
Optimal Linear Quadratic Regulator for
Markovian Jump Linear Systems, in the
presence of one time-step delayed mode

observations ?

Ion Matei, Nuno C. Martins, John S. Baras

Department of Electrical and Computer Engineering, University of
Maryland, College Park, 20742, MD, USA; e-mail: imatei@umd.edu,

nmartins@umd.edu, baras@isr.umd.edu

Abstract: In this paper, we provide the solution to the optimal Linear Quadratic Regulator
(LQR) paradigm for Markovian Jump linear Systems, when the continuous state is available at
the controller instantaneously, but the mode is available only after a delay of one time step. This
paper is the first to investigate the LQR paradigm in the presence of such mismatch between
the delay in observing the mode and the continuous state at the controller. We show that the
optimal LQR policy is a time-varying matrix gain multiplied by the continuous component of
the state, where the gain is indexed in time by the one-step delayed mode. The solution to the
LQR is expressed as a collection of coupled Riccati iterations and equations, for the finite and
the infinite horizon cases respectively. In the infinite horizon case the solution of the coupled
Riccati equations or a certificate of infeasibility is obtained by solving a set of linear matrix
inequalities. We also explain the difficulties of solving the LQR problem when the mode is
observed by the controller with a delay of more than one step. We show that, with delays of
more than one time-step, the optimal control will be a time-varying nonlinear function of the
continuous state and of the control input, without presenting an exact solution.

1. INTRODUCTION

Networked control systems often rely on acknowledgments
as a way to deal with unreliable network links. In real
applications, these acknowledgments are not received at
the controller instantaneously; instead they are delayed
by at least one time-step. Under the packet drop model, a
wide class of networked control systems, in the presence of
unreliable links and delayed observations of the mode at
the controller, can be modeled as a Markovian jump linear
system.

Markovian jump linear systems represents an important
class of stochastic time-variant due to their ability to
model random abrupt changes that occur in a linear plant
structure. Motivated by a wide spectrum of applications
there has been active research in the analysis Blair [1975],
Ji [1991] and in the design of controllers Chizeck [1986]
of controllers for Markovian jump linear systems. More
specifically, in the last fifteen, the classical paradigms of
optimal control for Markovian jump linear systems (see
Costa [2005] for a more detailed survey of existing work).
Of particular interest is the Linear Quadratic Regulator
problem addressed in Abou [1994], Rami [1996], Ji [1990]
where the solution is obtained in terms of a set of coupled
Riccati equations. Other relevant results concerning the
LQR problem can be found in Boukas [1998, 1999].

In this paper we provide the solution to the optimal finite
and infinite horizon Linear Quadratic Regulator paradigm
? The material is based upon work supported by National Aeronau-
tics and Space Administration under award No NCC8235.

for Markovian jump linear systems, when the mode ob-
servations are delayed by one time step. We show the
optimal control is a matrix gain multiplied by of the con-
tinuous component of the state, where the gain is selected
according to the one-step delayed mode observation. The
optimal solution is obtained by solving a set of coupled al-
gebraic Riccati equations generated by applying a dynamic
programming approach on the optimization problem. The
existence of infinite horizon optimal control gains is tested
by formulating and equivalent LMI optimization problem.

Notations and abbreviations: Consider a general random
process Zt. Denote by Zt0 the history of the process from
0 up to time time t as Zt0 = {Z0, Z1, ..., Zt}. Refer a
realization of Zt0 by zt0 = {z0, z1, ..., zt}. For simplicity
we will use the abbreviations ”MJLS” for denoting a
Markovian jump linear system and ”LQRτ” to abbreviate
the Linear Quadratic Regulator paradigm with τ steps
delayed mode observations. We will use ”CARE” to refer
to a set of coupled Riccati equations.

