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Abstract: We propose an approximation procedure for the dual problems of viability and
reachability from a robust control point of view. Namely, given a region of the state space,
we want to know whether it is possible for one control to guarantee that whatever the actions
of the other control, the state stays in this region, or that starting outside of the region it is
possible to reach it. We consider anisotropic affine dynamics in the sense that the dynamics is
described by the sum of an autonomous term and a linear term in each input. This particular
form enables us to approximate the solution of the robust control problem using a sequence of
simpler control problems. We demonstrate how this approach can alleviate the computational
effort required for the solution of the original problem. Our formulation is based on viability
theory and differential games.

1. INTRODUCTION

Let us consider a continuous time system with two inputs
ẋ = f0(x) + f1(x)u + f2(x)v, (u, v) ∈ U × V (1)

with x ∈ Rn, U ⊂ Rp the control input, and V ⊂ Rq

the disturbance input. We are interested in numerical
solution of the dual problems of viability and reachability
from a robust control point of view. Namely, given a
region of the state space, we want to know whether
it is possible to find a control input which guarantees
that whatever the disturbance input, the state stays in
this region, or that starting outside of the region it is
possible to reach it. We address the robustness aspect
by considering the worst case approach in which the
disturbance is an intelligent opponent of the control. This
leads to the formulation of the robust control problem as
a two-player differential game. In this paper, we consider
the robust viability/reachability problems in the unified
framework of viability theory (Aubin [1991], Cardaliaguet
et al. [1999]) for the particular case when U and V are
convex and compact sets which contain 0 in their interior.
If for all x the norm of f0(x) is large with respect to
the norm of f1(x)U + f2(x)V , then dynamics ẋ = f0(x)
can be considered as an approximation of (1). We use
this observation and approximate problems with only one
input in order to speed up numerical solution of the robust
control problem.

Questions of (robust) viability, invariance or reachability
arise for numerous applications in engineering, biology or
economics. Related concepts have been studied extensively
in the literature (Aubin [1991], Cardaliaguet et al. [1999],
Lygeros [2002], Mitchell et al. [2005], Blanchini [1999]).
The interest for these questions has been renewed with
the study of safety problems in the framework of hybrid
1 Eva Crück is also with DGA, Department of Guidance and
Navigation, Paris, France.

systems (Aubin et al. [2002], Gao et al. [2006], Crück
and Saint-Pierre [2004]). Ground transportation systems
(Lygeros and Lynch [1998]) and air traffic management
systems (Livadas et al. [2000], Tomlin et al. [2001]), for
instance, have been considered from this perspective.

Direct characterization of the extremal sets enjoying (ro-
bust) viability, reachability or invariance properties is at
the basis of viability theory. The development of compu-
tational tools follows closely the theoretical achievements
and requires mild regularity assumptions on the dynamics,
the target sets and the constraints (Cardaliaguet et al.
[1999]). An alternative, indirect approach to reachability
analysis relies on optimal control theory and characterizes
the sets of interest as level sets of the value function of
an appropriate optimal control problem. Under regularity
assumptions (Lygeros [2002]) the value function is the vis-
cosity solution to a first order partial differential equation
(variant of the standard Hamilton-Jacobi equation), and
reachability computation can take advantage of efficient
algorithms developed for this class of equations (Mitchell
et al. [2005]). The algorithms derived from both ap-
proaches rely on gridding of the state space. They perform
well only if the dynamics can be accurately “projected”
on this grid. The convergence properties of the algorithms
in (Mitchell et al. [2005]) explicitly require isotropic dy-
namics; algorithms from viability theory are guaranteed
to converge without this assumption to the price of heav-
ier computation for good accuracy. Both approaches are
subject to the curse of dimensionality, in the sense that
memory and time required to perform computation grow
exponentially with the dimension of the state space. Cur-
rent implementations can deal with 3D or 4D problems,
up to 5D with coarse gridding. Higher dimensions can
be dealt with in the case of linear convex problem using
ellipsoidal or polytopic techniques (see Blanchini [1999]
and references therein). These techniques are powerful
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when there is only one input (control or disturbance). In
the case when there are two antagonistic inputs, convexity
can readily be lost (Raković et al. [2007]). In any case, the
robust control problem is more computationally intensive
than the single input problem.

