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Abstract: The algorithms for the optimal filter and control have been obtained for polynomial
systems of first grade. For the filter, two cases are presented: systems with disturbances in L2

and systems with Brownian motion and parameter ǫ multiplying the diffusion term, in state and
observations equations. The performance of this algorithms is verified and compared with the
optimal Kalman-Bucy filter through an example. Besides the solution to the optimal control
Risk-Sensitive problem for stochastic system, taking quadratic value function as solution of
PDE HJB is obtained. These Risk-Sensitive control algorithms are compared with the L-Q
control algorithms through a numerical example, using quadratic-exponential cost function to
be minimized. The optimal risk-sensitive filter and control algorithms show better performance
for large values of the parameter ǫ.

1. INTRODUCTION

Since the linear optimal filter was obtained by Kalman
and Bucy (60’s), numerous works are based on it. I could
mention some as M. V. Basin et al. [2003], M. V. Basin
et al. [2003], F. L. Lewis [1992], V. S. Pugachev and
I.N. Sinitsyn [2001], S. S.-T. Yau [1994], of the variety
of all those. More than thirty years ago, Mortensen R. E.
Mortensen [1968] introduced a deterministic filter model
which provides an alternative to stochastic filtering the-
ory. In this model, errors in the state dynamics and the
observations are modeled as deterministic ”disturbance
functions,” and a mean-square disturbance error criterion
is to be minimized. In this case, special conditions for
the existence, continuity and boundedness of f(x(t)) in
the state equation, which is considered nonlinear, and for
the linear function h(x(t)) in the observation equation,
are given. A concept of the deterministic estimator, which
is introduced more recently by McEneaney W. M. McE-
neaney [1998], is reviewed and applied to system with
disturbances in L2, where f(x) has a nonlinear form in
the dynamics of the system and linear observations. Since
the optimal linear control problem has been solved in
60’s H. Kwakernaak, R. Sivan [1972], W. H. Fleming,
R. W. Rishel [1975], the basis of the optimal control
theory is Dynamic Programming equation or Hamilton-
Jacobi-Bellman equation W. H. Fleming, R. W. Rishel
[1975], and the maximum principle of Pontryagin L. S.
Pontryagin, et al. [1962]. A long tradition of the optimal
control design for nonlinear systems (see, for example, E.
G. Albrekht [1962], A. Haime and R. Hamalainen [1975],
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E. B. Lee and L. Marcus [1967], D. L. Lukes [1969], A.
P. Willemstein [1977]) has been developed. The problem
statement in robust H∞ approach uses a dynamical model
of the form

Ẋ(t) = f(X(t)) + w(t) (1)

where X is the state, f(x(t)) represents the nominal
dynamics, w(t) ∈ L2 is a deterministic process. This model
is in contrast to the the diffusion model

dXt = f(X(t))dt +
√

ǫdW (t) (2)

where W is a Brownian motion. In W.H. Fleming et al.
[2001] and W. M. McEneaney [2004] are presented these
models where f(X(t)) takes nonlinear form. This paper
presents an application of the algorithms obtained in W.H.
Fleming et al. [2001] and W. M. McEneaney [2004] for
singular form of f(x(t)). The goal of this work is to obtain
the optimal filter and control risk-sensitive equations for
these models, when f(x(t)) and h(x(t)) take a polynomial
of first grade form in the state and observation equation
respectively. The performance of the risk-sensitive optimal
filter and control (stochastic case) algorithms is checked
doing a comparison to the algorithms of the optimal
Kalman-Bucy filter and traditional control through an
example, for large values of ǫ. Following the theory of
control and estimation, other method used in stochastic
systems, is the finite time horizon case. In this method
is considerate the risk-averse stochastic problem and its
solution is obtained taking in account a value function
which is a viscosity solution to the dynamic programming
equation (H-J-B)W. M. McEneaney [2005], W.H. Fleming
et al. [1992]. Since H∞ control was originally formulated in
the frequency domain, most of the results have been for the
infinite time horizon problem. But the finite time horizon
case is of interest in itself, because some applications

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13299 10.3182/20080706-5-KR-1001.3726



as aerospace trajectory guidance, control and navigation
are naturally in finite time. A future work is to obtain
the risk-sensitive filtering and control algorithms when
f(x(t)) takes other polynomial forms, as quadratic or
cubic, and do a comparison with the polynomial filtering
and control algorithms. This work is organized as follows:
The problem statement for system with disturbances in
L2 and for systems with Brownian motion is presented
in Section 2.1 and 2.2. In Section 3 is given the general
form of the optimal risk-sensitive stochastic nonlinear
control problem. The solution for each case is given in
Section 4 and 5. In Section 6 an numerical example is
solved applying the risk-sensitive optimal filter algorithms
and the algorithms of Kalman-Bucy optimal filter; risk-
sensitive and traditional control. And the section 7 are
the conclusions.