Definition 1. (Markovian jump linear system) Consider
n, m and s to be given positive integers together with
a transition probability matrix P ∈ [0, 1]s×s satisfying∑s
j=1 pij = 1, for each i in the set S = {1, . . . , s},

where pij , is the (i, j) element of the matrix P . Consider
also a given set of matrices {Ai}si=1 and {Bi}si=1, with
Ai ∈ Rn×n and Bi ∈ Rn×m for i belonging to the set S.
In addition consider the random vectorX0 and the random
variable M0 assumed independent which take values in Rn
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and S, respectively. Given an i.i.d. vector valued random
process Wt taking values in Rn, the following dynamic
equation describes a discrete-time Markovian jump linear
system:

Xt+1 = AMt
Xt +BMt

Ut +Wt (1)
where Mt is a Markovian jump process taking values in S
with conditional probabilities given by pr(Mt+1 = j|Mt =
i) = pij . In equation (1), Xt ∈ Rn is the state vector,
Ut ∈ Rm represents the control input and Wt ∈ Rn with
zero mean and covariance matrix ΣW is the process noise.
The initial condition vector valued random variable X0

with covariance matrix ΣX0 , together with the Markovian
process Mt and the noise Wt are assumed independent
for all values of time t. We also make the assumption
that the Markovian process Mt is ergodic with the steady
state distribution denoted by πi = limt→∞ pr(Mt = i), for
i ∈ S.

As it can be noticed, the Markovian jump linear system
described by (1) has a hybrid state with a continuous com-
ponent Xt taking values on a finite dimensional Euclidean
space and a discrete valued componentMt representing the
mode of operation. The system has s mode of operations
defined by the set of matrices (A1, B1) up to (As, Bs).
The Markovian process Mt (which will also be called mode
process), determines which mode of operation is active at
each time instant.

Paper structure: The paper is organized in five sections.
Section 2 introduces the problem formulation addressed
in this paper. The main results concerning the optimal
solution for LQR1 paradigm are presented in Section 3.
Section 4 contains the proof of the main result together
with an analysis of the more general LQRτ , where the
mode observations are delayed by an arbitrary number of
steps.

2. PROBLEM FORMULATION

In this section we formulate the optimal LQR paradigm
under full state and one step delayed mode feedback and
present our main results concerning this problem.

Let us first define the class of admissible controllers:

Definition 2. (admissible controllers) Given the sequence
of state observations up to time t and the sequence of
mode observations up to time t−1, the class of admissible
controllers ULQR

1
consists of all feedback policies ULQR1

with the following structure:

Ut = ULQR
1
(t,Xt

0,M
t−1
0 ). (2)

Using Definition 2 we can now formulate LQR1 problem
for MJLS.

Problem 1. (problem statement) Consider a Markovian
jump linear system as in Definition 1. Given an admissible
controller U ∈ ULQR

1
, a time horizon N ∈ N ∪ {∞}, a

positive definite matrix Q ∈ Rn×n and a positive definite
matrix R ∈ Rm×m, consider the following quadratic cost
function:

JN (X0,M0,U) =

= E[
N−1∑
t=0

(XT
t QXt + UTt RUt) +XT

NQXN |X0M0], (3)

where N < ∞ and Ut = U(t,Xt
0,M

t−1
0 ). The optimal

LQR1 paradigm is defined by the following optimization
problem:

U∗,LQR
1,N = arg min

U∈ULQR1
JN (X0,M0,U). (4)

Consider the long run average cost function Jav(X0,M0,U)
defined for some arbitrary U ∈ ULQR

1

Jav(X0,M0,U) = lim sup
N→∞

1
N
JN (X0,M0,U). (5)

The solution for the infinite-horizon optimal LQR1 paradigm
is given by:

U∗,LQR
1,∞ = arg min

U∈ULQR1
Jav(X0,M0,U). (6)

3. MAIN RESULT

In this section we solve the finite-horizon and infinite-
horizon LQR1 problem for MJLS. Our main result consists
in two theorem whose proof are deferred for the following
section. We end Section 3 with a proposition concerning
the more general LQRτ problem.

Theorem 1. (finite-horizon) Part I-Optimal Solution -
The optimal solution for the finite horizon LQR1 paradigm
is given by

U∗t = −Kt,Mt−1Xt (7)
where

Kt,j = B−1
t,j C

T
t,j (8)

with

Bt,j =
s∑
i=1

pjiB
T
i Pt+1,iBi +R (9)

Ct,j =
s∑
i=1

pjiA
T
i Pt+1,iBi (10)

for t ∈ {1, ..., N − 1}, and

B0,j = BTj P1,jBj +R

C0,j = ATj P1,jBj

for t = 0, and where
Pt,j = At,j − Ct,jB−1

t,j C
T
t,j , (11)

where Pt,j are n × n symmetric positive semidefinite
matrices with PN = Q,

At,j =
s∑
i=1

pjiA
T
i Pt+1,iAi +Q (12)