In this paper, our purpose is to simplify the resolution
of the robust control problem by using a sequence of
approximate control problems. Our approach takes ad-
vantage of the unified framework of viability theory and
differential games for formulating meaningful approximate
problems. The main advantage is that this provides a
(possibly rough) approximate solution to the game prob-
lem using relatively simple computation. The quality of
this approximation can be estimated since we obtain an
inner and an outer approximation of the game solution.
Moreover, the result of this approximation can be used
in the computation of the game solution, thus alleviating
the overall computation effort. Another advantage is that
the approximation provides insight on the effect of each
player on the behavior of the system, which is not always
consistant with off-hand intuition.

The material is organized as follows: The next section is
devoted to the introduction of the concepts from viabil-
ity theory and differential games which will be used for
solving the robust control problems. Section 3 describes
our approximation procedure. Some numerical considera-
tions based on the viability kernel algorithm (Cardaliaguet
et al. [1999]) are provided in Section 4. We illustrate our
approach on an example in Section 5.

2. NOTATIONS AND DEFINITIONS

2.1 Preliminaries

We assume that the dynamics satisfy the following condi-
tions:
Hypothesis 1.

• U and V are compact, convex and contain 0 in their
interior;

• f0, f1 and f2 are Lipschitz-continuous.

We denote by U (resp. V) the set of Lebesgue measurable
functions u(·) : [0,∞) → U (resp. v(·) : [0,∞) → V ). We
denote by x(· : x0, u(·), v(·)) the trajectory of system (1)
originating at x0 with inputs u(·) ∈ U and v(·) ∈ V. Let
us define

∀x ∈ Rn,

{
F (x) := f0(x) + f1(x)U + f2(x)V
F1(x) := f0(x) + f1(x)U
F2(x) := f0(x) + f2(x)V

(2)

Under Hypothesis 1, the differential inclusions
ẋ ∈ F (x), ẋ ∈ F1(x), and ẋ ∈ F2(x),

are equivalent to the differential equations (1) and
ẋ = f0(x) + f1(x)u, and ẋ ∈ f0(x) + f2(x)v

respectively. Solutions to the differential inclusions are
absolutely continuous functions verifying the relevant in-
clusion for almost all time. We denote by SF (x0), SF1(x0),
SF2(x0) the set of such solutions originating at x0.

2.2 Viability concepts

Let us consider the differential inclusion

ẋ ∈ F (x).
Let E ⊂ Rn. We can define four basic problems:

Is E viable, in the sense that
∀x0 ∈ E, ∃x(·) ∈ SF (x0), ∀t ≥ 0, x(t) ∈ E ?

Is E invariant, in the sense that
∀x0 ∈ E, ∀x(·) ∈ SF (x0), ∀t ≥ 0, x(t) ∈ E ?

Is E reachable, in the sense that
∀x0 ∈ Rn \ E, ∃x(·) ∈ SF (x0), ∃T ≥ 0, x(T ) ∈ E ?

Is E an absorbing set, in the sense that
∀x0 ∈ Rn \ E, ∀x(·) ∈ SF (x0), ∃T ≥ 0, x(T ) ∈ E ?

Remark 1. Viability is sometimes referred to as controlled
invariance (Blanchini [1999]).

In the sequel, we use the following notations:
Definition 1. Let K ⊂ Rn and C ⊂ K be closed sets.

• A trajectory x(·) is viable in K with target C if
∀t ≤ inf{s : x(s) ∈ C}, x(t) ∈ K.

• ViabF (K, C) denotes the viability kernel of K with
target C. It is the set of initial conditions in K
from which there exists a trajectory viable in K with
target C.

• InvF (K, C) denotes the invariance kernel of K with
target C. It is the set of initial conditions in K from
which all trajectories are viable in K with target C.