2. FILTERING PROBLEM STATEMENT

2.1 Deterministic case

For the first case, the state to be estimated x(t) has
differential equation (1) where w(t) is the state disturbance
and x(0) = xo. The observation equation is given by:

y(t) = h(x(t)) + v(t) (3)

where v(t) ∈ L2 is the observation disturbance. fx, hx

bounded is assumed throughout. Here hx is the matrix of
partial derivatives of h and in the same form for Zx. Taking
f(x(t)) = A(t) + A1(t)x(t), h(x(t)) = E(t) + E1(t)x(t),
with A(t) ∈ Rn, A1(t),∈ Mn×n, E(t) ∈ Rp, E1(t) ∈ Mn×p

where Mi×j denotes the field of matrices of dimension i×j.
The following system equations is obtained:

ẋ(t) = A(t) + A1(t)x(t) + w(t), (4)

y(t) = E(t) + E1(t)x(t) + v(t).

Taking in account the state equation (1) and the observa-
tion equation (3), replacing the observation trajectory y·
by an accumulated observation trajectory: Yt =

∫ t

0
ysds· In

W.H. Fleming et al. [2001], you can see that taking in ac-
count the accumulate observations, the function J(T, x;w)
has the form:

J (T, x; w·) = −{φ(x0) +

T
∫

0

[
1

2
|w(t)|2 + (5)

1

2
|h(x(t))|2 + (Y (t) · h(x(t)))x · (f(x(t)) + w(t))]dt},

Z(T, x) = supwJ (T, x;w) then, the value function associ-
ated is given by:

W (T, x) = Y (T ) · h(x) + Z(T, x), (6)

it is shown W.H. Fleming et al. [2001] that Z(T, x)
is continuous, and that Z is a viscosity solution of the
dynamic programming PDE:

−ZT − f · Zx − 1

2
|h|2 − (Y (T ) · h)x · f +

1

2
|(Zx + (7)

(Y (T ) · h)x)|2 = 0, Z(0, x) = −φ(x).

As was proposed in W. M. McEneaney [1998], and
taking in account W.H. Fleming et al. [2001], in
this case, W (T, x) takes the form W (T, x) = 1

2 (X −
C(T )Z)T Q(T )Z(X − C(T )Z) + ρ(T )Z + 1

2

∫ T

0
/y(t)/2dt,

where C(T ) denotes the estimate vector, QT is a quadratic,
positive definite symmetric matrix and ρ is a parameter
with values in final time T. The filtering problem is to
find the best estimate of the state x(t), which minimizes
the quadratic criterion (5), where Z(T, x)(6), is a viscosity
solution of (7).

2.2 Filtering Stochastic case

Consider the stochastic model formed by (2), in which
X(t) denotes the state process. Y (t) denotes a continuous
accumulated observation process which is represented by.

dY (t) = (E(t) + E1(t)x(t))dt +
√

ǫdB̃(t), Y (0) = 0(8)

where ǫ is a parameter and B and B̃ are independent
Brownian motions in themselves and both are indepen-
dent of the initial state X(0). X0 has probability density
kǫexp(−ǫ−1φ(x(0))) for some constant kǫ. The rest of
the paper are verify assumptions (A1)-(A5) (from W.H.
Fleming et al. [2001]). Besides, it is assumed that

qǫ(0, x) = exp(−ǫ−1φ(x)) (9)

qǫ(T, x) = pǫ(T, x)exp[ǫ−1Y (T ) · h(x)]

where pǫ(T, x) is called pathwise unnormalized filter den-
sity. Taking log transform: Zǫ(T, x) = ǫlogpǫ(T, x), which
satisfies the nonlinear parabolic PDE