(Part II-Optimal Cost) The optimal cost function is

J∗N (X0,M0) = XT
0 P0,M0X0 + g0,M0 (13)

where P0,M0 is computed backwards according to (11) and
g0,M0 is obtain from

gt,Mt−1 = E[trace(Pt+1,MtΣW ) + gt+1,Mt |Mt−1] (14)
with gN = 0 (and by convention M−1 = M0 ).
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Theorem 2. (infinite-horizon) (Part I-Existence) An
optimal solution for the infinite horizon LQR1 described
in Problem 1 exists if and only if the following CARE has
solution:

P∞,j = Aj − CjB−1
j C

T
j , P∞,j = PT∞,j > 0 (15)

where

Aj =
s∑
i=1

pji(ATi P∞,iAi +Q) (16)

Bj =
s∑
i=1

pji(BTi P∞,iBi +R) (17)

Cj =
s∑
i=1

pjiA
T
i P∞,iBi (18)

(Part II-Optimal solution) If the optimal solution
exists then it is given by:

U∗t = −K∞,Mt−1Xt (19)
where

K∞,j = B−1
j C

T
j (20)

(Part III-Optimal Cost) The infinite horizon optimal
cost is expressed as:

J ∗av(X0,M0) =
S∑
i=1

πitrace(ΣWP∞,i) (21)

Remark 1. Theorems 1 and 2 shows that the optimal pol-
icy for the LQR1 paradigm, as intuitively may have been
expected, is a matrix gain multiplied by of the continuous
component of the state, where the gain is selected accord-
ing to the one-step delayed mode observation.

Remark 2. The main difference between the solutions of
the standard LQR problem for MJLS (Chizeck [1986])
and of our problem consists in the way the coupled
Ricatti equations in (11) are formulated. Compared to
the standard case, where the symmetric matrices Pt,i are
obtained from averaged versions of Pt+1,Mt+1 , within the
current setup the resulting coupled Riccati equations have
a more complex expression. This is mainly due to the fact
that since Pt,Mt−1 depends on Mt−1 (rather then Mt as in
the standard case) we need to average entire expressions
of the form ATMt

Pt+1,Mt
AMt

resulting in the terms At,j ,
Bt,j and Ct,j .

The following proposition characterize the more general
LQRτ paradigm where at time t the controller has avail-
able a sequence of mode observations up to time t− τ .

Proposition 3. Consider the LQRτ paradigm. For τ = 1
the optimal solution is expressed in Theorems 1 and 2. For
τ ≥ 2 the optimal solution is a nonlinear function of the
state sequence Xt

t−τ , optimal control sequence U t−1
t−τ and

the mode process Mt−τ .

4. PROOF OF THE MAIN RESULT

In this section we address the proofs of the results intro-
duced in the previous section. The proof of Theorems 1
and 2 are based on the following lemma.

Lemma 4. Consider the LQR1 paradigm presented in
Problem 1. Then the optimal cost to go function

J ∗t (Xt
0,M

t−1
0 ) = min

U∈ULQR1
E[

N−1∑
k=t

(XT
k QXk +

+UTk RUk) +XT
NQXN |Xt

0,M
t−1
0 ]

for t ∈ {0, ..., N} (and where by convention we take
M−1

0 = M0), can be written as:

J ∗t (Xt
0,M

t−1
0 ) = XT

t Pt,Mt−1Xt + gt,Mt−1 (22)

where Pt,j , j ∈ S is computed as in (11) and gt,Mt−1 is
given by the recurrence (14).

