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Abstract: This paper examines the estimation of the state of an object moving in the horizontal plane 
using two, two-axis accelerometers and no rate gyro. Second order approximations are developed for 
estimating the state noise covariance in the inertial reference frame from the known measurement 
covariance of the sensors. These approximations can be integrated with position and heading 
measurements into an extended  Kalman filter.. 

 

1. INTRODUCTION 

On the basis of cost or accuracy, there are applications where 
one might consider replacing and inertial platform with a 
three-axis rate gyro and a three-axis accelerometer with a set 
of three (or more) three-axis accelerometers. The three 
accelerometers are located in a plane at fixed distances apart 
and by resolving the position and orientation of plane of the 
accelerometers, the position of the object to which they are 
attached is known. As a partial solution to the problem, in 
this paper we will consider the problem sketched in Fig. 1: 
An object moves in the horizontal plane and has two, two-
axis accelerometers mounted at different locations. For ease 
of notation in this paper, these points are selected at a 
distance R on each side of the centre of gravity.  In addition, 
it is assumed that there is a lower frequency measurement of 
position and orientation (for example from a GPS and an 
electronic compass). 

Clearly there is a non-linear relationship between the 
acceleration signals and the movement of the object. In 
addition, because of the physical constraint that the 
accelerometers remain at a fixed distance apart, there is 
redundancy in the measurements. The usual approach to state 
estimation is via an extended Kalman filter (see for example 
Brown & Hwang, 1992; Eitelberg, 1991), or an unscented 
Kalman filter (Julier & Uhlmann, 1997).  

This paper will make use of second-order approximations for 
the mean and variance of functions of a random vector 
(Papoulis, 1965) to estimate the lateral and rotational 
accelerations in the plane. These signals can be integrated 
with position measurements in an extended Kalman filter. 
From the measurement redundancy of the accelerometers, the 
square of angular rate is estimated and this is used as an 
additional output equation in the Kalman Filter. In many 
application of the extended Kalman filter, only first order 
propagation of the noise signals is considered. 

Ko and Bitmead (2007) have examined the issue of redundant 
measurements, imposed onto a problem by exact state 

constraints, in a linear problem setting. In this setting, one 
can leave the over-determined set of differential equations 
and apply the state constraint on the state noise covariance. In 
the present problem, it seems easier to resolve the 
measurements into a non-redundant set of equations. 

The paper is set out as follows: Section 2.1 defines the 
problem to be solved. Section 2.2 provides approximations 
for the mean and variance of a function of random vector. 
Section 2.3 applies these results to the problem of 
approximating the lateral and rotational accelerations in the 
inertial frame from measurements of accelerations in the 
body frame. Section 2.4 shows how these results can be 
integrated into an extended Kalman filter. The accuracy of 
the rate estimate obtained from the configuration of 
accelerometers used in the paper is discussed in Section 3. 
Section 4 presents a numerical example to illustrate the 
results in the paper. Conclusions are drawn in Section 5. 

 

Fig. 1 – Object in a plane with two-axis accelerometers at 
each end 

(x, y, θ) 

(x1, y1)

(x2, y2)

R 

y
u1v1 

v2 u2

x

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7582 10.3182/20080706-5-KR-1001.3722



 
 

     

 

2. APPROXIMATE OPTIMAL ESTIMATION IN A 
PLANE 

2.1 Problem statement 

In Fig. 1, the linear position and orientation of the centre is 
given by (x, y, θ) with respect to the inertial frame, x-y. The 
position of the two sensor locations is given by 
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The corresponding accelerations are 
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The sensors are located in the body frame (u-v), so the sensor 
(acceleration) signals, (aui, avi), i = 1,2 are related to 
accelerations via the rotation,  
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Therefore, 
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The accelerations in the inertial frame can be solved 
explicitly from the accelerometer signals as, 
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This paper will consider the application of the transformation 
in eq(5) to state estimation in the inertial frame. To do this, 
the mean and covariance of the signals in the inertial frame 
from the (assumed known) covariance of the sensor signals is 
required. 

