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Abstract: The efficiency of energy management strategies for hybrid electric vehicles depends
significantly on the accuracy of the prediction of the load power which has to be provided
by the hybrid drive. For vehicles in fixed-route service, measurements gained during vehicle
operation can be used for the design of a predictor for the online calculation of the expected
speed profile which is directly related to the load power profile. The paper describes, how the
relevant information contained in measurements of the vehicle speed and position is processed
and compressed in order to obtain a prediction algorithm that can cope with the limited memory
space and computing power of a vehicle controller. The characteristics of the resulting algorithm
are illustrated with real-life data.

Keywords: Energy management systems, prediction methods, hybrid vehicles, predictive
control, data models

1. INTRODUCTION

The paper deals with the real-time prediction of the load
power demand of a hybrid electric vehicle to be used for an
efficient energy management. Since the performance of the
energy management control strategy depends significantly
on the accuracy of the load power prediction, the inves-
tigation of prediction approaches is an ongoing topic of
research (Johannesson [2005], Finkeldei and Back [2004]).

In Bartholomaeus et al. [2007], the energy management
problem for a hybrid fuel cell drive train was split into the
prediction PL(.|t̃) of the load power PL(.), which is drawn
by the drive motor, and the calculation of the optimal
setpoint function u∗(.|t̃) based on the current state x(t̃)
of the hybrid drive (see Figure 1). As a main result of
that paper, the optimal control problem to be solved by
the optimizer was formulated in such a way that real-
time ability of the resulting algorithm was obtained. In
order to complete the work towards a real-time energy
management, the present paper describes how a prediction
of the load power can be obtained for the specific case of
a vehicle operating in fixed-route service.

As depicted in Figure 1, the input data for the real-time
calculation of the prediction PL(.|t̃) of the load power are
the values of the vehicle position s̃ = s(t̃) and the vehicle
speed ṽ = v(t̃) at the current time t̃. In order to determine
the map (s̃, ṽ) �→ PL(.|t̃) a sufficiently large number of
measurements of associated trajectories of vehicle position,
vehicle speed and electrical load power over time have to
be taken and processed in advance.

The paper describes an intermediate but crucial step
towards that goal. Instead of determining the prediction
PL(t|t̃)

(

t ≥ t̃
)

of the load power over time we describe the
calculation of the prediction v(s|s̃) (s ≥ s̃) of the vehicle
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Fig. 1. Structure of the energy management control system

speed over position. Given that future speed profile v(.|s̃),
well-known physical relations can be used to derive the
prediction PL(.|t̃) of the load power for a given vehicle
and altitude profile. Hence, the prediction of the vehicle
motion v(.|s̃) already includes the key task of the predictor,
which is the calculation of the future vehicle motion
under the condition of an unknown driver behaviour
and disturbances from the environment, e.g., from other
vehicles.

The outline of the paper is as follows: In Section 2, the
preprocessing of the measurements is described, which
includes first the description of the vehicle route by using
GPS measured trajectories of the vehicle (position over
time) and second the merging of position and speed
measurements in order to increase the accuracy of the
noisy sensor data. In Section 3, the compression of the
measurements into a smaller data set, which describes only
the information relevant to the prediction of the speed
profile, is presented. Then, the developed algorithm for
the calculation of the prediction v(.|s̃) is described. In
Section 4, that algorithm is applied to real-life data and the
Summary gives an outlook on the future work concerning
the improvement of the prediction algorithm.
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2. PREPROCESSING OF THE MEASURED DATA

For vehicles operating in fixed-route service, the data
necessary to derive the prediction of the speed profile v(.|s̃)
can practically be obtained by monitoring the motion of
the vehicle, e.g., by using a GPS device, which is able to
measure the (x, y)-position and the speed of the vehicle
independently. By driving the same route repeatedly, the
r samples

(ti, x(ti), y(ti), v(ti))1 (i = 1, . . . , I1)

. . .

(ti, x(ti), y(ti), v(ti))r (i = 1, . . . , Ir)

(1)

are obtained, where ti are the points of measurement time,
x(ti) and y(ti) are the horizontal 2D-coordinates (latitude
and longitude converted to meters) of the vehicle, and v(ti)
is the speed of the vehicle. The task of this Section is first
to calculate the arc length of the driven route from the
(x, y)-position data and second to utilize the property that
the measurement errors between the (x, y)-data and the v-
data are uncorrelated in order to increase the accuracy of
the measured data.

2.1 Description of the vehicle route and calculation of the
arc length

From the measurements given in (1), a spline function
S : τ �→ (x(τ), y(τ)) is determined which describes the
route of the vehicle as a function of the argument τ ∈ R.
For that purpose, the spline function is calculated as a least
squares approximation (de Boor [2001]) of the measured
(x, y)-position data with the knots sequence appropriately
chosen by a heuristic rule.

The least squares spline approximation requires all (x, y)-
data points to be ordered by ascending values of the inde-
pendent variable τ . Otherwise it can be shown by simple
examples that the resulting spline ”cuts the corner” of the
originally driven route, which implies a poor approxima-
tion. Since the value of the argument τ related to a given
data point is a priori unknown, the data points cannot
be ordered as required. Therefore, a two step procedure is
applied in order to describe the route of the vehicle and
the arc length of the vehicle trajectory.