Proof: The proof uses an inductive technique and follows
the steps of the proof of a similar lemma in the case of
the standard LQR problem for MJLS. For t = N we have
that:

J ∗N (XN
0 ,M

N−1
0 ) = XT

NPNXN

with PN = Q. Assume the optimal cost to go at time t+ 1
has a form as in (22):

J ∗t+1(Xt+1
0 ,M t

0) = XT
t+1Pt+1,Mt

Xt+1 + gt+1,Mt

Then the optimal cost to go at time t can be written as:

J ∗t (Xt
0,M

t−1
0 ) = min

U∈ULQR1
E[XT

t QXt + UTt RUt +

+J ∗,LQR
1

t+1 (Xt+1
0 ,M t

0)|Xt
0,M

t−1
0 ]

or,

J ∗,LQR
1

t (Xt
0,M

t−1
0 ) = min

U∈ULQR1
E[XT

t QXt + UTt RUt +

+XT
t+1Pt+1,Mt

Xt+1 + gt+1,Mt
|Xt

0,M
t−1
0 ]

By further replacing Xt+1 from equation (1) we get:

J ∗,LQR
1

t (Xt
0,M

t−1
0 ) = min

U∈ULQR1
E[XT

t QXt + UTt RUt+

+(AMtXt+BMtUt+Wt)TPt+1,Mt(AMtXt+BMtUt+Wt)+
+gt+1,Mt

|Xt
0,M

t−1
0 ] = min

U∈ULQR1
XT
t E[ATMt

Pt,Mt
AMt

+

+Q|Xt
0,M

t−1
0 ]Xt + 2XT

t E[ATMt
Pt,MtBMt |Xt

0,M
t−1
0 ]Ut+

+UTt E[BTMt
Pt,MtBMt +R|Xt

0,M
t−1
0 ]Ut+

+E[trace(Pt+1,MtΣW ) + gt+1,Mt |Xt
0,M

t−1
0 ]

Minimizing in terms of Ut (by a square completion tech-
nique) we obtain the results (22)-(10). Expressions (12)-
(10) are calculated by observing that p(Mt = i|Xt

0 =
xt0,M

t−1
0 = mt−1

0 ) = p(Mt = i|Mt−1 = mt−1). Moreover
the optimal control that minimizes the cost to go function
at time t is given by:

U∗t = −Kt,Mt−1Xt (23)
where

Kt,j = B−1
t,j C

T
t,j (24)

2

Proof of Theorem 1

Using the Dynamic Programming algorithm (Bertsekas
[1995], Whittle [1982]), the optimal cost J ∗N (X0,M0) is
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given by of the following algorithm which proceeds back-
wards in time

JN (XN
0 ,M

N
0 ) = XT

NQXN

Jt(Xt
0,M

t−1
0 ) = min

U∈ULQR1
E[XT

t QXt + UTt RUt +

+ min
U∈ULQR1

Jt+1(Xt+1
0 ,M t

0)|Xt
0,M

t−1
0 ]

for t = 0, 1, . . . , N − 1. Furthermore, the control sequence
U∗t , t = 0, 1, . . . , N − 1 is the optimal solution for the
LQR1 problem where each U∗t minimizes the right side of
the above equation. We conclude the proof by invoking the
results of Lemma 4.

2

Proof of Theorem 2

Is is immediate that if the CARE in (15) does not have
a solution we can not obtain a solution for the optimal
control problem. Let us assume that (15) does have a
solution denoted by P∞,i, for 1 ≤ i ≤ s. By using the
control expressed in (19) it is not difficult to show that
the closed loop system is stable. Indeed since

E[XT
t+1P∞,Mt

Xt+1]− E[XT
t P∞,Mt−1Xt] <∞

we obtain also that
E[XT

t Xt] <∞
which implies stability of the system.

Then since the system is stable J̃av(X0,M0) < ∞ where
J̃av(X0,M0) is a long run average cost function as in (5),
with the control input chosen to be as in (19). Notice
however that for every N > 0 the following inequality
holds

J ∗N (X0,M0) ≤ J̃N (X0,M0)
because J ∗N is the optimal cost. But since the optimal cost
is also an increasing quantity as a function of N and it is
upper bounded by J̃N we can conclude that Jav(X0,M0)
is a bounded quantity. Therefore the matrices Pt,i must
converge and moreover they converge to P∞,i the solution
of (15). The second and third part of the theorem follow
from part one together with the results of Theorem 1 and
from the ergodicity property of the Markov chain Mt.

2

In the following we establish a link between a LMI op-
timization problem and the (maximal) solution to the
CARE (15). This approach lead us to an efficient way
to compute the matrices P∞,i (if they exist). Original
results showing how solutions of CARE can be obtained
as solutions of convex programming problem can be found
in Rami [1996, 1994].

