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Abstract: This paper advocates a new subspace system identification algorithm for the errors-
in-variables (EIV) state space model via the EM algorithm. To initialize the EM algorithm an
initial estimate is obtained by the errors-in-variables subspace system identification method:
EIV-MOESP (Chou et al. [1997]) and EIV-N4SID (Gustafsson [2001]). The EM algorithm is
an algorithm to compute the maximum value for the likelihood function that is consists of two
steps; namely the E- and M-steps. The E- and M-steps in the EM algorithm are calculated
by computing the conditional expectation under the assumption that the input-output data
is completely observed. Numerical example shows that the EM algorithm can monotonically
improve the initial estimates obtained by subspace identification methods.
Keywords: Subspace system identification, errors-in-variables model, EM-algorithm.

1. INTRODUCTION

The identification problem for the linear state space mod-
els based on a data corrupted by a noise on both inputs
and outputs are called errors-in-variables (EIV) models.
Recently the errors-in-variables models have received more
attention (Chou et al. [1997], Gustafsson [2001], Li et al.
[2001], Diversi et al. [2005]) due to its wide application in
engineering and economics. Most approaches (Chou et al.
[1997], Gustafsson [2001], Li et al. [2001]) are based on sta-
tistical frameworks for example the instrumental variables
and principal components analysis. The maximum likeli-
hood estimates has been applied by Diversi et al. [2005]
to identify the unknown parameters in ARMA model. In
particular, in this paper, we shall present a solution to the
problem of identifying the unknown parameters in the EIV
state space models by applying the EM algorithm.

The maximum likelihood estimation (MLE) of parameters
appearing in the state space model has been approached,
for most part, using steepest ascent and Newton-Raphson
corrections to iteratively solve the non-linear equations
(Hamilton [1994]). The steepest ascent method may re-
quire a very large number of iterations to close in on the
local maximum. The Newton-Raphson procedure is also
computationally expensive since it involves a set of recur-
sions for the second order derivatives of the log-likelihood
function and require a matrix inversion of second order
partial derivatives at each step.

To circumvent these difficulties, Dempster et al. [1977],
have introduced the expectation maximization (EM) al-
gorithm, which is an iterative algorithm for computing
the MLE in incomplete data problems. The EM algorithm
can be broken down into the expectation (E) step and
maximization (M) step, with the basic idea being to max-
imize the incomplete data log-likelihood by maximizing
the current conditional expectation of complete data log-
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likelihood given the incomplete data (Little et al. [2002],
Mclachlan et al. [1997]). There are several advantages of
using EM algorithm, for example it does not require the
second order derivatives to be calculated or approximated
and the EM algorithm always increases the likelihood
function, converging to at least a stationary point of the
log-likelihood function. Stationary values may, of course,
be either a local or global maximum or a point on ridge
(Shumway et al. [1982]). A disadvantage is that the rate of
convergence of the EM algorithm is somewhat slower than
the Newton-Raphson procedure, which has a quadratic
convergence in the neighborhood of the maximum.

A system identification method based on EM algorithm
has been proposed by Shumway et al. [1982], where the
stationary stochastic process without exogenous input has
been considered for two cases with missing data and
without missing data. Identification problems in the ARX
model setting subject to missing data have been studied
in Isaksson et al. [1993]. The exogenous input for the state
space model has been considered by Gibson et al. [2005],
in which the output data are purely observed.

In this paper the conditional expectation is computed by
the Kalman filter and smoother. In order to apply the
EM procedure, initial values are required for the unknown
parameters. Therefore we use EIV subspace system iden-
tification methods to obtain initial estimates of the EIV
state-space model. We will examine two different sets of
starting values, since the EM algorithm may converge to
different stationary values corresponding to a local rather
than global maxima.

The remainder of this article is arranged as follows. In
section 2, the problem is stated along with underlying
assumptions. In section 3, we briefly review the EM
algorithm and derives a EIV state space identification
method based on the EM algorithm, where we initialize the
EM algorithm by subspace system identification methods.
Section 4 gives a simulation result and section 6 concludes
the paper. Appendix A presents the Kalman filter and
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smoother to be used in the E-step, and Appendices B and
C gives the proof of Lemma 1 and Lemma 2; respectively.

