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Abstract: The evolution of the gene expression pattern of Drosophila, from the embryonic to adult 

development phases, was studied on the basis of a microarray time series involving the expression 

levels of 4028 genes over 67 time-points. The genes presenting a similar temporal evolution of their 

expression levels were clustered together, so as to define a small number of representative classes. To 

model the network interactions responsible for the dynamic behavior of gene expression, a system of 

linear differential equations with constant coefficients was used. The parametric estimation of this 

model was performed in two stages: a first stage of linear parameter identification allowing an 

analytical approach to the solution, and a second stage of nonlinear parametric estimation which 

refines this solution. This model is shown to reproduce the experimental gene expression profiles 

with a fairly good precision. 

 

1. INTRODUCTION  

The DNA microarray technology allows measuring 

simultaneously the expression levels of several thousands of 

genes in a cell sample. Time series, obtained by considering 

cells at different moments of their development or the 

development of their host organism, give the possibility to 

analyze the temporal evolution of gene expression. 

Using this technology, Arbeitman et al. (2002) have 

measured the expression rates of 4028 genes of one of the 

model organisms of developmental biology, Drosophila 

melanogaster, across all its development stages. This 

temporal series is composed of 67 time points in total. It 

starts at the fertilization of the organism and follows its life 

cycle during 40 days, going through the embryonic, larval 

and pupal stages and the first 30 days of adulthood, where 

males and females were sampled separately. The cell samples 

were taken indistinguishably from any part of the organism 

and thus represent an average of the gene expression levels in 

the different tissues. The expression rates measured in these 

samples were compared with a common reference sample 

composed of mixed mRNA’s from all development stages 

and tissues.  

This time series was chosen for several reasons. We are 

interested in modeling the development stages of a 

multicellular organism in the absence of any external 

perturbation, and Drosophila is one of the simplest and most 

studied organisms of this type. Moreover, the Drosophila 

time series of Arbeitman et al. (2002) is currently one of the 

longest series available, which makes the modeling quite 

interesting and informative. 

2. CLASSIFICATION OF GENE EXPRESSION PROFILES 

2.1  Classification procedure 

The Smoothing Spline Clustering (SSC) method has been 

specifically designed to classify DNA microarray time series, 

and has been validated on the Drosophila expression profiles 

(Ma et al., 2006). It is freely available in the SSClust 

software (www.genemerge.bioteam.com/SSClust.html). 

The SSC method groups in the same class expression profiles 

that present similar shapes, i.e. similar expression rates and 

similar time evolutions. Therefore, consider the expression 

rate Ri(t) of a gene i at a given time t, normalized by its 

expression rate in the reference sample Ri
R
: yi(t)=log2(Ri(t)/ 

Ri
R
). The logarithm in basis 2 is considered for convenience, 

as genes can be taken as significantly more (or less) 

expressed than random when the expression rates are twice 

larger (or smaller) than in the reference sample, that is, when 

yi(t)>1 (or yi(t)<(-1)).   

The expression profile y of a given gene i, belonging to 

cluster c, is decomposed as follows: 

,)()()( tbtxty iici ε++=                 (1) 

where t are the time-point indices, xc(t) represents the mean 

profile of the cluster c, bi is the time-independent part of the 

deviation from the mean profile, and εi(t) is the time 
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dependent part of this deviation. The bi–parameters account 

for the constant difference in expression rates of genes whose 

expression profiles have similar shapes, and εi(t) includes the 

measurement error. Note that the εi(t)-parameters may also 

include other effects, for example related to the fact that the 

cell samples are often extracted from different tissues, and 

that the measurements therefore mix the dependencies of the 

expression rates on the organism’s development stage and on 

the cell’s host tissue. 

The SSC algorithm tends to find the optimal number of 

clusters and the optimal distribution of genes in these 

clusters, so as to ensure the smoothness of the mean curve 

xc(t) and to minimize the deviations of the expression profiles  

of the genes in the cluster with respect to this curve.  

2.2  Classification results 

The application of the SSC method to the Drosophila time 

series of Arbeitman et al. (2002) yields an optimal number of  

17 clusters (Ma et al., 2006), corresponding to a compromise 

between a sufficient population in the classes and the 

similarity of the profiles inside the classes. These profiles are 

depicted in Fig. 1, for the male flies. Ma et al. (2006) have 

moreover investigated the functional significance of these 17 

clusters and have found in 12 of them a significant 

overrepresentation of genes involved in a well defined 

biological process. They also verified that the peaks in the 

expression profiles of these clusters correspond to 

development stages where this process occurs. This analysis 

tends to support the biological significance of the clustering. 

3. MODELING GENE EXPRESSION EVOLUTION 

3.1  Model structure 

The formalism of differential equations is particularly well 

suited for modeling systems with explicit time evolution and 

for reproducing complex dynamic behaviors like oscillations 

or multistationarity, which can occur in biological systems. 