Consider the following optimization problem.

max trace(
s∑
i=1

P∞,s) (25)

subject to


−P∞,j +

s∑
i=1

pjiA
T
i P∞,iAi + Q

s∑
i=1

pjiA
T
i P∞,iBi

s∑
i=1

pjiB
T
i P∞,iAi

s∑
i=1

pjiB
T
i P∞,iBi + R

 ≥ 0

(26)

s∑
i=1

pjiB
T
i P∞,iBi +R > 0 (27)

P∞,i = PT∞,i
with 1 ≤ i ≤ s.
Suppose the above optimization problem has solution.
Then the above optimization problem has solution if and
only if a solution for (15) can be found. A proof of this
claim can be mimicked after similar proof in Rami [1996].
The key idea comes from the fact that from the Schur
complement Lemma, P∞,i satisfies (26-27) if and only if

−P∞,j +

(
s∑
i=1

pjiA
T
i P∞,iAi +Q

)
−

(
s∑
i=1

pjiA
T
i P∞,iBi

)
(

s∑
i=1

pjiB
T
i P∞,iBi +R

)−1( s∑
i=1

pjiB
T
i P∞,iAi

)
≥ 0

We know turn the statement of Proposition 3 regarding
the more general LQRτ problem. The following lemma
expresses the probability of the current mode Mt to be in
a certain state given the entire history of the state and a
τ steps delayed history of the mode process. This lemma
will be instrumental in proving the claim of Proposition 3.

Lemma 5. Within the context of Definition 1 and Problem
1, the conditional probability distribution of the mode at
time t given the history of the state Xt

0 and a τ steps
(τ > 1) delayed history of the mode M t−τ

0 is given by:

pr(Mt = i|Xt
0 = xt0,M

t−τ
0 = mt−τ

0 ) =

=

∑s
iτ−1
1 =1

∏τ−1
k=0 piτ−k−1iτ−kfW (ξk)∑s

iτ0=1

∏τ−1
k=0 piτ−k−1iτ−kfW (ξk)

(28)

where ξk = xt−k −Aiτ−k−1xt−k−1−Biτ−k−1ut−k−1, fW (·)
is the probability density function of the noise process Wt

and by convention, in the denominator, we consider iτ = i
and i0 = mt−τ (for both the numerator and denominator).

Proof: Before presenting the proof we should notice that
conditioning on Xt

0 and M t−τ
0 implies conditioning on

U t−1
0 as well, because of the chosen control policy. Hence

we can write:
pr(Mt = i|Xt

0 = xt0,M
t−τ
0 = mt−τ

0 ) =

= pr(Mt = i|Xt
0 = xt0,M

t−τ
0 = mt−τ

0 , U t−1
0 = ut−1

0 )

The proof is based on the following recurrence:
pr(Xt

0 = xt0,M
t
0 = mt

0) = pmt−1mt · fW (ξt)

·pr(Xt−1
0 = xt−1

0 ,M t−1
0 = mt−1

0 ) (29)
where ξt = xt −Amt−1xt−1 −Bmt−1ut−1.
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Using Bayes rule, the probability (28) can be expressed as:
pr(Mt = i|Xt

0 = xt0,M
t−τ
0 = mt−τ

0 ) =

=
pr(Mt = i,Xt

0 = xt0,M
t−τ
0 = mt−τ

0 )
pr(Xt

0 = xt0,M
t−τ
0 = mt−τ

0 )
with

pr(Mt = i,Xt
0 = xt0,M

t−τ
0 = mt−τ

0 ) =
s∑

iτ−1
1 =1

pr(Mt = i,M t−1
t−τ+1 = iτ−1

1 , Xt
0 = xt0,M

t−τ
0 = mt−τ

0 )

and
pr(Xt

0 = xt0,M
t−τ
0 = mt−τ

0 ) =
s∑

iτ1=1

pr(M t
t−τ+1 = iτ1 , X

t
0 = xt0,M

t−τ
0 = mt−τ

0 )

Applying the recurrence (29), we obtain (28).

2

Remark 3. We can notices from Lemma 5 that pr(Mt =
i|Xt

0 = xt0,M
t−τ
0 = mt−τ

0 ) depends nonlinearly on the
sequence of state variable Xt

t−τ , control input U t−1
t−τ−1. The

nonlinearity is induced by the fact that the fore-mentioned
sequences determine the value of function fW (ξk), a Gaus-
sian p.d.f. of the noise Wk and thus nonlinear.