2. PROBLEM STATEMENT

As depicted in Fig. 1, consider the linear time invariant
(LTI) errors-in-variables state space model described by
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]
+
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]
, (1)

where xt ∈ R
n, ût ∈ R

m and yt ∈ R
p are unknown

state, true input and measured output vectors respectively.
Furthermore, the noises wt and vt are Gaussian white
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Fig. 1. Errors-in-variables model

noises with zero mean and finite covariance matrices

E
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=

[
Q S

ST R

]
. (2)

The measured input signals ut is modeled as

ut = ût + ũt, (3)

where ũt ∈ R
m is Gaussian white noises with zero mean

and finite positive definite covariance matrix Σũ. Further-
more, we assume in the sequel, that ũt is uncorrelated with
{ût, wt, vt}.

It should be noted that the EM-algorithm estimate for
the state space model (Shumway et al. [1982], Gibson
et al. [2005]) is biased estimate if it is applied to estimate[

A B
C D

]
in the EIV state space model(see Appendix B).

The following assumptions are now introduced.

• (A1) System (1) is asymptotically stable, i.e. all
eigenvalues of the matrix A are inside the unit circle.

• (A2) All system modes are observable and reachable.
• (A3) The true input ût is an i.i.d. random variable

with N(¯̂ut,Σû) where the variance Σû > 0 and ût is
independent of (xt, vt, wt, ũt).

• (A4) The noise variances Σũ is known.

If assumption (A3) has been omitted then our problem
setting is not identifiable (see Solary [1969], Bekker et al.
[1984]). Furthermore, if the problem settings has been
changed to the well known Berkson model, i.e.

ût = ut + ũt,

Then it trivial to conclude that the subspace system
identification (Verhaegen et al. [1992], Picci et al. [1996],
Overschee et al. [1994]), and maximum likelihood estimate
(Shumway et al. [1982], Gibson et al. [2005]) still give
unbiased estimate.

The problem under investigation can be stated as follows.

Problem: Assume a time sequence of data {(ut, yt), t =
1, · · · , N} is given. Then, the problem of interest is to
estimate the true input data {ût : t = 1, · · · , N} and
the parameter (A,B,C,D,Q, S,R) within the freedom of
equivalent transformation. The fact that we account for

the possibility that the input signal is not exactly known,
makes the problem difficult, and is often referred to as an
errors-in-variables (EIV) problem (Gustafsson [2001]).

3. EM ALGORITHM

In this section, the EM algorithm will be reviewed based on
Dempster et al. [1977], Little et al. [2002], Mclachlan et al.
[1997], and we will present an algorithm for the estimation
of LTI EIV state space models represented by (1) based
on the EM algorithm.

3.1 EM algorithm: review

Assume that the observed data Y are generated according
to some distribution f(Y ). We write Y = (Yobs, Ymis)
where Yobs represents the observed part of Y and Ymis

the missing part. We call Yobs the incomplete data and
Y the complete data. The objective is to maximize the
incomplete data likelihood

L(Yobs; Θ) =

∫
f(Yobs, Ymis | Θ)dYmis, (4)

with respect to Θ. To compute the MLE in the presence
of missing data, the EM algorithm has been used in two
steps, i.e. E-step and M-step.

The E-step finds the conditional expectation of the miss-
ing data given the observed data and current estimated
parameters, and then substitutes these expectations for
the missing data. Specifically, let Θ(j−1) be the current
estimate of the parameter Θ. Then E-step finds the con-
ditional expectation of the complete-data log-likelihood
given Θ(j−1):

Q(Θ | Θ(j−1)) = E{logL(Y ; Θ) | Yobs,Θ
(j−1)}. (5)

The M-step is particularly simple to describe: compute the
MLE of Θ just as if there were no missing data, that is, as if
they had been filled in. Hence, the M-step determines Θ(j)

by maximizing the expected complete-data log-likelihood:

Q(Θ(j) | Θ(j−1)) ≥ Q(Θ | Θ(j−1)), ∀Θ.

It should be noted that for any EM algorithm, the change
from Θ(j−1) to Θ(j) does not decrease the log-likelihood.

3.2 EM algorithm for the errors-in-variables model

Define (YN , UN ) as the incomplete data and

(XN , YN , UN , ÛN ) the complete data where
XN = {x0, x1, · · · , xN} in order to apply the EM

algorithm. For simplicity let F
(j−1)
N = {YN , UN ,Θ(j−1)},

where (j−1) means the previous iteration if j denotes the
current iteration. Hence to facilitate the EM algorithm,
we need to derive the joint probability density function of
Θ based on the complete data.

