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Abstract: This paper studies the controllability and observability of discrete-time systems
with network-induced variable delays. Since controllability and observability are structural
properties of systems, which are first checked before control design, we study if a controllable
(resp. observable) non-delayed system can loose these properties if we augment the model
with particular pure input-output variable delays caused by a situation of overload in the
networked control architecture. We start our approach with a discrete-time multivariable
linear time-invariant system with non-equal network-induced delays on control signals (inputs)
and measures (outputs). The considered delays may only remain constant or increase with
unitary increments. We prove that if a non-delayed system is controllable (resp. observable),
then the network-delayed system is controllable (resp. observable) despite the monotonically-
increasing delay values in each input/output channel. This general powerful result ensures
further implementation of model-based predictive control strategies based on state observers
methods for the considered model of networked control systems.
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1. INTRODUCTION

A networked control system is a control system whose
sensors, actuators, and controllers are interconnected over
a shared communication network (NCS). The main ad-
vantage of this NCS configuration is the reduction of
complexity, weight and volume with respect to the point-
to-point wiring. It allows also improving the flexibility
and the modularity of the overall system: new sensors,
actuators or controllers can be added to the system with
no major change in its structure. However, using a network
introduces modifications of the temporal characteristics of
control and measure signals, due to the communication
constraints. In the literature, different models of commu-
nication constraints have been studied (Hespanha et al.
(2007)), such as network induced delays (Nilsson (1998)),
information loss (Schenato et al. (2007)), data rate limita-
tions (Nair et al. (2007)) and medium access constraints
(Ben Gaid et al. (2006)).

The use of networked control systems in industrial environ-
ment is rapidly spreading. In the general case of spatially
distributed control systems, the transmission delays affect-
ing the components of control commands or measurements
vectors are different and time-varying. In deterministic
? This work was supported in part by the AUF (Agence Universitaire
de la Francophonie) and by the COSI Laboratory, ESIEE Paris,
France

control networks, those delays can occur as a consequence
of a situation of network overload, resulting, for example,
from a component fault.

Controllability and observability are structural properties
of systems, which are first checked before control design.
Various aspects of the controllability of discrete-time linear
systems with delay were considered by several authors
(Klamka (1977); Watanabe (1984); Phat (1989)), where
mathematical conditions for investigating the controllabil-
ity were stated. It is easy to see that for a given fixed delay
structure, a linear time invariant system may be put into
a standard state space representation with an extended
state vector. However, it is not straightforward to see that
under variable delay, the controllability and observability
properties of the original system will be preserved.

In this paper, we consider a particular model of networked
control systems operating under overload conditions. In
this model, the delays affecting the transmission of controls
or measures may only increase in unitary increments or
remain constant. This assumption of increasingly-varying
delays ensures that no loss of information occurs. Un-
der these assumptions, we prove that the input/output
increasingly-varying delay, which is induced by the over-
loaded network, does not change the controllability and
observability properties of the original non-delayed plant.
This result is established thanks to the Popov-Belevitch-
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Hautus criterion and the Artstein transform. Compared to
non-delayed systems (Richard (2003); Niculescu (2000)),
the controllability and observability of delayed systems
presents differences related with state variables, time vari-
ables and the realization of control law. The state variables
depend on a function defined on a time interval whose
length is equal to the maximum input-channel delay. This
article extends the results from Ionete et al. (2006) to the
case of variable network-induced delays.

The paper is structured as follows: In Section 2 we intro-
duce some mathematical preliminaries for modeling time-
varying delays. Section 3 studies the controllability prob-
lem of input-delayed systems. In the fourth section, the
dual problem, observability, is treated in the same man-
ner but relative to varying output delays. The conclusion
represents the final section.

2. PROBLEM FORMULATION

The original non-delayed discrete-time linear system is
described by the state space representation

xk+1 = Axk + Buk (1a)

yk = Cxk (1b)

where A, B and C are respectively n×n, n×m and p×n
matrices and

uk =
[
u1

k u2
k ... um

k

]T
, yk =

[
y1

k y2
k ... yp

k

]T
.