Under Hypothesis 1, ViabF (K, C) and InvF (K, C) are
closed sets which are the largest viable (resp. invariant)
closed subsets of K.

Viability and invariance kernels provide obviously direct
solutions to viability and invariance problems. They also
provide a solution for reachability and absorption prob-
lems, if ViabF (K \ C) = ∅ (resp. InvF (K \ C) = ∅). If
this is not the case, we can set

Φ(τ, x) = {−1} × F (x).
Then (Cardaliaguet et al. [1999]):

• ViabΦ([0,+∞)×K, [0,+∞)×C) is the epigraph of the
minimal time function for reaching the target (under
constraints). Namely, it is the set of initial conditions
(τ0, x0) such that

∃x(·) ∈ SF (x0), ∃T ≤ τ0, x(T ) ∈ C

and the condition ∀t ≤ T, x(t) ∈ K is true.
• InvΦ([0,+∞) × K, [0,+∞) × C) is the set of initial

conditions (τ0, x0) such that
∀x(·) ∈ SF (x0), ∃T ≤ τ0, x(T ) ∈ C

and the condition ∀t ≤ T, x(t) ∈ K is true.

Viability and invariance kernels can be computed using
algorithms defined in (Cardaliaguet et al. [1999]) and
outlined in Section 4 for sake of completeness.

2.3 Differential game concepts

We define a game in which the control (playing with u)
tries to reach the target and/or respect the constraints.
The disturbance (playing with v) has the opposite goal. It
is well known since the early 60s (see for instance Varaiya
[1967]) that the solution of the game depends on the
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information that each player can use to determine his/her
actions. Unfortunately, the natural generalization of con-
trol problems which would allow both players to use state
feedbacks does not lead to a good solution of the game in
general (see Cardaliaguet [1994] for a discussion on context
of strategies).

In order to generalize the notion of viability and invari-
ance kernel, we introduce the notion of non-anticipative
strategies (Cardaliaguet et al. [1999]):
Definition 2. (Non-anticipative strategy). A function α :
Rn × V → U is a non anticipative strategy if for all
time T > 0, all initial condition x0 ∈ Rn and for
all pair of functions v(·) and ṽ(·) of V which coincide
almost everywhere on [0, T )], u(·) = α(x0, v(·)) and ũ(·) =
α(x0, ṽ(·)) coincide almost everywhere on [0, T ].

In words, a player which uses a non-anticipative strategy
can make decisions using the past history of the game, not
only the current state. Let us mention that the notion
of non-anticipative strategy encompasses the notion of
feedback. Indeed, let us assume for instance that the
control uses a feedback ũ : Rn → U , and let us consider
the application

α : (x0, v(·)) −→ ũ(x(·)),
in which x(·) denotes the solution to the differential
equation ẋ = f(x, ũ(x(t)), v(t)) starting at x0. Then α
is a non-anticipative strategy.
Remark 2. Non-anticipative strategies are useful mathe-
matical tools but they are not very practical from applica-
tion point of view. Fortunately, they can be approximated
numerically using feedbacks of the form û : (x, v) → u.
This provides insight on the fact that the player who uses
non-anticipative strategies in a sense “plays second” and
has an advantage because he/she knows the action of the
other player.

We can define two games, depending on which player uses
a non-anticipative strategy (the other player uses open
loop control). When using a differential game setting for
studying robust control, it is often legitimate to consider
that the control uses a non-anticipative strategy. The other
game provides a guaranteed conservative approach.
Definition 3. Let K ⊂ Rn and C ⊂ K be closed sets.

• Discf (K, C) denotes the discriminating kernel of K
with target C. It is the set of initial conditions in K
from which the control can find a strategy such that
for all possible disturbances, the trajectory is viable
in K with target C.

• Leadf (K, C) denotes the leadership kernel of K with
target C. It is the set of initial conditions in K for
which for any strategy played by the disturbance, for
all ε > 0 and for all T > 0, the control can generate
a trajectory such that

∀t ≤ min{T, inf{s : x(s) ∈ Cε}}, x(T ) ∈ Kε,

in which Kε = K +εB and Cε = Rn \((Rn \C)+εB),
with B a ball in Rn.