∂Zǫ

∂T
=

ǫ

2
tr(Zǫ

xx) + Aǫ · Zǫ +
1

2
Zǫ

x · Zǫ
x + Bǫ (10)

with initial data Zǫ
x(0, x) = −φ(x). The risk-sensitive

optimal filter problem consists in found the estimate Cǫ
T ,

of the state x(t) through verification that

Zǫ(T, x) =
1

2
(x − C(T )ǫ)T Q(T )ǫ(x − C(T )ǫ) + (11)

ρ(T )ǫ − Y (T ) · h(x(t))

is a viscosity solution of (10), and Q(T )ǫ is Riccati matrix
equation (Q(T )ǫis symmetric matrix). In W.H. Fleming et
al. [2001] it is proved, that the equation (10)(stochastic
case) converges to the equation (7)(deterministic case)
as ǫ goes to zero. Substituting f(x(t)), h(x(t)) in (2) as
in deterministic case (4), the next stochastic equations
system is obtained:

dX(t) = A(t) + A1(t)X(t) +
√

ǫdB(t) (12)

dY (t) = E(t) + E1(t)X(t) +
√

ǫdB̃(t)

where A(t), A1(t), E(t), E1(t) are as in (4).

3. FILTERING SOLUTION

Taking in account the system of state and observation
equation (4), the partial derivatives of (6) are obtained.
Upon substituting into (7) and collecting x terms, the
next filter equation is obtained, where C(T )Z denotes the
estimator of x(t), and it is the solution of the following
differential equation:
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dC(T )Z = (A(t) + A1(t)C(T )Z)dt − Q(T )Z
−1

E1(t)(dY (t)

−(E1(t)T C(T )Z + E(t))dt), C(0)Z = c(o)Z . (13)

where the symmetric matrix Q(T )Z is obtained collecting
x2 terms and is the solution of the next Riccati matrix
equation:

Q̇(T )Z = −A1(t)Q(T )Z − Q(T )ZAT
1

+

(Q(T )Z)2 − E1(t)T E1(t), Q(0)Z = q(o)Z . (14)

Here Q(T )ǫ is a symmetric matrix and the initial condition
Q(0)ǫ = q(o)ǫ is found from the equilibrium condition

Q̇(T )ǫ = 0. Where if Q is one solution. Then, should be

q(0)ǫ ≤ Q, for which Q̈(T )ǫ(Q) < 0, where Q is one of two
equilibrium points.Taking Zǫ(T, x) and following the steps
of the deterministic case, the equation for the optimal risk-
sensitive stochastic estimator is the same obtained in the
deterministic case.

4. CONTROL PROBLEM STATEMENT

The following stochastic risk-sensitive control problem has
dynamics:

dX(t)ǫ = f(t, X(t)ǫ, u(t))dt +

√

ǫ

2γ2
dB(t), (15)

X(s)ǫ = x. The quadratic cost criterion is given by

Iǫ(s, x, u) = ǫlogEs,xexp{1

ǫ
[

T
∫

s

L(t,X(t)ǫ, u(t))dt +

ψ(X(T )ǫ)]}.
where f(t,X(t)ǫ, u(t)) is a nonlinear function which repre-
sents the nominal dynamics with control u(t) taking values
in U ∈ R

l and {B, F} is an m-dimensional Brownian mo-
tion on the probability space (Ω,F,P) where F0 contains
all the P-negligible elements of F. ǫ will be a measure of
the risk-sensitivity and scales the diffusion term in (15)
above so that the cost below will remain bounded (for
each x as a function of ǫ), 0 ≤ s ≤ T < ∞, T is a fixed
terminal time, L(t,X(t)ǫ, u(t)) is the quadratic running
cost, and ψ(X(T )) is the quadratic terminal cost. The
following costs functions are defined:

Aǫ(s, x, u, ω) =

T
∫

s

L(t,X(t), u)dt + ψ(X(T )),

Jǫ(s, x, u) = Es,xexp[
1

ǫ
Aǫ(s, x, u, ω)], (16)

so that

Iǫ(s, x, u) = ǫlogJǫ(s, x, u) = ǫlogEs,xexp[
1

ǫ
Aǫ(s, x, u, ω)].

Taking in account that the controller u(t) is minimizing,
and w ∈ R

n is a maximizing control, the next value
functions are considered:

V ǫ(s, x) = infu∈As,ν
Iǫ(s, x, u) (17)

where As,v is the set of progressively measurable controls
with values in U.

