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Abstract: A set of conditions are found for stabilization of unstable processes using relay
feedback. The relay-stabilized process will exhibit limit cycles which can then be used to obtain
parameters of the process. In this paper, we explore the solution of first- and second- order
processes containing one unstable eigenvalue and time delay. The resulting necessary conditions
found turn out to be very tight. Simulations are given to show the identification process as well
as how the limit cycle conditions apply.
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1. INTRODUCTION

For stable processes, knowledge of the critical values such
as ultimate gain and the ultimate period have been used
successfully to generate a set of tuning parameters for
Proportional-Integral-Derivative (PID) controllers, such as
those prescribed by Ziegler and Nichols [9] and those
prescribed by Tyreus and Luyben [6]. The determination
of both ultimate gain and period were made easier by
a relay-feedback configuration now known as the auto-
tune method as by Åström and Hägglund [1] as a quicker
and safer alternative to the original approach proposed by
Ziegler and Nichols.

However, for unstable processes, the procedure may not
necessarily work. Luyben [2] and Tan et al. [5] have
shown that the ultimate gain and the ultimate period for
some unstable processes can still be identified using relay
feedback. Although the Nyquist point at (-1,0) can yield
the ultimate gain and period, unstable processes will need
more Nyquist points to build a robust control system.

In this paper, we explore the necessary conditions for a
limit cycle. We will first focus on how to identify the
parameters of a first order process with delay, by building
on the methods used by Tan, et al. [5]. We can also extend
the results to a second order system which contains one
unstable eigenvalue.

Not all systems are relay stabilizable. Parameter identifi-
cation of unstable processes will generally consist of some
form of trial-and-error. However, necessary conditions for
limit cycle will aid in determining when relay-stabilization
is at least possible. Once it is possible, we can determine
how the process can be modified by lead-lag elements to
help with the identification process.

After relay stabilization, one identification approach is the
limit cycle information, with or without transient signals.
By using Fourier analysis, different frequency response
points can be identified [8]. In this paper, we will show

that the model parameters can be initially obtained by
measuring critical points from the limit cycle information.

2. RELAY FEEDBACK STABLIZATION OF FIRST
ORDER WITH DELAY

Given an SISO unstable process whose process is given by

τ
dx

dt
= x + u(t − τd) x(0) = xo (1)

and relay control R described by

u =







um if e > ǫ and u−δt > 0
−um if e < −ǫ and u−δt < 0
u−δt otherwise

(2)

where u is the relay controller output, u−δt is the value of
relay signal u before possible switching, e = r − x is the
error, ǫ is the level of hysteris, r is the reference signal and
x is the process output. See Figure 1.

Fig. 1. Configuration for the relay feedback.

We now assume that the process has been stabilized
by a relay and that a limit cycle has commenced. The
analysis is then partitioned to several regions. A region will
involve the time when the output x has experienced two
intermediate switches. For the nth region, starting with
n = 0, we will use x∗(n) to denote the initial point and
x∗(n+1) to denote the end point. The corresponding nth
switch time will be denoted by t∗(n).
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The relay itself will have switched before t∗(n+1). we denote
this point as t(n+1). The difference is the time delay, i.e.

τd = t∗(n+1) − t(n+1) (3)

Using the initial conditions that x(0) = xo and um =
−sign(xo), we can solve the relay process and arrive at the
following results at the nth region: t∗n ≤ t < t∗(n+1),

x(t) = (−1)
n+1

um +
(

x∗(n) + (−1)
n

um

)

exp

(

t − t∗(n)

τ

)

t∗(n+1) = t∗(n) + τd + τ ln

(

um + ǫ

um + (−1)nx∗(n)

)

x∗(n+1) = (−1)
n+1

um +
(

x∗(n) + (−1)
n

um

)

exp

(

∆t∗(n)

τ

)

(4)

where

∆t∗(n) = t∗(n+1) − t∗(n) (5)

is the time width of the nth region. As t → ∞, this value
will settle to equal half the period of the limit cycle. For
the first region, we use x∗0 = xo and t∗0 = 0.

We could reduce equation (4) to the limiting values. Let
x∗ be the amplitude of x at the limit cycle, and ∆t∗ be half
the period of the limit cycle. Then equation (4) becomes

∆t∗ = τd + τ ln

(

um + ǫ

um − x∗

)

(6)

um + x∗

um − x∗
= exp

(

∆t∗

τ

)

(7)

From the process data, we could measure the period, P ,
and amplitude x∗. These, plus the knowledge of relay
values um and ǫ, we arrive the parameter identification
equations:

∆t∗ =
P

2

τ = ∆t∗
[

ln

(

um + x∗

um − x∗

)]

−1

τd = ∆t∗ ln

(

um + x∗

um + ǫ

)[

ln

(

um + x∗

um − x∗

)]

−1

(8)

Note that another simpler method to determine delay τd

is to measure the time at which the relay has switched, to
the switch point of x. Nonetheless, we will use equation
(8) to obtain our necessary conditions.

By observing the equation for τ , the denominator limits
um to be

um > x∗ (9)

Combining equation for τ and τd, we get

τd

τ
= ln

(

um + x∗

um + ǫ

)

(10)

Thus, with (9),

τd

τ
< ln

(

2um

um + ǫ

)

(11)

The condition given in (11) is a much tighter condition
than the one given in [5], where they specified τd/τ <
ln(2).

Example 1:

Simulating the system given in (1) and (2)with
um = 1, xo = −0.9, ǫ = 0.2, τ = 0.25 and
τd = 0.1, we have the result given in Figure 2.
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Fig. 2. Simulation results of Example 1.

Using the equations in (8) yielded values
that are less than 0.1% relative error.

To explore the necessary condition, we can
adjust the value of τd by increasing it until x∗

approaches um. From (11), we have

τd < τ ln

(

2um

um + ǫ

)

= 0.1277

Figure 3 and 4 shows that with τd = 0.1276
the relay feedback system is stable while using
τd = 0.1278 made it unstable.
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Fig. 3. Simulation results of Example 1 using τd = 0.1276.
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Fig. 4. Simulation results of Example 1 using τd = 0.1278.

3. SECOND ORDER PROCESS WITH DELAY

We will limit our analysis to the following systems in series,

τ1
dx

dt
= x + u(t − τd) x(0) = xo

τ2
dy

dt
= x − y y(0) = yo

(12)

subject to the same relay controller given in (2) where the
error is based on y, i.e. e = r − y. We will assume that we
can measure both x and y directly. One situation where
this is applicable is when y is a first-order filtering of x to
be fed back to the relay controller - thus τ2 can be thought
of as a robustness filter parameter.

Following the procedures and notations as before, we
obtain the following results:

x(t) = (−1)
n+1

um + (x∗n + (−1)
n

um) exp

(

t − t∗n

τ1

)

y(t) = c∗n exp

(

− (t − t∗n)

τ2

)

+ (−1)
n+1

um

+ a (x + (−1)
n

um)

∆t∗(n) = τd + t̄(n)

(13)

where

a =
τ1

τ1 + τ2

c∗n = (y∗n + (−1)num) − a (x∗n + (−1)num)

t̄(n) = τ1 ln

(

−ǫ + (−1)
n

um − c∗ne−t̄(n)/τ2

a [x∗n + (−1)num]

)

(14)

Note that t̄(n) appear on both sides equation (14). This
requires a nonlinear solver, or for the form given in (14),
the method of successive substitution is sufficient.

For the limiting equations for this case, we have with x∗

as the amplitude of x at the limit cycle and P = 2∆t∗ as
the period of oscillation. The parameter τ1 gives the same
equation as before,

τ1 = ∆t∗
[

ln

(

um + x∗

um − x∗

)]

−1

(15)

which means one of the necessary condition for the case of
the first order case reappear, i.e.

um > x∗ (16)

Let y∗ be the value of y when x = x∗. This value can
be measured from the responses. Note that this is not the
amplitude of y. ( In fact, it is often less than the amplitude
of y at the limit cycle ). The value of y∗ satisfies

y∗ (1 + q) + um (1 − q)

x∗ (1 + q) + um (1 − q)
= a =

τ1

τ1 + τ2
(17)

where

q = e−∆t∗/τ2

The parameter τ2 can now be found from (17) by using a
nonlinear solver such as successive substitution.

The other limiting values are:

c∗ = a (um − x∗) − (um − y∗) (18)

t̄ = τ1 ln

(

um + c∗e−t̄/τ2 + ǫ

a [um − x∗]

)

(19)

From (19) for t̄, the argument inside the logarithm function
has to be positive. This fact, combined with the formula
for c∗, yields the condition

um >
e−t̄/τ2 (ax∗ − y∗) − ǫ

1 − (1 − a) e−t̄/τ2
(20)

where the denominator is always positive since (0 < a <
1). Since this constraint includes the case where τ2 is very
small, it is not a tight condition.

Following the development before and letting x∗ approach
um in the limit, we obtain the following condition:

τd

τ1
< ln

(

a
2um

um + ǫ

)

(21)

Example 2:

Simulating the system given in (12)with um =
2, xo = −0.9, yo = −0.1, τ1 = 1, ǫ = 0,
τ2 = 0.5 and τd = 0.1, we have the result given
in Figure 5 and 6.

Using (15), we can find τ1 = 1.001. Reading
the value from the response, we have y∗ =
0.1801 and we can solve numerically for τ2 and
obtain 0.4982, which is close to actual value of
τ2 = 0.5.

To explore the necessary condition, we can
again adjust the value of τd by increasing it
until x∗ approaches um. From (21), we have

τd < τ ln

(

a
2um

um + ǫ

)

= 0.2877

Figure 7 and 8 shows that with τd = 0.2872,
the relay feedback has stabilized the process,
while for τd = 0.2878, the relay feedback had
not stabilized the process.
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Fig. 5. Simulation results for x of Example 2.
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Fig. 6. Simulation results for x of Example 2.
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Fig. 7. Simulation results of Example 2 using τd = 0.2872.

Actually, the simulation had become unsta-
ble at τd = 0.2873, which could be due to
round-off errors. Nonetheless, the estimate up-
per bound for τd remained close to the simula-
tion result.
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Fig. 8. Simulation results of Example 1 using τd = 0.1278.

4. CONCLUSION

Stability analysis of relay feedback systems was obtained
for two simple unstable systems: a first order process with
delay and a second order with delay. In both cases, we were
able to determine the solution inside regions sandwiched
by switching points. From the analytical results, we were
able to find some tight necessary conditions for limit
cycles.

Several issues such as noise need to be addressed. Nonethe-
less, the conditions found can be used to prune out systems
that can not be stabilized using relay. If the process turn
out to be relay-stabilizable, other methods can hopefully
be used to investigate the parameters and behavior of
the process. Some of the results given in the paper show
a set of equations which can be used to estimate the
model parameters. These values can then be used as initial
estimates. Due to the presence of noise, a method such as
the Fourier analysis should provide more accurate values
of points in the Nyquist plot.

Another point is that, in this paper, we adjusted the values
of τd for the purpose of checking the tightness of the limit-
cycle conditions. The results show that the maximum ratio
of τd to τ depends on the ratio of um to ǫ.

Note that if the process contained process gains Kp 6= 1,
we simply need to replace um by Kpum in the conditions.
For identification of Kp, we can apply the method in [1]
once the system has been stabilized to complement the
methods provided in this paper.
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