Control commands as well as plant measures are sent
through a share communication network which induces
different time-varying delays in each transmission channel.
The non-uniform time-varying delays are measured in
multiples of the sampling period. Using notations from
(Marinescu and Bourlès (2000)), we can define:

z−G(k) = diag
(
z−g1(k), z−g2(k), ..., z−gm(k)

)
,

z−H(k) = diag
(
z−h1(k), z−h2(k), ..., z−hp(k)

)
.

where z−1 is the shift (one step delay) operator.

The following assumptions are made:
Assumption 1. The controller can obtain all the measures
from the sensors and can send all the control commands
to the plant. In our framework, we consider that all the
control commands or measures reach their targets after a
variable time-delay.
Assumption 2. We assume that the induced delays, which
are time-varying, may only remain constant or increase.
Such delays are called monotonically-increasing time-
varying. This situation may occur in deterministic net-
works which are subject to an overload situation and where
a fair scheduling strategy is implemented.
Assumption 3. The network-induced variable delays may
only remain constant or increase with unitary increments.
Indeed, supposing the contrary, we can obtain the follow-
ing time evolution (Table 1).

Table 1. Consequences of a non-unitary in-
crease in the delay

Time instant k k + 1 k + 2

Delay 2 2 4

Control uk−2 uk−1 uk−2

From Table 1, we observe that if we allow a two sampling
time delay increase at moment k+2, we will use for control
an older command: uk−2. This is pointless since we have
already received a more recent command, uk−1.

3. CONTROLLABILITY PROBLEM STATEMENT

3.1 Preliminaries

We first address on the problem of controllability in
presence of time-varying delays verifying assumptions 1,2
and 3. To this end, we consider the input-delayed system
defined by

xk+1 = Axk + Buk−G(k), (2)
where

uk−G(k) =
[
u1

k−g1(k) u2
k−g2(k) ... um

k−gm(k)

]T
.

The column representation of the input matrix B is
B =

[
c1
B c2

B ... cm
B

]
, (3)

where cj
B is the jth column of B, j ∈ {1, . . . ,m}. In the

following, we will consider that the variable delay in each
input channel is bounded by a value M , defined by

M = sup
k∈N

{
max

i∈{1,2,...,m}
{gi (k)}

}
.

This assumption is natural since an infinite value for M
leads necessarily to uncontrollability. First, consider all
possible input signals with bounded delay

{uk, uk−1, ..., uk−M} .

The discrete system with network-induced variable de-
lays (2) has the following equivalent representation

xk+1 = Axk +
M∑

j=0

Bj (k) uk−j . (4)

In the above representation, Bj(k) contains at instant k
exactly the columns of the input matrix B that multiply
the components of the control input vector having a delay
of j steps. The other columns are zero. For example,
assume that m = 5 (i.e. system (2) have 5 input channels).
If at instant k, input channels 1 and 3 of system (2) have
a delay of 2 steps, then matrix B2(k) will be defined as

B2(k) =
[
c1
B , 0n×1, c

3
B , 0n×1, 0n×1

]
.

Of course, if we do not have a two steps delay in an input
channel, B2(k) = 0n×m. As a consequence, we have the
equality

M∑
j=0

Bj (k) = B. (5)

A given column ci
B (i ∈ {1, 2, ...,m}) from B may only

be located in a unique matrix Bj(k) (j ∈ {1, 2, ...,M}) at
instant k.

The above representation is the model of a linear time-
varying system. In this model, the time-varying delays
affecting the control inputs are transferred to time-varying
input matrices that multiply the current and the previous
control inputs. It is important to underline the link be-
tween the variable delay of a given input channel and the
inclusion of the corresponding column from input matrix
B in different matrices Bj(k).

Matrix A is the state matrix of system (1a), which does not
contain delays in the state. It is obtained by discretizing
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a continuous-time linear time-invariant system. For that
reason, matrix A is invertible.

We define the state evolution matrix
Φ (k, h) = Ak−h.

If {uk}k∈Z is the control function, then u[k], for a fixed k,
denotes the restriction of {uk}k∈Z to the limited set

u[k] = {uk−M , . . . , uk−1} .

Definition 1. The pair (xk, u[k]) is referred to as the
absolute state of system (4) at moment k.