ϕǫ(s, x) = infu∈As,ν
Jǫ(s, x, u) (18)

It is showed in W. M. McEneaney [2004] that under certain
conditions, when f(t,X(t), u(t)) is a nonlinear function,
V ǫ is a viscosity solution of the dynamical programming
equation

0 = V ǫ
s +

ǫ

2γ2

∑

V ǫ
xixj

+ minu∈U{f(t,X(t)ǫ,

u(t))∇xV ǫ + L(t,X(t), u(t)) +

1

2γ2
∇V ǫT∇V ǫ}, V ǫ(x(t), T ) = ψ(X(T )). (19)

The following lemma shows that when f(t,X(t)ǫ, u(t)) =
A(t) + A1(t)X(t)ǫ + u(t), V ǫ is a viscosity solution of
the dynamical programming equation(19). Taking V ǫ =
ǫlogϕǫ, and substituting in (19) it is obtained the equation
for ϕǫ :

0 = ϕǫ
s +

ǫ

2γ2

∑

ϕǫ
xixj

+ minu∈U{f(t,X(t)ǫ, (20)

u(t))∇xϕǫ + L(t,X(t), u(t))φǫ}, ϕǫ(x(t), T ) = ψ(X)

The optimal control problem is to show that V ǫ is a vis-
cosity solution to the dynamic programming equation (19)
when f(t,X(t)ǫ, u(t)) is polynomial of first grade, to find
the optimal control which minimize the quadratic criterion
J and find the optimal trajectory x∗, substituting u∗ in to
the state equation. The conditions for f, L, ϕ, U proposed
in W. M. McEneaney [2004] are true when f(t,X(t)ǫ, u(t))
takes this form. As in W. M. McEneaney [2004], ”cut off”
problem is important, because the possibility unbounded
functions f, L and ψ are replaced by bounded counterparts
fk, Lk and ψk in (19) and (20). The next lemma provides
of proof that V ǫ,k is the unique, bounded, classical solution
to (19), taking in account that f(t,X(t), u(t)) polynomial
of first degree, the proof for f(t,X(t), u(t)) nonlinear can
see in W. M. McEneaney [2004].
Lemma The solution to (19) is the value function V ǫ,k

and the solution to (20) is the value function ϕǫ,k. An
admissible feedback solution exists which yields the mini-
mum. Furthermore, V ǫ,k is the unique, bounded, classical
solution to (19).
Proof: The result for ϕ is proved. The result for V fol-
lows. Let ϕ a solution of (20). First we show ϕ(s, x) ≤
Jǫ,k(s, x, u), for all u ∈ As,v and (s, x) ∈ QT = [0, T ]×R

n.
For a fixed Ft− progressively measurable control, the so-
lution to the stochastic differential equation, xk (which
would be denoted as x throughout the remainder of
this proof) is a continuous semi-martingale, with in fact,
square-integrable martingale part. Thus, since ϕ ∈ C1,2,
we can apply Itô’s rule to yield:

ϕk(t, x(t)) = ϕk(s, x) +

t
∫

s

(
∂ϕk(s, x(r))

∂s
+

∂ϕ(s, x(r))

∂x(r)
× (21)

fk(xr) +
ǫ

4γ2

∂2ϕ

∂x(r)2
)dr +

√

ǫ

2γ2

t
∫

s

∂ϕk(s, x(r))

∂s
dB(r),

if

∂ϕk(s, x(r))

∂s
= ϕk(r),

∂ϕk(s, x(r))

∂x(r)
= ▽ϕk,

∂2ϕk(s, x(r))

∂x(r)i∂x(r)j

= △ϕk,

then
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ϕk(t, x(t)) = ϕk(s, x) +

t
∫

s

(ϕk(r)(r, x(r)) + ▽ϕk(r, x(r))fk(r,

x(r), u(r)) +
ǫ

4γ2
△ ϕk(r, x(r)))dr +

√

ǫ

2γ2

t
∫

s

▽ϕk(r, xr)dB(r),

where
∫

▽ϕ(r, xr)dB(r) =
∑

∫

ϕk
xi

(r, xr)dB(r)(i). (22)

Since the lemma 2.3.1 in W. M. McEneaney [2004] states
that the solution to (19) is bounded, from Ladyz̆enskaja
et al. O.A. Ladyz̆enskaja, V.A. Solonnikov, N.N. Ural’ceva
[1968], theorem 5.3.1 that | ▽ V | is also bounded. Conse-
quently the solution to (20) satisfies |ϕ|, | ▽ ϕ| bounded
also. Then exists a such that |▽ϕ| ≤ a for all (s, x) ∈ Q(T )

which implies E
∫ T

s
| ▽ ϕ|2dt ≤ a2T, and consequently

∫ t

s
▽ϕ(r,X(r)) · dB(r) is a square-integrable martingale.