Remark 3. The rather cumbersome definition of the lead-
ership kernel is the only one which ensures good mathe-
matical properties in the general case.
Remark 4. We have by definition

Leadf (K, C) ⊂ Discf (K, C).

Equality holds under Isaacs condition, namely
∀p ∈ Rn, sup

v∈V
inf
u∈U

〈p, f(x, u, v)〉 = inf
u∈U

sup
v∈V

〈p, f(x, u, v)〉,

which holds true for dynamics (1).

Under Hypothesis 1, Discf (K, C) = Leadf (K, C) is a
closed set which is the largest closed subset of K which
enjoys robust viability with target C for the relevant game
setting. For instance, if C = ∅, Discf (K) is the set of initial
conditions in K such that the control, playing with a non-
anticipative strategy, can keep the state in K. As it is the
case for viability and invariance kernels, discriminating
and leadership kernel can be used to characterize the
epigraph of reaching time functions.

Numerical approaches exist also for the approximation of
discriminating and leadership kernels (Cardaliaguet et al.
[1999]). They are more computationally intensive than
invariance or viability kernel computation as will be shown
in Section 4.

3. SOLVING A ROBUST CONTROL PROBLEM

From the previous section, we know that robust control
problems related to reachability and invariance can be
solved using the notion of discriminating and leadership
kernels. Moreover, with dynamics (1), Isaacs condition
is always satisfied and both kernels are equal. In this
section, we first prove that the discriminating kernel can be
bounded using viability and invariance kernels. Then we
further use the particular form of dynamics (1) to simplify
also the computation of these bounds. Our aim is to obtain
a rough approximation of the discriminating kernel using
several lower-complexity computation steps. This compu-
tation can then be refined using the full discriminating
kernel algorithm of Cardaliaguet et al. [1999].

3.1 Approximation of the game solution

Proposition 2. Under Assumption 1, we have
InvF2(K, C) ⊂ Discf (K, C) ⊂ ViabF1(K, C).

Proof. In order to prove the left-hand inclusion, let x0 ∈
InvF2(K, C) and let the control play the constant strategy

∀v(·) ∈ V, α(v(·)) = 0.

Then by definition, the disturbance cannot force the state
out of K before its reaching the target. For the right-hand
side inclusion, let x0 ∈ Discf (K, C) and let α be a strategy
which ensures control victory. Let the disturbance play

∀t ≥ 0, v(t) = 0.

Then x(·;x0, α(v(·)), v(·)) ⊂ SF1(x0) and by definition of
α, it is viable in K with target C.
Proposition 3. Let us consider two set-valued maps G1

and G2 defined on Rn with non-empty compact convex
values and linear growth. Let us assume moreover that

∀x ∈ K, 0 ∈ G2(x).
Then we have

ViabG1+G2(K, C) = ViabG1+G2(K, ViabG1(K, C))

InvG1+G2(K, C) = InvG1+G2(InvG1(K, C), C)
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Proof. The inclusion
ViabG1+G2(K, C) ⊂ ViabG1+G2(K, ViabG1(K, C))

stems from the definition of the viability kernel. The set
of constraint is the same, and the target is larger, so more
initial conditions can satisfy the viability conditions. In
order to prove the converse inclusion, let us set x0 ∈
ViabG1+G2(K, ViabG1(K, C)) and let x(·) ∈ SG1+G2(x0)
be viable in K with target ViabG1(K, C). Let us set

T = inf{t : x(t) ∈ ViabG1(K, C)}.
Then

∀t ∈ [0, T ), x(t) ∈ K.

Therefore, if T = ∞, we have x0 ∈ ViabG1+G2(K, C). If
T < ∞, x(T ) ∈ ViabG1(K, C). Let us set

x̃(t) =
{

x(t) if t ≤ T
x1(t− T ) otherwise,

with x1(·) ∈ SG1(x(T )) which is viable in K with target
C. Then x̃(·) ∈ SG1+G2(x0) because

∀x, 0 ∈ G2(x).
By construction, x̃(·) is viable in K with target C. The
proof for the invariance kernel is similar.