It is common to say that the control function u steers
the absolute state (x(k0), νk0) to (x(k1), νk1) during
{k0, k0 + 1, . . . , k1} if u[k0] = νk0 , u[k1] = νk1 and the
solution of (4) with xk0 = x(k0) satisfies xk1 = x(k1). The
controllability of system (4) is formally defined using the
notion of absolute controllability (Olbrot (1972)).
Definition 2. System (4) is called absolute controllable on
{k0, k0+1, . . . , k1} (with k1−k0 > M) if for any prescribed
absolute states (xk0 , u[k0]) and (xk1 , u[k1]), there exists
a control function steering the first to the second during
{k0, k0 + 1, . . . , k1}.

In (Artstein (1982)) was introduced the so called “Artstein
transform” for continuous-time linear time-variant systems
with delays in command. The discrete-time analogue of
this transform was established in Ji (2006). Using this
transform, the discrete-time variant is defined by

zk = xk +
M∑

j=0

k−1∑
i=k−j

Φ (k + 1, i + 1 + j) Bj (i + j) ui.

Applying the above transform to (4), we obtain

zk+1 = Azk +

 M∑
j=0

Φ (k + 1, k + 1 + j) Bj (k + j)

uk.

Consequently, we obtain a non-delayed system
zk+1 = Azk + F (k)uk, (6)

where

F (k) =
M∑

j=0

A−jBj (k + j).

The time evolution of the linear time-varying system (6)
from the initial state z0 is described by

zk = Akz0 +
k−1∑
i=0

Ak−i−1F (i)ui. (7)

An important property of the Artstein transform is that it
preserves the controllability. This result was established in
the continuous-time case in Artstein (1982). The following
Theorem treats the discrete-time case, and establishes
that the “non-delayed” system (6) and the input-delayed
system (4) are equivalent from the controllability point of
view.
Theorem 1. The system (4) is absolute controllable on
{k0, . . . , k2} (k2−k0 > M) if and only if (6) is controllable
on {k0, . . . , k2 −M}.

Proof. Let xk0 and u[k0] be specified at moment k0. They
determine an initial state zk0 from the Artstein transform
The un-delayed system (6) is controllable on {k0, . . . , k2−

M} if and only if any state zk2 at moment k2 can be
reached from zk0 by specifying u[k2]. In fact, steering zk0

to zk2 with a prescribed control u(k) on k ∈ {k1, . . . , k2}
(k0 < k1 < k2) is equivalent to steering zk0 to zk1 on
k ∈ {k0, . . . , k1} with

z(k1) = Φ(k1, k2)z(k2) +
k2∑

i=k1−1

Φ(k1 − 1, i)B(i)ui.

However, specifying zk2 and u[k2] determines xk2 from
the Artstein transform. Therefore, the absolute state
(xk2 , u[k2]) can be arbitrarily specified if and only if (6)
is controllable on {k0, . . . , k2 −M}. This proves that the
discrete-time Artstein transform establishes equivalence
between the controllability of the delayed system (4) and
the un-delayed system (6). 2

Finally, we mention the algebraic Popov-Belevitch-Hautus
(PBH) controllability criterion for LTI discrete systems,
which states the following equivalence
rk
[
B,AB, . . . , An−1B

]
= n ⇔ ∀λ ∈ C, rk [λI −A,B] = n.

Let Λ(A) be the spectrum of A. Since rk [λI −A] =
n,∀λ /∈ Λ(A), then it is sufficient to study the control-
lability only for the spectrum of matrix A, so the PBH
criterion becomes
rk
[
B, . . . , An−1B

]
= n ⇔ ∀λ ∈ Λ (A) , rk [λI −A,B] = n.

3.2 Network input-delayed controllability problem

Let r ∈ N. Starting at an initial moment k0, we denote by

Fi = F (k0 + i) , 0 ≤ i ≤ r.

Based on the state evolution equation (7), the length-r
controllability matrix of system (6) is defined by

Cr (k0) =
[
Ar−1F0, A

r−2F1, ..., AFr−2, Fr−1

]
. (8)

From relation (8), the following proposition may be easily
deduced.
Proposition 1. A necessary and sufficient condition for the
controllability of system (6) at time k0 is the existence of
r ∈ N such that

rk
[
Ar−1F0, A

r−2F1, ..., AFr−2, Fr−1

]
= n.