Thus ϕ(t,X(t)) is also a continuous semi-martingale. Since

Lk is bounded, εt ≡ exp[ 1
ǫ

∫ t

s
Lk(r,X(r), u(r))dr] is a con-

tinuous semi-martingale with zero martingale part. There-
fore applying the stochastic integration by parts formula
to the product εtϕ(t, x(t)) to yield:

εtϕ
k(t,X(t)) − ϕk(s, x) =

t
∫

s

ε(r)[
∂ϕk

∂r
+

∂ϕk

∂x
· fk(x(t)) +

ǫ

4γ2

∂2ϕ

∂x2
]dr +

t
∫

s

ϕk(r, x(r))
1

ǫ
Lk(r,X(r), u(r))ε(r)dr

+

√

ǫ

2γ2

t
∫

s

ε(r)
∂ϕk

∂x
dB(t).

Using PDE (20) to eliminate the first two terms on the
right, we have:

εtϕ
k(t,X(t)) − ϕk(s, x) ≥

√

ǫ

2γ2

t
∫

s

ε(r)
∂ϕk

∂x
dB(t).

Since Lk and ▽ϕk are bounded, so is εr▽ϕ(r,X(r)). Thus,

by the same argument as above,
∫ t

s
ε(r)▽ϕk(r, x(r))dB(r)

is a square-integrable martingale. Therefore, taking t = T ,

ϕk(s, x) ≤ Es,x[εT ϕ(T, X(T ))],

substituting ε and the terminal condition in (20):

Es,x[εT ϕ(T, X(T ))] = Es,xexp{1

ǫ
[

T
∫

s

Lk(t,X(t), u(t))dt +

ψ(X(T ))]} = Jǫ,k(s, x, u). (23)

Now suppose there exists u∗ ∈ As,v such that

u∗ ∈ argminu∈U [fk(t,X(t)∗, v) ▽ ϕ(t,X(t)∗) + (24)

1

ǫ
Lk(t,X(t), u(t))ϕ(t,X∗)],∀t ∈ [s, t].

Then the equality in the above is right, and consequently,

ϕ(s, x) = Jǫ,k(s, x, u∗).

It is easily seen from W. H. Fleming, R. W. Rishel [1975],
Appendix B, that exists a Borel measurable function
g(t, x) such that:

g(t, x) ∈ argminu∈U [fk(t, x(t), u)ϕk
xi

(x, t) +

ϕk(t, x)

ǫ
Lk(t,X(t), u(t))], ∀(t, x) ∈ Q(T ). (25)

Consider the SDE:

dX(t) = fk(t,X(t), g(t,X(t)))dt +
ǫ

2γ2
dB(t). (26)

By Veretennikov A. J. Veretennikov [1981], Theorem 1, it
has a unique strong solution for any reference probability
system, ν. Letting u∗ = g(t, x(t)) for the strong solution
yields u∗ ∈ As,ν . Therefore

ϕ(s, x) = minu∈As,ν
Jǫ,k(s, x, u) = ϕǫ,k(s, x)

To prove uniqueness claim suppose there exists another
bounded, classical solution, ϕ̃. Then, by the same proof
as above, it is the value function ϕǫ,k. The result for V
follows similarly. ♦.