This leads to the following result using the fact that
Viabf0(K, C) = Invf0(K, C).
Corollary 4. Under Assumption 1,

InvF2(K, C) = InvF2(Viabf0(K, C), C)
ViabF1(K, C) = ViabF1(K, Viabf0(K, C)) (3)

Let us mention that Viabf0(K, C) is easy to compute given
that the dynamics is single-valued. Moreover, in certain
cases, an analytic solution may be available.

Using Proposition 2 and Corollary 4, we obtain the main
result of this section
Theorem 5. Under Assumption 1,

Discf (K, C) = Discf

(
ViabF1(K, Ĉ) , InvF2(Ĉ, C)

)
,

with Ĉ = Viabf0(K, C).

Proof. Let x0 ⊂ Discf (K, C), and let α denote a strategy
which ensures control success. Let v(·) ∈ V and set

T = inf{s : x(s;x0, α(v(·)), v(·)) ∈ C}.
Then by definition of the discriminating kernel,

∀t ≤ T, x(t;x0, α(v(·)), v(·)) ∈ Discf (K, C).
From Proposition 2,

∀t ≤ T, x(t;x0, α(v(·)), v(·)) ∈ ViabF1(K, Ĉ).

Now, we have C ⊂ InvF2(Ĉ, C). Therefore,

∃θ ≤ T, x(θ;x0, α(v(·)), v(·)) ∈ InvF2(Ĉ, C).
We have proved that the trajectory x(·;x0, α(v(·)), v(·)) is
viable in ViabF1(K, Ĉ) with target InvF2(Ĉ, C). Therefore,

Discf (K, C) ⊂ Discf

(
ViabF1(K, Ĉ) , InvF2(Ĉ, C)

)
.

In order to prove the converse inclusion, let x0 ∈
Discf

(
ViabF1(K, Ĉ), InvF2(Ĉ, C)

)
and let α denote a

strategy which ensures control success. Let v(·) ∈ V and
set

T = inf{s : x(s;x0, α(v(·)), v(·)) ∈ InvF2(Ĉ, C)}.

Then
∀t ≤ T, x(t;x0, α(v(·)), v(·)) ∈ ViabF1(K, Ĉ) ⊂ K.

Now, let us define the strategy

α̂ : v(·) −→ u(t) =
{

α(v(·)) if t ≤ T
0 otherwise

Then α̂ is non-anticipative and
∀t ≤ T, x(T ;x0, α(v(·)), v(·)) = x(T ;x0, α̂(v(·)), v(·))

Now, x(T ;x0, α̂(v(·)), v(·)) ∈ InvF2(Ĉ, C) Therefore we
have proved that x(·;x0, α̂(v(·)), v(·)) is viable in K with
target C, which completes the proof.

3.2 Approximation methodology

The approximation methodology can be summarized as
follows:

(1) Compute Ĉ = Viabf0(K, C)
(2) Compute ViabF1(K, Ĉ)
(3) Compute InvF2(Ĉ, C)
(4) Compute

Discf (K, C) = Discf

(
ViabF1(K, Ĉ) , InvF2(Ĉ, C)

)
This methodology can be applied with any technique for
computing the different stages. In the next section, we
explain how it can save computational effort when using
grid algorithms. Analytical solutions may exist for simple
cases, especially for computing Viabf0(K, C). The main
idea is to make use of heavy computational tools only when
necessary.

4. NUMERICAL CONSIDERATIONS

In this section, we assume that the approximation proce-
dure described above is applied using algorithms described
in Cardaliaguet et al. [1999]. Our aim is to prove that our
approach reduces the overall computational effort while
retaining the convergence properties.