Let us know address the statement of Proposition 3 and
show that in the case of delays greater then two in mode
observations, the optimal control is non-linear in the state
vectors and previous control inputs.

Assume that τ = 2, and let us apply the dynamic program-
ming algorithm to solve the LQRτ problem. Obviously, the
cost to go function for t = N is

J∗,LQR
2

N (XN
0 ,M

N−2
0 ) = XT

NPNXN , PN = Q.

At time t = N − 1 the cost to go function becomes

J∗,LQR
2

N−1 (XN−1
0 ,MN−3

0 ) =

= min
UN−1∈U

E[XN−1TQXN−1 + UTN−1RUN−1+

+XT
NPNXN |XN−1

0 ,MN−3
0 ]

Or by replacing XN we further get:

J∗,LQR
2

N−1 (XN−1
0 ,MN−3

0 ) =

= min
UN−1∈U

{XT
N−1AN−1XN−1 + UTN−1BN−1UN−1+

+2XT
N−1CN−1UN−1 + trace(PNΣW )}

where
AN−1 = E[ATMN−1

PNAMN−1 |XN−1
0 ,MN−3

0 ] +Q

BN−1 = E[BTMN−1
PNBMN−1 |XN−1

0 ,MN−3
0 ] +R

CN−1 = E[ATMN−1
PNBMN−1 |XN−1

0 ,MN−3
0 ]

An explicit formula for AN−1 is

AN−1 =
s∑
i=1

pr(MN−1 = i|XN−1
0 ,MN−3

0 )ATi PNAi

Notice that by (28) the termAN−1 will depend nonlinearly
on XN−1, XN−2, XN−3 UN−2, UN−3 and MN3 . Obviously
the same is true for BN−1 and CN−1.

Then the optimal cost to go at time t = N − 1 can be
expressed as:

J∗,LQR
1

N−1 (XN−1
0 ,MN−3

0 ) = XT
N−1PN−1,MN−3XN−3

+gN−1,MN−3

where the matrix PN−1,MN−3 is computed by an expression
similar to the one in (11) and it will also be dependent
nonlinearly on XN−1

N−3 , UN−2
N−3 and MN−3 respectively. The

same is true for the optimal control U∗N−1 since at t = N−1
it is expressible by a formula similar to (7).

The optimal cost at t = N − 2 is

J∗,LQR
2

N−2 (XN−2
0 ,MN−4

0 ) =

= min
UN−2∈U

E[XN−2TQXN−2 + UTN−2RUN−2+

+XT
N−1PN−1,MN−3XN−1|XN−2

0 ,MN−4
0 ]

Notice that at this stage the cost function is no longer
quadratic in UN−2. This is due to the fact the matrix
PN−1,MN−3 from the previous step depends on UN−2

as well. Hence the optimal cost to go function can be
generically written as:

J∗,LQR
2

N−2 (XN−2
0 ,MN−4

0 ) =

= min
UN−2∈U

g(XN−2
N−4 , U

N−2
N−4 ,MN−4)

where g(·) is cost function which is no longer quadrati-
cally in UN−2. Although we were not able to obtain an
analytical expression for the optimal control it should be
clear that since exponential terms depending on UN−2 are
contained by g(·) the optimal control is not going to have
a linear expression as in the standard LQR problem.

5. CONCLUSIONS

In this paper we solved the optimal Linear Quadratic Reg-
ulator paradigm for Markovian Jump linear System with
one step delayed mode observations. This setup is useful is
networked control applications which rely on acknowledg-
ments not received at the controller instantaneously. The
optimal control policy was shown to be a linear feedback
of the current state with a gain dependent on the delayed
mode. The optimal solution was provided in terms of a
set of coupled Riccati equations. For the infinite horizon
case the solution of the associated CARE was shown to
be obtained as a solution of LMI optimization problem.
An analysis of the LQR problem in case of arbitrarily
delayed mode observations is presented. We demonstrate
that the optimal policy depends nonlinearly on a sequence
of state observations and control inputs whose length
depends on the value of the delay. As future work, we
intend to address the optimal Linear Quadratic Gaussian
Regulator paradigm for Markovian Jump Linear Systems
with delayed mode observations.
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