5. CONTROL SOLUTION

Taking in account that f(t,X(t)ǫ, u(t)) = A(t)+A1(t)X(t)
+b(t)u(t) and substituting in (15), the next state equation
is obtained:

dX(t)ǫ = (A(t) + A1(t)X(t) + b(t)u(t))dt +

√

ǫ

2γ2
dB(t), (27)

Xǫ
s = x, where X(t), A(t) ∈ R

n, A1(t) ∈ Mnxn, where
Mnxn denotes the field of matrices of dimension nxn, and
B(t) is as in (15). If L(t,Xǫ

t , u) = X(t)2+u(t)2, ψ(X(T )) =
X(T )2, the quadratic cost criterion has the form:

Jǫ,k(s, x, u) = ǫlogEs,xexp[
1

ǫ
[

T
∫

s

(X(t)2 + u(t)2)dt + (X(T )ǫ)2]]

As is proposed in W. M. McEneaney [1998], in this case,
the value function

V ǫ(s,X) =
1

2
(X(t) − C(s))T P (s)(X(t) − C(s)) + r(s)

(C(s), P (s), r(s) are functions of s ∈ [0, T ], C(s) ∈
R

n, P (s) is a symmetric negative defined matrix of di-
mension nxn and r(s) is a scalar function) as a viscosity
solution of the dynamic programming equation

0 = Vs +
ǫ

2γ2

∑

Vxixj
+ minu∈U{(A(t) + (28)

A1(t)X(t) + u(t))∇xV + X(t)2 + u(t)2 +
1

2γ2
∇V T∇V }

V (x(t), T ) = ψ(X) where Vs, Vx are the partial derivatives
of V respect to s, x respectively and ∇V is the gradient
of V. Then the partial derivatives of V ǫ are obtained
and substituting these in (28), when f(t, x(t), u(t)) is
polynomial of first degree, following the steps as in the
filter solution:

Ṗ (s) = P (s)T (
bT b

2
−

1

γ2
)P (s) − AT

1
(t)P (s) − P (s)A1(t) − 2I

Ċ(s) = AT
1

(t)C(s) + 2C(s)T P (s)−1 + A(t), (29)

where P (T ) = I, C(T ) = 0, the optimal control law which
minimizes the quadratic criterion is given by:
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u∗(t) = −1

2
bT (t)P (s)(X − C(s)) (30)

6. APPLICATIONS

6.1 Risk-sensitive optimal filter

For the dynamical system (12), if f(x(t)) = 1 −
0.1x(t), h(x(t)) = 1 + x(t), the following stochastic state
and observation equation are obtained:

dx(t) = (1 − 0.1x(t))dt +
√

ǫdB(t), (31)

dy(t) = (1 + x(t))dt +
√

ǫdB̄(t)

where x(t) ∈ R, B(t), B̄(t) are independent Brownian
motions, ǫ = 1000000. Proposing (11) as a viscosity

solution of (10), getting the derivatives Zǫ
x, Zǫ

xx, ∂Zǫ

∂T
of

(11) and substituting in (10), the following equations are
obtained for the estimate C(T )ǫ and for the symmetric
matrix Q(T ), which are equivalent to substituting the
corresponding values in (13) and (14):

Q̇(T ) = 0.2Q(T ) + Q2(T ) − 1 (32)

dC(T )ǫ = (1 − (0.1)C(T )ǫ)dt − 1

Q(T )
(dY (T ) − C(T )ǫdt)

The last equations (32) are simulated using MatLab7. The
initial conditions for the simulation are x(0) = y(0) =
0, Q(0)ǫ = −0.0001, C(T )ǫ = 1000, T = 10seg. The
graph of the absolute values of the difference between state
x(t), and the estimate C(T )ǫ: error = |x(t) − C(T )ǫ| , is
shown in Figure 1.

6.2 Kalman-Bucy optimal filter equations.

Applying the Kalman-Bucy optimal filter algorithms R. E.
Kalman and R. S. Bucy [1961] to the state equations (31),
the equations for the estimate vector m(t) and symmetric
covariance matrix P (t) are obtained:

dm(t) = (−0.1m(t) + 1)dt +
P

ǫ
(dY − (m(t) + 1)dt)

Ṗ (t) =−0.2P (t) + ǫ − P 2(t)

ǫ

This system of equations is simulated with the initial
conditions: m(0) = 1000, P (0) = 10000. The graph of the
absolute value of the difference between state x(t), and the
estimate m(t), that is: error = |x(t) − m(t)| , can be seen
in Figure 2.