2.2 Results for mean and variance of functions of a random 
variable 

Scalar approximations given by Papoulis (1965, Section 5.4), 
can be extended to approximate the mean and variance of 
y = h(x), a function of a random vector, x ∈ ℜn×1, with 
density, f(x). The great benefit of the approximations is that 
they are independent of the density. 

Mean 

Approximate y using the first three terms of the Taylor series 
expansion around x , the mean of x. This is reasonable if h(x) 
is smooth as the density f(x) takes significant values near the 
mean. 
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∂h is the Jacobian and   
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respect to x. 

Using eq(6), the mean of y can be approximated by, 
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where o denotes the point-wise (Schur or Hadamard) product 
of the matrices, [•]ij refers to the individual matrix elements, 
and Cx = cov(x) is the covariance of x. Notice that when 
calculating the expectation from eq(6) to eq(7), the linear 
term with ( )xx −  vanishes and the quadratic term is 
calculated by observing that the result is a scalar, allowing 
the order of calculations to be swapped to isolate terms which 
give cov(x).  

As an example of eq(7), if the mean value of θ is θ , and the 
covariance is 2

θσ , from eq(7),  

{ } ( )
{ } ( )2

2
1

2
2
1

1sinsin

1coscos

θ

θ

σθ

σθ

−≈

−≈

θ

θ

E

E
 (8) 

(For two r.v.’s x1 and x2, { } ( )212121 cov xxxxxx +≈E .) 

Variance and co-variance 

Given )(xii hy =  and )(xjj hy =  and y = h(x), the co-

variance 2
iyiyσ  is approximated using a similar approach, 
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Taking the example in eq(8),  
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If random variables x and θ  are not correlated,  
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2.3 Mean and covariance for the signals in the inertial frame 

To keep the exposition simple, take the simplest case that the 
accelerometer signals are uncorrelated with each other, have 
white additive noise and covariance, 2

aσ . The white noise 
sensor signal can be assumed uncorrelated with the (low pass 
filtered) angle estimates. 
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Where, 
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Note that if the sensor covariance is the same in all channels, 
024231413 ==== λλλλ . 

2.4 Building an (approximate) optimal state estimator 

The above estimates of the linear and rotational accelerations 
in the inertial frame and of the angular rate squared can be 
used to build a Kalman filter. Supposing that there are 
measurements of the position and yaw angle, ( )Tyxm θ,,= . 

The additional estimate of 2θ&  from the accelerometer 
measurements will be treated as an additional (non-linear) 
measurement. The model is given with the following notation 
(and some ambiguity with respect to the position, x and state 
vector, x). Notice that because the accelerometer signals are 
used in both the state and output equations, the state noise 
and measurement noise are correlated. Also note that the state 
differential equation is linear in the co-ordinate system used 
while the output equation is non-linear because of the 
inclusion of the angular rate squared term. 
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When output measurements are not available, the state vector 
and state covariance are updated via, 

iiiii

iii

QAPAP

BuxAx

+=

+=

+

+
T

1

1 ˆˆ
 (15) 

With measurements, the state vector and covariance are 
updated via the (extended) Kalman filter, 
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3. ACCURACY OF ANGULAR RATE ESTIMATE  

This section will consider the quality of the rate estimate that 
can be derived from the two, two-axis accelerometer 
arrangement discussed in the paper.  

For this, consider the sub-model for estimating the angular 
rate, θωω &&tii Δ+=+1  with output, 2θ&=y , and the sensor 

derived signals’ ( )2, θθ &&&  expected value and variance 
estimated via eq(12) and eq(13) above. 

If an extended Kalman filter is developed to estimate the rate 
(i.e. the signal that would be available from a rate gyro), from 

eq(16) with A=1, 0
0

2ω
θ ωθ

=
∂
∂

=
=&

&
yC , (with ω0 the current 

estimated rate) the following  calculations (scalar with lower 
case symbols) apply to the state error covariance: 
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( ) 4434
2

33  and 0, λλλ =≈=Δ= iii rstq . At constant, non-
zero rate, the steady state solution of the Riccati equation is  

22 /4/2/ cqrqqp ++=  (18) 

Furthermore, if the noise covariance in each channel of the 
sensor is the same, 

 ( ) ( ) ( )22222 2,2 RrRtq σσ ≈Δ≈ , and 

( ) ( ) ( ) ⎟
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⎜
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The 2tΔ  in eq(19) cancels the typical dependence of the 
sensor noise. Notice that without rotation, the rate estimate 
error covariance will increase without bound.  