Let αt =

[
wt

vt

]
and by applying the Bayes theorem, the

relationship of the observations to the input, output data
and the state is written as:

pΘ

([
xt+1

yt

] ∣∣∣Xt, Ût

)
= pΘ

([
xt+1

yt

]
| xt, ût

)

= fα

([
xt+1

yt

]
−

[
A B
C D

] [
xt

ût

])
(6)
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where fαt
(·) represent the (p + n)-variate normal density

function with zero mean and covariance matrix

[
Q S

ST R

]
.

We see that the observations are conditionally independent
given the present input and state, and that the observa-
tions are linear and Gaussian.

Assume that

x0 ∼ f0(x0 − µ0)

where f0(·) represents the n-variate normal density of the
initial state x0 with zero mean and covariance matrix Σ0.
Since f0 and fαt

completely specify the likelihood function,
we have

L(X,Y, Û ; Θ) = pΘ(XN , YN , ÛN )

= f0(x0 − µ0)

N∏

t=1

fαt

([
xt+1

yt

]
−

[
A B
C D

] [
xt

ût

])

× fũt
(ut − ût) (7)

Under the Gaussian assumption, the complete data log-
likelihood of (7) can be written as:

logL(X,Y, Û ; Θ) = −
1

2
log | Σ0 | −

N

2
log | Σũ |

−
N

2
log

∣∣∣∣
Q S

ST R

∣∣∣∣ −
1

2
(x0 − µ)TΣ−1

0 (x0 − µ)

−
1

2

N∑

t=1

(ut − ût)
TΣ−1

ũ (ut − ût)

−
1

2

N∑

t=1

([
xt+1

yt

]
−

[
A B
C D

] [
xt

ût

])T [
Q S

ST R

]−1

×

([
xt+1

yt

]
−

[
A B
C D

] [
xt

ût

])
(8)

Thus in view of (8) if the true inputs data ût and states
xt were observed, then the MLE can be computed easily.
However, since the true input ût and states xt are not
observed, we compute the MLE by iteratively calculating
the E- and M-step of the EM algorithm.

To compute the E-step in the EM algorithm, the condi-
tional expectation of the incomplete data with respect to
the observed data are calculated in the following lemma.

Lemma 1. For the EIV state-space model structure (1) un-
der the Gaussian assumption, the function Q(Θ | Θ(j−1))
defined in (5) can be computed as:

Q(Θ | Θ(j−1)) = −
1

2
log | Σ0| −

N

2
log | Σũ | −

N

2
log

∣∣∣∣
Q S

ST R

∣∣∣∣

−
1

2
Tr{Σ−1

0 [P0|N + (x0|N − µ0)(x0|N − µ0)T]}

−
1

2
Tr{Σ−1

ũ
[

N∑

t=1

(ut − E{ût | F
(j−1)
N

})(ut − E{ût | F
(j−1)
N

})T]}

−
1

2
Tr

{[
Q S

ST R

]−1 [
Φ − Ψ

[
A B

C D

]T

−

[
A B

C D

]
ΨT

+

[
A B

C D

]
Γ

[
A B

C D

]T
]}

, (9)

where

Φ =

N∑

t=1

[
E{xt+1xT

t+1 | F
(j−1)
N

} xt+1|NyT
t

ytx
T
t+1|N yty

T
t

]
, (10)

Ψ =

N∑

t=1

[
E{xt+1xT

t | F
(j−1)
N

} E{xt+1ûT
t | F

(j−1)
N

}

ytx
T
t|N ytu

T
t|N

]
, (11)

Γ =

N∑

t=1

[
E{xtx

T
t | F

(j−1)
N

} E{xtû
T
t | F

(j−1)
N

}

E{ûtx
T
t | F

(j−1)
N

} utu
T
t + Σũ

]
. (12)

The conditional expectations in the above lemma can be
computed by using the Kalman filter and smoother.

Lemma 2.

E{ûtx
T
t | F

(j−1)
N } = ut|NxT

t|N

E{xt+1û
T
t | F

(j−1)
N } = B(Σu − Σũ)BT + xt+1|Nut|N

The M-step can be easily achieved via the following lemma.

Lemma 3. The function Q(Θ | Θ(j−1)) of Lemma 1 is
maximized by

[
A B
C D

]
= ΨΓ−1 (13)

[
Q S

ST R

]
= N−1(Φ − ΨΓ−1ΨT) (14)

The iterative procedure is easy to apply since the initial
estimate Θ(0) can be used to produce the initial xt|N , Pt|N

and Mt|N by the recursions in Appendix A. Then, simple

calculations in (10)-(12) give the updated Θ(1), and the
recursions are used to generate new xt|N , Pt|N and Mt|N .
The iterations are stopped when the log-likelihood and
parameter estimates converge.