We thus chose this formalism to model the time evolution of 

the Drosophila gene regulatory network across its 

development stages. As a starting point, we assumed that the 

system is autonomous and used the simplest model where the 

differential equations are linear and have constant 

coefficients (Chen et al., 1999). We thus supposed that the 

time evolution of the gene expression level xc of cluster c 

only depends on the evolution of the gene expression levels 

xc’ of all clusters c’. Defining the vector x=(x1 , x2 ,…, xn)
T
 

where n is the number of clusters, this corresponds to 

considering the set of coupled linear differential equations: 

,xM
x

=
td

d                 (2) 

where t is the time and M a nxn matrix with constant 

coefficients. 

The problem thus amounts to estimating the elements of the 

M matrix, that is, n
2
 parameters, on the basis of the gene 

expression levels measured by DNA microarray techniques 

and clustered in a small number of groups. More precisely, n 

is here equal to 17, and the xc(t)‘s are the mean expression 

levels defined in eq.(1), taken at the 67 discrete time-points t. 

The parameter estimation is performed in two steps, a first 

step of linear parameter identification, which yields initial 

parameter values for the second, nonlinear, estimation.   

3.2 Linear parameter estimation 

To estimate the n² elements of M through eq. (2), we first 

need an estimation of the time derivatives dxc(t)/dt of the 

expression profiles. This is performed by a cubic smoothing 

spline using the csaps routine of the Matlab program. 

Defining the nxf matrix X=(x(t1), x(t2),…, x(tf)), where f=67 

is the number of time-points, the matrix elements of M are 

estimated as: 

,/ˆ X
X

M LS

LS

td

d
=                        (3) 

where /LS means the right division in the least square sense 

(the mrdivide routine of Matlab). 

 

 

Figure 1. Experimental and modeled gene expression profiles 

of Drosophila, for each of the 17 gene clusters. The time 

spanned in the embryonic phase is 24 hours (time-points 1-

31), 81 hours in the larval phase (time-points 32-41), 111 

hours in the pupal phase (time-points 42-59), and 30 days in 

the adult phase (time-points 60-67). To improve the 

readability of the figure, the time axis was stretched so as to 

make each time-point equidistant of its neighbors. Solid lines 

correspond to the smoothed experimental profiles xc(t), 

dashed-dotted lines to profiles modeled using linear 

parameter estimation )(ˆ tx
LS

c
, and dotted lines to profiles 

modeled using nonlinear parameter estimation )(ˆ tx
Opt

c
. 

(a) cluster 1.  
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Figure 1 (continued). Experimental and modeled gene expression profiles of Drosophila. (b)-(i): clusters 2-9. 
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Figure 1 (continued). Experimental and modeled gene expression profiles of Drosophila. (j)-(q): clusters 10-17. 
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To compare the validity of this estimation, we integrate the 

differential equations (2) with the estimated matrix 
LSM̂ instead of M and considering the first time-point x(t1) 

as initial condition, using a classical Runge-Kutta algorithm 

(Forsythe et al., 1977) (ode45 routine of Matlab). This yields 

the estimated gene expression profiles )(ˆ t
LS

x .  

The experimental and estimated profiles, x(t) and )(ˆ t
LS

x , are 

depicted in Fig. 1 for the 17 clusters. The modeled profiles 

reproduce perfectly well the measured ones for the first time-

points, close to the initial conditions; the deviation increases 

with time and leads to divergent oscillations at the last time-

points. This is due to the approximate estimation of the time 

derivative of X, which is not accurate enough in the region 

where moreover the information is sparse. Indeed, the time 

difference between successive time points in the adult phase 

is of 2 to 5 days, against 0.5 to 1 hour in the embryonic 

phase.  

To have an objective quantification of the quality of the 

modeling of the experimental profiles, we compute the root 

mean square deviation )ˆ( cxS  for each cluster c as: 

( )
∑

=

−
=

f

k

kckc

c
f

txtx
xS

1

2
)(ˆ)(

)ˆ(      .           (4) 

The values of the )ˆ( LS

cxS deviations are given in Table 1 for 

all the clusters. They are equal, on the average, to 10.47. 

3.3  Nonlinear parameter estimation 

The linear parameter identification uses an estimate of the 

derivatives that induces an error on the parameter 

identification. To reduce this error, we perform a nonlinear 

parameter estimation, using as initial parameter values those 

obtained by the linear identification procedure. More 

precisely, we search for the OptM̂ matrix that minimizes a 

cost function J: 

)(ˆ *

*

MM
M

JArgMinOpt =       .       (5) 

The chosen cost function J corresponds to the quadratic sum 

of the differences between the experimental and modeled 

profiles, weighted by the inverse of the nxn diagonal matrix 

V(t), containing on its diagonal the variance of the 

experimental data in each cluster at a given time-point: 

( ) ( )[ ]∑
=

− −−=
f

k

kkk

T

kk tttttJ
1

*1** )()()()()()( xxVxxM  

,  (6) 

where x
*
(t) is the expression level vector associated to the 

*M -matrix whose cost function is evaluated. The division by 

the variance V in eq. (6) ensures that the lower the disparity 

of the data at a certain time-point, the larger the weight in the 

cost function and thus, the more important the goodness of 

the reproduction at that point.  