4.1 Viability-based algorithms

The algorithms described in Cardaliaguet et al. [1999]
require a time discretization of the dynamics, and the
projection of this discrete-time dynamics on a grid in order
to obtain a fully discrete dynamics. We provide here a
simplified version of this approximation procedure in the
case when f is bounded by a constant M . Let us denote
by l the Lipschitz constant of the function f , by ε > 0 a
time-step for time discretization, and by h > 0 a grid step
for the discretization of the state space. Let us set

Gε(x, v) = x + ε(f(x,U, v) + MlB),
in which B denotes the unit ball in Rn. Then Gε provides
a good approximation of f in the sense that for an initial
condition x0 and for all controls u(·) ∈ U and v(·) ∈ V, we
have

∀k ∈ N, x((k + 1)ε) ∈ Gε(x(kε), v(kε)),
with the notation x(·) = x(·;x0, u(·), v(·)).
Now we define Xh and Vh locally finite subsets of Rn and
V such that{

∀x ∈ Rn, ∃xh ∈ Xh such that ||xh − x|| ≤ h
∀v ∈ V, ∃vh ∈ Vh such that ||vh − v|| ≤ h
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and we set
Γε,h(xh, vh) = [Gε(xh, vh) + 2(1 + lε)hB] ∩Xh.

Then Discf (K, C) can be approximated using the follow-
ing algorithm

K0
ε,h = (K + hB) ∩Xh

Kk+1
ε,h = {x ∈ Kk

ε,h : ∀vh ∈ Vh,Γε,h(xh, vh) ∩Kk
ε,h 6= ∅}

∪Cε,h

with Cε,h = (C + (Mε + h)B) ∩ Xh. If Kh is finite, the
algorithm converges in finite time. We denote by K∞

ε,h this
limit. Then

lim
ε→0+, h

ε→0+
K∞ε,h = Discf (K, C) ⊂ K∞ε,h + hB, ∀(ε, h).

The same algorithm can be used to compute a viability
kernel with Vh = ∅, or an invariance kernel if f(x, U, v) =
{f̂(x, v)}. Computing a viability kernel is less intensive
than computing an invariance kernel, which is less inten-
sive than computing a discriminating kernel.

4.2 Speeding up computation

Let us denote by Γ0
ε,h : Xh → Xh, Γ1

ε,h : Xh → Xh,
Γ2

ε,h : Xh×Vh → Xh and Γε,h : Xh×Vh → Xh the discrete
functions which approximate f0(·), F1(·), f0(·)+f2(·)v and
F1(·) + f2(·)v. We assume that 0 ∈ Vh and that

∀xh ∈ Xh,

{
Γ2

ε,h(xh, 0) = Γ0
ε,h(xh)

Γε,h(xh, 0) = Γ1
ε,h(xh)

Moreover, we assume that

∀xh ∈ Xh,

{
Γ0

ε,h(xh) ⊂ Γ1
ε,h(xh)

Γ2
ε,h(xh, vh) ⊂ Γε,h(xh, vh), ∀vh ∈ Vh

The implementation of the algorithm described above
requires to parse the discrete space. In order to save time,
we can combine the two first steps of the approximation
procedure

H0
ε,h = (K + hB) ∩Xh

L0
ε,h = (K + hB) ∩Xh

Hk+1
ε,h = {x ∈ Hk

ε,h : Γ0
ε,h(xh) ∩Hk

ε,h 6= ∅} ∪ Cε,h

Lk+1
ε,h = {x ∈ Lk

ε,h : Γ1
ε,h(xh) ∩ Lk

ε,h 6= ∅} ∪ Hk+1
ε,h

Similarly, we can combine the two last computation steps
I0
ε,h = H∞

ε,h := lim
k→∞

Hk
ε,h

J0
ε,h = L∞ε,h := lim

k→∞
Lk

ε,h

Ik+1
ε,h = {x ∈ Ik

ε,h : ∀vh ∈ Vh,Γ2
ε,h(xh, vh) ∩ Ik

ε,h 6= ∅}
∪ Cε,h

Jk+1
ε,h = {x ∈ Jk

ε,h : ∀vh ∈ Vh,Γε,h(xh, vh) ∩ Jk
ε,h 6= ∅}

∪ Ik
ε,h

Proposition 6.
∀(ε, h), J∞ε,h = K∞

ε,h.