Suppose that non-delayed system (1a) is controllable. The
input-delayed system is represented by (4) with the re-
striction (5). Since the input matrices of the input delayed
system are obtained from the initial control matrix B, it is
useful to study relationship between the controllability of
non-delayed system (1a) and the absolute controllability
of the input-delayed system (4) with restriction (5).

3.3 Impact of input delay evolution hypothesis

First of all, we present in Fig. 1 a time-delay diagram.

The diagonal lines select the blocks for building matrices
F0, F1, F2. From equalities (3) and (5), it results that
every column of matrix B may be found in only one matrix
Bj(k) (j ∈ {0, . . . ,M}) at a given fixed time moment k.
For that reason, there exists a single cell in every row
that contains the column. Let c be a generic column of
matrix B corresponding to a given input channel (i.e. c ∈{
c1
B , c2

B , ..., cm
B

}
). Suppose for simplicity that c ∈ B0 (0).
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Fig. 1. Time-delay distribution in matrices Bi(j)

We represent in Fig 2 a possible time evolution of the
corresponding input channel delay by marking with a point
the column c placement. Shadowed cells signify that the

Fig. 2. A possible evolution of a time delay

column c cannot be found in corresponding matrices as a
consequence of (5).
Remark 1. It is important to note that a column position
evolution (corresponding to an input-delay evolution) is
possible in the vertical up-down direction (on the columns
of the diagram) if the delay remain constant, or in the
diagonal left-right direction (if input-delay increases with
unitary increments at consecutive time moments). For ex-
ample, consider the vertical column time evolution B2(3),
B2(4) and B2(5) in the above figure. At instant k = 4, col-
umn c belongs only to B2(4). From the definition of F (k),
the matrix block F2 will contain in the corresponding input
position only the column A−2c. If we consider a diagonal
time evolution like B0(1), B1(2) and B2(3) in the above
figure, column c belongs to B0(1), B1(2) and B2(3) and
the matrix block A−1F1 will contain in the corresponding
input position the column

(
A−1 + A−2 + A−3

)
c.

The following lemma addresses the situation where a given
input channel has a constant delay during n steps.
Lemma 1. If system (6) is non-controllable, then there
exists a n-column vector q (q 6= 01×n) such that for all
time delay d ∈ {1, . . . ,M}, discrete instant h ∈ Z verifying
h ≥ d+k0, and column c = c`

B of B (` ∈ {1, . . . ,m}) which
is also column of matrices Bd(h), ..., Bd(h+n+1), we have

∀k ∈ Z, qAkc = 0.

Proof. The proof of the lemma relies on delay evolu-
tion assumptions, which were illustrated in the previous
remarks. Without loss of generality, and to simplify the

notation, assume that k0 = 0. The system (6) is non-
controllable. As a consequence,

∀r ∈ N, rk
[
Ar−1F0, A

r−2F1, ..., AFr−2, Fr−1

]
< n.

Since the delay of each input channel may only remain con-
stant or increase with unitary increments, and is bounded
by M , then there exists an instant M where the all the
delays of the input channel remain indefinitely constant.
Considering the sequence length r = M+n+1, we obtain

rk
[
AM+nF0, ..., AFM+n−1, FM+n

]
< n.

In follows that there exists a n-column vector q such that
q 6= 01×n and

q
[
AM+nF0, ..., AFM+n−1, FM+n

]
= 01×(M+n+1)m.

Let d ∈ {1, . . . ,M}, h ∈ Z verifying h ≥ d+k0, and c = c`
B

be a column of B (` ∈ {1, . . . ,m}) which is also a column
of matrices Bd(h), ..., Bd(h + n + 1) Since A is invertible,
the previous equality implies that

q
[
Ah+nF0, . . . , A

dFh−d+n

]
= 01×(h−d+n+1)m.

This implies that for all i ∈ {1, . . . , n},
q ·Ad+n−iFh−d+i = 01×m. (9)

For all i ∈ {1, . . . , n}, c = c`
B is a column of Bd(h + i− 1),

Bd(h + i) and Bd(h + i + 1). Due to delay evolution
assumptions 2 and 3, and as shown in the previous
remarks, c`

B does not belong to any matrix Bd+j(h+ i+ j)
(−d ≤ j < 0 and 0 < j ≤ M − d) and the `th columns of
these matrices are zero. Recalling that

Fh−d+i =
M−d∑
j=−d

A−(d+j)Bd+j(h + i + j),

it follows that the `th column of Fh−d+i is equal to A−dc`
B .

Considering only the multiplication of qAd+n−i and the `th

column of Fh−d+i, equality (9) implies that

qAd+n−i
(
A−dc

)
= 0,

which is equivalent to
qAic = 0 for i = 0, 1, 2, ..., n− 1.

Using Cayley-Hamilton theorem, the proof is termi-
nated. 2

3.4 Controllability problem solution

Using the equivalence between (4) and (6), the main result
is given in the following theorem.
Theorem 2. The non-delayed system (1a) is controllable if
and only if system (6) is controllable.

Proof. We have to prove that
rk [λI −A,B] = n,∀λ ∈ Λ (A)

is equivalent to
∃r > 0, rk [Φ (r, 1) F0,Φ (r, 2) F1, ...,Φ (r, r)Fr−1] = n.

(⇐) Suppose first that (6) is controllable, i.e.
∃r > 0, rk [Φ (r, 1) F0,Φ (r, 2) F1, ...,Φ (r, r)Fr−1] = n.

Suppose (by absurd) that (1a) is un-controllable, i.e.
∃λ ∈ Λ (A) , rk [λI −A,B] < n.
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The previous relation is equivalent to the existence of a
non zero n-column vector q such that

qA = λq and qB = 01×m. (10)

Relation (10) proves that q is a left eigenvector for matrix
A and is orthogonal with every column of matrix B. Using
repeatedly the first equality in (10) we obtain

qA = λq ⇒ q = λqA−1 ⇒ qA−1 =
1
λ

q

qA−2 =
1
λ

qA−1 =
1
λ2

q

...

qA−g =
1
λ

qA−g+1 =
1
λg

q.

(11)

From the second equality in (10) we obtain

qB = 01×m ⇔ q
[
c1
B , c2

B , ..., cm
B

]
= 01×m.

Now, we study the value of

q [Φ (r, 1) F0,Φ (r, 2) F1, ...,Φ (r, r − 1) Fr−2,Φ (r, r)Fr−1] .

Let i ∈ {0, r − 1}, and consider the value of

q · Φ (r, i + 1) · Fi = q ·Ar−i−1 · Fi.

From (11) q ·Ah = λh · q and the above relation will be

q · Φ (r, i + 1) · Fi = λr−i−1 · q · Fi.

Replacing the expression of F (k) in (11) we obtain

q · Φ (r, i + 1) · Fi = λr−i−1 ·
M∑

j=0

(
q ·A−j

)
·Bj (i + j).

Using (11) in the previous equality, we get

q · Φ (r, i + 1) · Fi = λr−i−1 ·
M∑

j=0

λ−j · q ·Bj (i + j).

Using the second equality in (10) and the structure of
Bj(k), we get

q · Φ (r, i + 1) · Fi = 01×m, for i ∈ {0, 1, ..., r − 1}.
and we conclude that

q [Φ (r, 1) F0,Φ (r, 2) F1, ...,Φ (r, r) Fr−1] = 01×(r×m).

This relation contradicts the starting controllability hy-
pothesis of system (6), therefore we conclude that the
initial system (1a) controllable.

(⇒) Assume that rk [λI −A,B] = n,∀λ ∈ Λ (A). Suppose
(by absurd) (6) is non-controllable. Since the input delay
is bounded by M , for each input channel `, there exists an
instant h` such that the delay affecting every input channel
` remains contant (at a value d` ∈ {1, . . . ,M}) during the
n+1 following instants and consequently, and each column
c`
B of B will be also a column of Bd`

(h`), . . . , Bd`
(h` +n+

1). Using Lemma 1, there exists a n-column vector q such
that q 6= 01×n and for all column c of B,

∀k ∈ Z, qAkc = 0.