The EM algorithm for EIV state space models is summa-
rized as follows

EM algorithm estimate for EIV state space model

Step 1: Initialize Θ(0) = {A,B,C,D,Q,R} using EIV
subspace identification methods MOESP or N4SID.

Step 2: By using Θ(0), run the Kalman filter and
smoother shown in Appendix A.

Step 3: Calculate the E-step using (10)-(12).
Step 4: Calculate the M-step using (15)-(16).
Step 6: Repeat steps 2-4 until we get a satisfactory
convergence.

4. NUMERICAL EXAMPLE

The following example is a slightly modified version of
the one used in Diversi et al. [2005]. Where the numerical
simulation is performed on two inputs two outputs time-
invariant system with N = 500 described by the following
matrices:

A =

[
0 1 0

−0.3 0.4 −0.2
−0.1 0.2 0.4

]
, B =

[
0.8 −0.8
0.17 −0.37
1.09 1.1

]
,

C =

[
1 0 0
0 0 1

]
, D =

[
1.7 1.5
0.51 −1

]
.

The noise free input sequence ût is a zero mean with a unit
variance Gaussian process, and a sample of the unmeasur-
able output data ŷt is shown in Fig. 2. Furthermore, the
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Fig. 2. Un-observed output data ŷ

noise sequences wt, ỹt and ũt are characterized as follows

wt ∼ N(03, 0.1 × I3),

ũt ∼ N(02, 0.1 × I2),

ỹt ∼ N(02, 0.1 × I2),

A sample for realizations of the noises ỹt and ũt are shown
in Fig. 3. Moreover, the initial state x0 is a random vector
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Fig. 3. A sample process noise ũ and ỹ

and has been initialized as x0|−1 = 0 and P0|−1 = In.

Fig. 4 shows that the prediction error defined by

EN =
1

N

N∑

t=1

(yt − Cxt|t−1)
2

decreases by iteration and hence we infer that the estimate
converges toward the true system. Fig. 4 also shows that
about 40 iterations lead to considerable change in the
performance, whereas further iterations do not change it
significantly.

5. CONCLUSION

In this paper, we have considered the EM algorithm ap-
plied to the errors-in-variables state space models initial-
ized by the classical errors-in-variables subspace system
identification algorithms. Then, EM algorithm is derived
by taking the conditional expectation of the log-likelihood
function under the assumption that the states can be

10
0

10
1

10
2

10
3

0

1

2

3

x 10
−4

EM−MOESP
EM−N4SID

Number of iterations

E
N

Fig. 4. Error functions for EM initialized by MOESP and
N4SID

considered as incompletely observed data. Numerical ex-
amples have shown the effectiveness of state space identi-
fication method based on the proposed EM algorithm.
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Appendix A. KALMAN FILTER AND SMOOTHER
FOR EM ITERATION

The Kalman filter is given by (Diversi et al. [2005])

yt+1|t = Cxt|t + Dut, (A.1)

xt+1|t = Axt|t−1 + But + Ktǫt, (A.2)

Kt = [APt|t−1C
T + St]Σ

−1
ǫt

, (A.3)

Pt+1|t = APt|t−1A
T + Qt − [APt|t−1C

T + St]Σ
−1
ǫt

× [APt|t−1C
T + St]

T. (A.4)

and the Kalman smoother for t = N,N − 1, · · · , 1,

xt−1|N = xt−1|t−1 + St−1[xt|N − xt|t−1], (A.5)

Pt−1|N = Pt−1|t−1 + St−1[Pt|N − Pt|t−1]S
T
t−1, (A.6)

St−1 = Pt−1|t−1AP−1
t|t−1, (A.7)

Mt|N = E{(xt|N − xt)(xt−1|N − xt−1)
T | F

(j−1)
N },

(A.8)

MN |N = (I − KNC)APN−1|N−1, (A.9)

Mt|N = Pt|tS
T
t−1 + St(Mt+1|N − APt|t)S

T
t−1, (A.10)

ũ(t | t) = [Σ
ũy

(t) − ΣũDT]Σǫ(t)
−1ǫ(t), (A.11)

ỹ(t | t) = [Σỹ − ΣT

ũy
DT]Σǫ(t)