To put some numbers to the above, consider the Analog 
Devices ADIS16080 80 °/sec rate gyroscope which has a 
datasheet noise figure of 0.05 °/sec/√Hz and the ADIS16003 
1.7g dual-axis accelerometer with a datasheet noise figure of 
110 μg/√Hz. (Analog Devices, 2008). Suppose R = 0.1 m 
(giving a full scale rate of 740 °/sec), and Δt = 0.01 s (which 
with appropriate low-passing filtering of the sensor signal 
gives an accelerometer noise standard deviation of  1.4 mg). 
At 80 °/sec rate, the rate standard deviation from eq(19) is 
0.24 °/sec, comparable to the rate noise at the same sampling 
rate (and filtering assumption) of 0.63 °/sec from the 
ADIS16080 rate sensor.  The noise figure to full scale ratio of 
the accelerometer is about 10 times smaller than that of the 
rate gyro. 

4. EXAMPLE 

The approach is illustrated below a numerical example. The 
centre of gravity of an object with R=0.5 m moves in a circle 

of radius 10 m while rotating at 
ttt ××− 1.0)2/sgn( end  rad/s. The simulation parameters 

shown in Table 1 are assumed. Figure 2 illustrates the effect 
of wrong initial conditions and Figure 3 illustrates the 
behaviour with correct initial conditions after the filter 
covariance has settled. 

Table 1.  Simulation Parameters 

Compass   
Standard deviation 1.0=θσ y  [rad] (~5°) 

Sampling rate 1.0 [s] 
Accelerometers   
Standard deviation 3108.9 −×=aσ  [m/s2] (~1 mG) 

Sampling rate h=0.01 [s] 
Position   
Standard deviation 0.1=xyσ  [m] 

Sampling rate 1.0 [s] 

Observations 

As the simulation shows, the filter is able to extrapolate 
position measurements (for example, 1 s updates from a GPS 
system) over a number of accelerometer. In the numerical 
investigation, the square root of the diagonal elements of the 
state covariance matrix, (i,i)P  (the standard deviation), 
was examined to get some idea of the accuracy. The position 
is estimated with a standard deviation of around 0.5 m (Fig. 
3c) and this agrees with the measurement accuracies used. On 
the other hand, the angle is estimated with a standard 
deviation of only 0.01 rad. As this is far better than the 
assumed heading measurement of 0.1 rad, it must be because 
of the assumed high accuracy of the acceleration 
measurements.  

Simulation is “doomed to succeed” but the simulation 
illustrates the principle presented in the paper. Any practical 
application would have to deal with accelerometer offset 
(bias) and drift, and if in a gravitational field, the effect of 
gravity on any sensor misalignment.  The high accuracy of 
the angle estimation is suspicious and further study is 
required to identify the effect of accelerometer bias on the 
angle estimate and its accuracy. 

5. CONCLUSIONS 

This paper has presented approximations to translate body 
frame acceleration measurements and corresponding 
covariance into the values and covariance in the inertial 
frame. The approximations for mean and variance of 
functions of random vectors may be developed to suit many 
similar engineering problems where often the density of the 
underlying distributions are unknown and a simple tool is 
required to make sensible progress on a particular problem.  

The method has been illustrated via a numerical problem. 
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Fig. 2 – Transient response of filter. Solid lines:  . Dashed lines: x. Position and angle measurements: ‘x’   

Initial P = diag {12, 12, 12, 52, 52, 12} 
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Fig. 3 – Steady response of filter. Solid lines:  . Dashed lines: x. Position and angle measurements: ‘x’   

Initial P = diag {0.12, 0.12, 0.012, 0.52, 0.52, 0.012} 
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