This implies that

∀k ∈ Z, qAkB = 0,

This relation contradicts the controllability assumption of
system (1a), which completes the proof of the theorem. 2

4. OBSERVABILITY PROBLEM STATEMENT

4.1 Network output delayed observability problem

In this section we consider the observability problem, when
measured plant outputs are sent to the controller via
a spatially distributed network, which induces different
delays in each transmission channel (verifying assumptions
1, 2 and 3). To this end, we consider the following model.

xk+1 = Axk + Buk (12a)

yk = Cxk (12b)

y′k = yk−H(k) (12c)

where

yk−H =
[

y1
k−h1(k) y2

k−h2(k) .... yp
k−hp(k)

]T
=
[

Cx1
k−h1(k) Cx2

k−h2(k) .... Cxp
k−hp(k)

]T
The previous relation shows that the non-uniformly de-
layed output may be written as a combination of previous
states of the non-delayed system. Since every state at
moment k may be represented using the past states, we will
consider the maximum time-delay over all communication
channels:

H = sup
k∈Z

{
max

i=1,2,...p
{hi}

}
Consider all possible states with bounded delay:

{xk, xk−1, ..., xk−H} .

The delayed output of system (12) has the following
equivalent representation:

y′k =
H∑

j=0

Cj (k) xk−j .

In the above representation, matrix Cj(k) contains at
moment k exactly the columns of output matrix C that
multiply the components of the output vector having
a delay of j steps. The other columns are zero. As a
consequence, we have the equality

H∑
j=0

Cj (k) = C

Every state at the moment k−hi(k) may be represented as
a final state of state evolution starting at initial moment
k −H.

xk−H = Ixk−H

xk−H+1 = Axk−H + Buk−H

...

xk−H+d = Adxk−H +
d∑

i=1

Ad−iBuk−H−1+i

Defining

Ū =
[
uT

k−H
uT

k−H+1
... uT

k−2
uT

k−1

]T
,

B̄ = [ B 0 0... 0 ] ,
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C̄(k) =
H∑

j=0

Cj (k) AH−j ,

D̄(k) = line

(
Cj (k)

H−j∑
i=1

AH−j−iB

)
, j = 0, 1, ...,H.

we obtain the model

xk−h+1 = Axk−h + B̄Ū (13a)

y′k = C̄(k)xk−h + D̄ (k) Ū . (13b)

4.2 Observability problem solution

Despite the fact that controllability and observability are
dual concepts, we give the observability problem solu-
tion because we use a different system representation for
observability. As presented in (Marinescu and Bourlès
(2000)), this representation is more adequate for prediction
because it realizes a clear decoupling between the state to
be estimated and the deterministic variables (commands).
If we know the measured outputs, we can estimate the
state at moment k − H if the linear system in (13) is
observable. The observability property of system (13) has a
slightly modified interpretation comparing to observability
of non-delayed system: we may say that output-delayed
system (12) is observable if and only if system (13) is
observable. Both systems are equivalent, but system (12)
has a “classical” input-state-output representation using
the state . As a consequence, the observability is referred
with respect to state not in the same manner as for a non-
delayed system.
Proposition 2. The system (12) is observable if and only
if there exists r > 0 such that

rk
[(

AT
)r−1

C̄(0)T ,
(
AT
)r−2

C̄(1)T , . . . , C̄(r − 1)
]

= n.

The main result is represented in next theorem.
Theorem 3. The non-delayed system (1b) is observable if
and only if the network-delayed system (13) is observable.

Proof. The proof is simliar to that of theorem 1.

5. CONCLUSION

In the present paper we have studied the structural prop-
erties of systems with variable network-induced delays in
command (input) and measure (output), resulting from
a communication network overload. The main results are
synthesized in two theorems, which state that, if the non-
delayed system is controllable and/or observable, the same
system is controllable and/or observable using a networked
control architecture causing a delay that can either remain
constant or increases with unitary increments.

Future work will focus on the more general case of linear
time-varying systems with different variable input/output
network induced delays.
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