To determine OptM̂ , a local search is performed, in which all 

n
2
 parameters are first set equal to the of the n

2
 elements of 

LSM̂ and are then released so as to minimize J. The 

algorithm used is a simplex search method of Lagarias et al. 

(1998) (fminsearch routine in Matlab). A total of 10,000 

iterations are performed. The drawback of this method is the 

risk to be trapped into a local minimum of the cost function. 

However, thanks to the initialization to the linear parameter 

estimate, we may reasonably expect that the final solution 

will close to the absolute minimum. 

To compare the expression profiles modeled by the linear and 

nonlinear parameter estimations, we integrate the differential 

equations (2) with the estimated matrix OptM̂ , as we did for 
LSM̂ . We thus obtain the estimated gene expression profiles 

)(ˆ t
Opt

x . As shown in Fig. 1, these profiles follow quite well 

the experimental profiles, much better than the )(ˆ t
LS

x  

profiles obtained by linear parameter identification. A 

quantitative evaluation of this improvement is obtained by 

computing the root mean square deviation )ˆ( cxS , defined in 

eq. (4), between the modeled and experimental profiles, 

which drops from 10.47 for )(ˆ t
LS

x to only 0.07 for )(ˆ t
Opt

x .  

Table 1.  Root mean square deviation )ˆ( cxS  

between experimental and modeled profiles 

Cluster c Sc (
LS

x̂ ) Sc (
Opt

x̂ ) 

1 3.88 0.03 

2 10.47 0.05 

3 5.34 0.05 

4 28.17 0.13 

5 7.78 0.05 

6 17.02 0.08 

7 6.75 0.05 

8 9.19 0.11 

9 2.77 0.06 

10 0.47 0.03 

11 29.92 0.11 

12 17.25 0.05 

13 8.04 0.07 

14 0.14 0.03 

15 8.18 0.04 

16 0.36 0.02 

17 2.12 0.03 

<Sc> 10.47 0.07 

                                                                                               

Finally, we computed the relative variation ∆ of the 

parameters before and after the nonlinear estimation stage: 
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OptLS

M

MM

αβ

αβαβ

αβ ˆ

ˆˆ −
=∆    ,          (7)  

where α and β are matrix indices. These variations range 

from 0 to 2%, with a mean value of 0.06%. This shows the 

high sensitivity of our model, where the small, but specific, 

parameter variations result in a clear improvement of the 

reproduction of the experimental expression profiles. 

4. CONCLUSIONS AND PERSPECTIVES 

The results of the dynamic modeling of the Drosophila gene 

expression profiles are quite encouraging. Indeed, with a 

simple model structure, where the time evolution of the 

expression level of one gene cluster is given as a linear 

combination with constant coefficients of the expression 

levels of all gene clusters, the scores are impressive: the 

deviation between the experimental and modeled expression 

curves is as low as 0.07 on the average.  

The power of the 2-step parameter estimation is worth noting, 

where the first step is analytical and fast but suffers from 

errors due to time derivative estimations. The parameter 

values so estimated are used as initial values for the second 

estimation, nonlinear and more time-consuming, in which all 

parameters are freed and optimized. The significant 

improvement when going from the first to the second step is 

apparent in Fig. 1 and is monitored by a drop in root mean 

square deviation between experimental and modeled 

expression profiles from 10.47 to 0.07. Note, moreover, that 

the second step without the first, that is, without a reliable 

initial value estimation, is quite less effective and is likely to 

move the system into a local minimum. 

The difference between the parameter values after the first 

and second estimation steps is very low, showing the large 

sensitivity of the model, where small parameter variations 

can provoke large modifications in the profiles. 

The estimated matrix OptM̂  (eq. (5)) encoding the mutual 

influence of the gene clusters, has no vanishing parameters. 

This seems to indicate that the gene expression network is 

highly, and even totally, connected. However, this conclusion 

is premature, since other parameter sets, with some 

parameters kept to zero, could possibly model the expression 

profiles almost as well. This will be analyzed through 

parameter reduction techniques, with the aim of determining 

the minimal number of connections between the gene clusters 

to keep a sufficiently good profile modeling.  

The next stage will be to analyze the biological meaning of 

the modeled network, and to study its transferability to other 

simple, or less simple, multicellular organisms.  
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