(1) Normalize each of the given samples (1) in time
leading to

(ti − t1, x(ti), y(ti))j (j = 1, . . . , r)

and merge the resulting normalized samples into a
single sequence of length K = I1I2 · · · Ir

(tk, x(tk), y(tk))k (k = 1, . . . , K) ,

in such a way that tk+1 ≥ tk holds. Calculate the
spline function S1 that approximates the data points
(x(tk), y(tk)), k = 1, . . . , K, in the least squares sense.

(2) For each data point (x(tk), y(tk)) calculate the argu-
ment τk in such a way that

‖S1(τk) − (x(tk), y(tk))‖2

is minimal 2 .

2 Practically, the value of τk can be found by orthogonal projection
of each data point onto the spline, which can locally be solved by
applying a Newton iteration scheme.

(3) Order the triples (τk, x(tk), y(tk)) by nondecreasing
values of τk, i.e., find a permutation Π such that
τΠ(k+1) ≥ τΠ(k). Calculate the spline function S2 that
approximates the data points (x(tΠ(k)), y(tΠ(k))), k =
1, . . . , K, in the least squares sense.

(4) Given a fixed sample index j ∈ {1, . . . , r}. For each
pair (x(ti), y(ti))j (i = 1, . . . , Ij) the argument ζi is
determined in such a way that

‖S2(ζi) − (x(ti), y(ti))j‖2

is minimal. Then, the arc length related to the point
(x(ti), y(ti))j is calculated by

si =

ζi
∫

0

‖ d

dt
[S2(ζ)]‖2 dζ.

In the following, the (x, y)-information is replaced by the
arc length. That means, instead of (1) the sequences

(ti, si, vi)1 (i = 1, . . . , I1)

. . .

(ti, si, vi)r (i = 1, . . . , Ir) ,

(2)

with the abbreviation vi = v(ti), are used.

2.2 Sensor data fusion

We consider a single sample (ti, si, vi)j , i.e., the index j is
fixed. Since the measurements of the (x, y)- and the v- data
are done by independent sensors channels, the data are
not consistent in general, i.e., the (numerical) integration
of the values vi of speed at time ti (i = 1, . . . , Ij) does not
provide the arc length given by the related values si. That
inconsistency can be exploited to adjust the measured data
in order to suppress the measurement noise. Since the step
size in time is very small in practise (typically a small
fraction of a second), we use the simple integration rule

ŝi+1 = (ti+1 − ti) v̂i + si (3)

to describe the expected relation between the measure-
ment of speed and the calculated arc length. The result-
ing task is to ensure equation (3) while the difference
between the adjusted measurements, ŝi and v̂i, and the
original measurements, si and vi, is as small as possible.
Mathematically, this can be expressed by the optimization
problem

‖s− ŝ‖2 + λ‖v − v̂‖2 → min
ŝ,v̂

(4)

with respect to the constraint (3) where

s =







s1

...
sIj






, ŝ =







ŝ1

...
ŝIj






, v =







v1

...
vIj






, v̂ =







v̂1

...
v̂Ij






.

The scalar weight λ > 0 is used to balance the correction of
the speed and the arc length data. Task (4) can be solved
numerically by least squares algorithms.

By applying that procedure to each of the samples in (2),
the corrected samples

(ti, ŝi, v̂i)1 (i = 1, . . . , I1)

. . .

(ti, ŝi, v̂i)r (i = 1, . . . , Ir)

(5)

are obtained, which are used as the basis for the speed
profile prediction algorithm.
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3. PREDICTION OF THE SPEED PROFILE

In this section, the preprocessed samples (5) of a vehicle
operating in fixed-route service will be used in order to
predict the speed profile of the vehicle. First, the predic-
tion problem will be formulated and the principle of the
solution approach will be presented. Due to the limited
memory space in vehicle control units, for the practical
implementation of the online algorithm the information
contained in the samples will then be described by means
of a set of characteristic functions, which is significantly
smaller than the set of samples. Finally, based on that
representation of the samples, the prediction algorithm is
formulated in such a way that it is suitable for implemen-
tation into a vehicle controller.

In order to simplify the algorithm, a common grid on the
arc length of the vehicle trajectory is used. For each sam-
ple, the function fj is defined to be the linear interpolant of
the pairs (ŝ1, v̂1)j , . . . , (ŝIj

, v̂Ij
)j . Given an equally spaced

grid of points sl = l · ∆s, l = 1, . . . , m, on the arc length,

the values v
(j)
l = fj(sl) of fj on that grid are augmented

into the vector

v(j) =
[

v
(j)
1 . . . v(j)

m

]T

. (6)

Similiarly, the values sl are augmented into the vector

s = [s1 . . . sm]
T

.

For reasons of simplicity, the vectors v(j) will be named
samples from now on.

The prediction problem to be solved is formulated as
following. Given the samples v(j) (j = 1, . . . , r) and
given current speed measurements v1, . . . , vk at arc length
points s1, . . . , sk, where k < m, from the current speed
measurements, the vector

v = [v1 . . . vk]
T

is defined, and, the related subvector of the jth sample
v(j) is denoted by

v
(j)
1:k =

[

v
(j)
1 . . . v

(j)
k

]T

.

Prediction Algorithm (A)

For a given measurement of the current speed profile v,
chose a sample j that satisfies

d := ