
Fig. 3 is obtained with the following initial conditions:

x(0) =

[
1
1
1

]

, x(t) =

[
0
0
0

]

for all t < 0.

6. CONCLUDING REMARKS

It is an established fact (Boukas and Liu [2002], Wu
et al. [2004]) that delay-dependent stability criteria is
less conservative than the delay independent criteria for
stability in network control systems with time delays.
In this context, delay-dependent sufficient conditions for
stability, stabilizability, and robust stability of the class
of Markov jump linear systems with time-varying delays
have been developed. All conditions are delay-dependent
and depended on the mode of the MJLS. The results are
extended to deal with systems subjected to admissible
perturbation. For a given Markov jump linear system with
a time-varying delay, a set of LMI conditions has been
given to compute a respective state feedback controller for
each case of stability considered. It is shown that delay-
dependent stability criterion (Theorem 8.6, Theorem 8.8,
Theorem 9.7 and Theorem 9.8) in (Boukas and Liu [2002])
is a special case of this new criteria, and that the new
method is less conservative than existing methods.
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