6.3 Optimal R-S Stochastic Control

Give the next linear stochastic state equation:

dx(t) = (1 + 0.1x(t) + u(t))dt +

√

ǫ

2γ2
dB(t) (33)

L(t,X(t), u(t)) = X(t)2 + u(t)2; ψ(x(T )) = x(T )2

where A(t) = 1, A1(t) = 0.1, ǫ = 0.01, γ = 2. The value of
γ is obtained (as equilibrium point of (35)). The quadratic
cost criterion takes the form:

J(s, x(t), u(t)) = ǫlogEs,xexp(
1

ǫ

T
∫

s

(x(t)2 + u(t)2)dt + x(T )2)(34)

Substituting the values of A,A1 into the equations (29),
and (30), are obtained the next equations in reverse time:

dP

dt
=−0.2P (s) − 2 + p(s)2(

1

2
− 1

γ2
)

dC(s)

dt
= 1 + (0.1)C(s) + 2

C(s)

P (s)
(35)

u∗=−1

2
Ps(x − C(s)).

The system (35), is stable if |γ| ≥ 1.40. The final conditions
in T = 5seg are: P (5) = 1, C(5) = 0, the initial condition
for x(0) = 1; γ = 2. Solving this system of equations
(35), the values of the optimal control law u∗, the optimal
trajectory: ẋ∗ = (1 + (0.1)x(t) − 1/2Ps(x − C(s)) +
√

(ǫ/2γ2)dB(t), are obtained, substituting the optimal
control u∗ in to the state equation (33). The value of the
criterion quadratic to be minimized J at time T is obtained
for each value of ǫ. The graphics of the state x(t), the
optimal control u(t), the criterion J can be seen in the
Figure 4, for ǫ = 1000.Table 1 illustrate the values of J
for some values of the parameter ǫ. The value of J was
approximated using Monte Carlo method.
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Fig. 1. Graphs of the absolute values of the difference
between x(t) and the linear r-s estimate CT .
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Fig. 2. Graphs of the absolute values of the difference
between x(t) and the linear K-B estimate m .

6.4 Optimal Linear Quadratic Control

Taking in account the state equation (33), the traditional
optimal non homogeneous control W. H. Fleming, R. W.
Rishel [1975] is obtained: u(t)∗ = R−1bT (t)(Q(t)x(t) +
p(t)), where Q(t) is the solution of the gain equation:

˙Q(t) = −0.2Q(t) + 1 − Q2(t)
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Fig. 3. Graphs of the optimal state variable x(t), optimal
control u(t)∗ and criterion J for L-Q control.
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Fig. 4. Graphs of the state variable x(t), optimal control
u(t), and criterion J(t) for risk-sensitive control.

ǫ J(r-s control) J(trad. control)

0.1 9.875 7.9152
1 9.8982 8
10 10 8.278
100 10.5616 9.4371
1000 14.8716 15.774
10000 53.7456 62.5252
100000 429.1228 477.4969

Table 1. Values of J, for some ǫ values, with
algorithms risk-sensitive and L-Q control

and p(t) is the solution of: ṗ(t) = −Q− 0.1p(t)−Q(t)p(t)
with final conditions: Q(5) = −2, p(5) = 0 The opti-
mal trajectory takes the form: dx(t) = (1 + (0.1)x(t) +

(Q(t)x(t) + p(t)))dt +
√

(ǫ/2γ2)dB(t). The quadratic cri-
terion to be minimized is the same in both controls. The
graphics of the state, optimal control and criterion, for
ǫ = 1000 can see in Figure 3.

7. CONCLUSION

This paper presents the optimal solutions to the risk-
sensitive optimal control and filtering problems for stochas-
tic first degree polynomial systems with Gaussian white
noises, an exponential-quadratic criterion to be minimized,
and intensity parameters multiplying the white noises,
using using quadratic value functions as solutions to the
corresponding Hamilton-Jacobi-Bellman equations. The
optimal filter risk-sensitive algorithms and Kalman-Bucy
optimal filter are obtained, and compared. When ǫ grows,
the estimate risk-sensitive converges in less time to the real
value than the Kalman-Bucy estimate, as shown in Figure
1 and 2. The optimal control risk-sensitive algorithms and
traditional optimal control are obtained, and compared,
using the criterion exponential-quadratic of Risk-Sensitive

method. When ǫ takes small values (0.1 ≤ ǫ < 1000),
the performance of L-Q control is verify, when ǫ grow, the
performance of Risk-Sensitive control is verify (values of
J are lowest for ǫ ≥ 1000). You can see it in Table 1, and
in Figure 3 and 4 for ǫ = 1000.
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