−1ǫ(t). (A.12)

By using (A.11) and (A.12), the minimal variance esti-
mates of ŷ(t) and û(t) can be written in the form

û(t | t) = u(t) − [Σ
ũy

− ΣũDT]Σǫ(t)
−1ǫ(t), (A.13)

ŷ(t | t) = y(t) − [Σỹ − ΣT

ũy
DT]Σǫ(t)

−1ǫ(t), (A.14)

which are initialized by x0|0 = µ, and P0|0 = P0. Then,

E{xtx
T
t | F

(j−1)
N }= Pt|N + xt|NxT

t|N , (A.15)

E{xtx
T
t−1 | F

(j−1)
N }= Mt|N + xt|NxT

t−1|N , (A.16)

we replace z(t) by its innovation (AlMutawa [2008])

ũ(t | N) = ũ(t | t) +

N∑

s=t+1

cov{ũ(t), ǫ(s)}Σǫ(s)
−1ǫ(s),

(A.17)

ỹ(t | N) = ỹ(t | t) +

N∑

s=t+1

cov{ỹ(t), ǫ(s)}Σǫ(s)
−1ǫ(s),

(A.18)

The covariances can be found as follows

cov{ũ(t), ǫ(s)} = [Σũ(K(t)D − B)T − Σ
ũy

KT(t)]L(s − 1, t)TCT,

(A.19)

cov{ỹ(t), ǫ(s)} = [ΣT

ũy
(K(t)D − B)T − ΣỹKT(t)]L(s − 1, t)TCT,

(A.20)

and where where L(s−1, t) = [A−K(s−1)C][A−K(s−
2)C] · · · [A − K(t + 1)C] and L(t, t) = In.

Proof 1. The equality follows from

E{ûtx
T
t | F

(j−1)
N } = cov{ût, xt} + ût|Nxt|N ,

= cov{ût, Axt−1 + Bût−1 + wt−1} + ût|Nxt|N ,

= ût|Nxt|N ,

and last equality follows from

E{xt+1û
T
t | F

(j−1)
N } = cov{xt+1, ût} + xt+1|N ût|N ,

= cov{Axt + Bût + wt, ût} + xt+1|N ût|N ,

= BΣûBT + xt+1|N ût|N ,

= B(Σu − Σũ)BT + xt+1|N ût|N .

Appendix B. BIAS

Even if the state xt is known, the classical EM-algorithm
Gibson et al. [2005], Shumway et al. [1982] estimate of[

A B
C D

]
is biased estimate. To be precise the EM algorithm

estimate for Θ if xt is measured given by

[
A B

C D

]

ŨN

=

N∑

t=1

[
xt+1xT

t xt+1uT
t

ytx
T
t ytu

T
t

] N∑

t=1

[
xtx

T
t xtu

T
t

utx
T
t utu

T
t

]−1

To be precise consider

E

{[
A B
C D

]

ŨN

}
= EŨN

E

{[
A B
C D

]

ŨN

| ŨN

}

= EŨN

{
N∑

t=1

[
xt+1x

T
t xt+1u

T
t

ŷtx
T
t ŷtu

T
t

] N∑

t=1

[
xtx

T
t xtu

T
t

utx
T
t utu

T
t

]−1
}

= EŨ

{
N∑

t=1

[
xt+1x

T
t xt+1u

T
t

(yt − ỹt)x
T
t (yt − ỹt)u

T
t

]

×

N∑

t=1

[
xtx

T
t xtu

T
t

utx
T
t utu

T
t

]−1
}

= EŨ

{
N∑

t=1

([
xt+1x

T
t xt+1u

T
t

ytx
T
t ytu

T
t

]

−

[
0 0

ỹtx
T
t ỹtu

T
t

]) N∑

t=1

[
xtx

T
t xtu

T
t

utx
T
t utu

T
t

]−1
}

=

[
A B
C D

]
− Bias
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where

Bias = EŨ

{
N∑

t=1

[
0 0

ỹtx
T
t ỹtu

T
t

] N∑

t=1

[
xtx

T
t xtu

T
t

utx
T
t utu

T
t

]−1
}

Appendix C. PROOF OF LEMMA 1

Thus

E{logL(X, Ŷ , Û ; Θ) | Ŷ , Û , Θ(j−1)} = E

{
−

1

2
log | Σ0 |

−
N

2
log | Σũ | −

N

2
log

∣∣∣∣
Q S

ST R

∣∣∣∣ −
1

2
(x0 − µ)TΣ−1

0 (x0 − µ)