5. NUMERICAL RESULTS

We present here early numerical results. We are currently
working on statistics in order to measure the computa-
tional effort saved by our approach.

In order to illustrate our approach, we use the pursuit-
evasion game in R2 described in Cardaliaguet et al. [1999].

Complementary of the evasion set computed using the 4 step approx-

imation procedure. We have used the following parameters: VP = 1,

VE = 1.1, RP = 0.8, r = 0.5, D = 3.5.

Fig. 1. The 4 steps of the approximation procedure

The pursuer has a constant speed VP , the orientation
of which can change with a minimum turning radius
RP . The evader can choose its speed in a ball of radius
VE except when closer to the pursuer than r, then it
becomes proportional to the separation. Writing the game
in coordinates relative to the pursuer leads to(

ẋ
ẏ

)
= Vp

(
1
0

)
+

VP

RP

(
−y
x

)
v + min(||(x, y)||, r)u,

with U the unit ball in R2 and V = [−1 1]. We define
Ω = {(x, y) : −0.2 < x < 0 and |y| < D} the capture set,
in which D is the detection radius. From the evader point
of view (the control) the objective is to stay in K := Rn\Ω.
We consider that the evader wins if it can reach the set
C := {(x, y) : min(x, y) ≥ 5}.
The results of the four steps of the approximation proce-
dure are displayed in Figure 1. We have plotted the victory
domain of the pursuer in the four related games that we
use for our analysis.

• On the top left picture, the evader cannot move and
the pursuer cannot turn; the victory domain of the
pursuer is straightforward.

• On the top right picture, the evader can fully control
its trajectory while the pursuer has to keep constant
velocity with constant orientation. It can be seen, as
expected, that the evader can escape except when it
is very close to the pursuer and has therefore reduced
speed.

• On the bottom left picture, the evader cannot move
while the pursuer can change its direction of pursuit.
Therefore the pursuer wins except when the maneu-
ver necessary to reach the evader takes it too far away
(the evader is then in C).

The result of the full game is displayed on the bottom
right picture. What is not straight forward is the hole in
the victory domain of the pursuer which means that the
discriminating kernel is not connected. The hole represents
positions from which the evader cannot reach C but can
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stay in K forever by maintaining its distance to the
pursuer.

From the computational point of view, we have observed a
reduction of around 15% of the time needed to compute the
discriminating kernel when using our sequential approxi-
mation procedure instead of using directly the discriminat-
ing kernel algorithm. For comparison purposes, we have
used the same grid (100 × 100) and the simplest possible
implementation without any optimization. The gain would
become more significant when solving problems in higher
dimensions.

Moreover, our approach enables the use of insight on the
dynamics in order to speed up computation. The discon-
nectedness of the discriminating kernel in our example
demonstrates how difficult it can be to gain insight on
game dynamics. However, the first three steps of the ap-
proximation procedure concerns control systems. In our
example, Ĉ = Viabf0(K, C) can be determined analyti-
cally, and a little analysis shows that ViabF1(K, Ĉ) and
InvF2(Ĉ, C) can be computed in reduced domains. This
can reduce drastically the number of points on the grid
which have to be considered when carrying out the last
step of the procedure.

6. CONCLUDING REMARKS

We have presented a method for solving a robust control
problem of reachability or viability in a differential game
setting when the dynamics is affine in both inputs. This
method is based on existing tools from viability theory.
Our contribution is the decomposition of the computation
in four independent steps in order to take advantage of
the particular form of the dynamics. This allows the use
of tools developed for the single input problems (controlled
dynamics or perturbed dynamics) in order to reduce the
size of the problem (in number of points) which has to be
treated using complex algorithms.

Computation of the discriminating kernel is seldom easy.
The example that we have provided shows that the dis-
criminating kernel can be disconnected, and this challenges
the methods which rely on convexity assumptions. To the
best of our knowledge, the discriminating kernel algorithm
is the only available approach which requires only mild
regularity assumptions. Our approach, in an effort toward
the breaking of the curse of dimensionality, provides a pre-
processing of the problem likely to reduce the computa-
tional load involved for a large class of dynamics.
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