−
1

2

N∑

t=1

(ut − ût)
TΣ−1

ũ
(ut − ût)

−
1

2

N∑

t=1

([
xt+1

yt

]
−

[
A B

C D

][
xt

ût

])T
[

Q S

ST R

]−1

×

([
xt+1

yt

]
−

[
A B

C D

][
xt

ût

])}
(C.1)

last equation implies

E{logL(X, Ŷ , Û ; Θ) | Ŷ , Û ,Θ(j−1)} = −
1

2
log | Σ0 |

−
N

2
log

∣∣∣∣
Q S

ST R

∣∣∣∣ −
N

2
log | Σũ |

−
1

2
Tr{Σ−1

0 [P0|N + (x0|N − µ0)(x0|N − µ0)
T]}

−
1

2
Tr{Σ−1

ũ [(ut − ût|N )(ut − ût|N )T]}

−
1

2
Tr

{[
Q S

ST R

]−1

E

{
N∑

t=1

([
xt+1

yt

]
−

[
A B
C D

] [
xt

ût

])

×

([
xt+1

yt

]
−

[
A B
C D

] [
xt

ût

])T
}}

(C.2)

next step we will expand the last term of the right hand
side of (C.2), i.e.

=

N∑

t=1

E

{[
xt+1

yt

] [
xt+1

yt

]T

−

[
xt+1

yt

][
xt

ût

]T [
A B

C D

]T

−

[
A B

C D

][
xt

ût

][
xt+1

yt

]T

+

[
A B

C D

][
xt

ût

][
xt

ût

]T [
A B

C D

]T
}

=

N∑

t=1

{[
E{xt+1xT

t+1} xt+1|NyT
t

ytx
T
t+1|N yty

T
t

]

−

[
E{xt+1xT

t } E{xt+1ûT
t }

ytx
T
t|N ytu

T
t|N

][
A B

C D

]T

−

[
A B

C D

][
E{xtx

T
t+1} xt|NyT

t

E{ûtx
T
t+1} ut|NyT

t

]

+

[
A B

C D

][
E{xtx

T
t } E{xtû

T
t }

E{ûtx
T
t } utu

T
t + E{ũtũ

T
t }

][
A B

C D

]T
}

=

N∑

t=1

{[
E{xt+1x

T
t+1} xt+1|NyT

t

ytx
T
t+1|N yty

T
t

]

−

[
E{xt+1x

T
t } E{xt+1û

T
t }

ytx
T
t|N ytu

T
t|N

] [
A B
C D

]T

−

[
A B
C D

] [
E{xtx

T
t+1} xt|NyT

t

E{ûtx
T
t+1} ut|NyT

t

]

+

[
A B
C D

] [
E{xtx

T
t } E{xtû

T
t }

E{ûtx
T
t } utu

T
t + Σũ

] [
A B
C D

]T
}

which proves lemma 1.

Appendix D. PROOF OF LEMMA 2

Let Θ =

[
A B
C D

]
, then take the partial derivative of (9)

with respect to Θ gives

∂

∂Θ
Q(Θ | Θ(j−1)) = −

1

2

∂

∂Θ
Tr

{[
Q S

ST R

]−1 [
Φ − Ψ

[
A B

C D

]T

−

[
A B

C D

]
ΨT +

[
A B

C D

]
Γ

[
A B

C D

]T
]}

= 0. (D.1)

this implies that

−Ψ − Ψ +

[
A B
C D

]
Γ +

[
A B
C D

]
Γ = 0

so that [
A B
C D

]
= ΨΓ−1

and let X =

[
Q S

ST R

]
, gives

∂

∂X
Q(Θ | Θ(j−1)) =

∂

∂X

{
log

∣∣∣∣
Q S

ST R

∣∣∣∣

−
1

2
Tr

{[
Q S

ST R

]−1
[
Φ − Ψ

[
A B
C D

]T

−

[
A B
C D

]
ΨT

+

[
A B
C D

]
Γ

[
A B
C D

]T
]}}

the last equation gives

N

[
Q S

ST R

]−1

=

[
Q S

ST R

]−1
{

Φ − Ψ

[
A B
C D

]T

−

[
A B
C D

]
ΨT +

[
A B
C D

]
Γ

[
A B
C D

]T
}[

Q S

ST R

]−1

using the values of

[
A B
C D

]
proves the lemma.
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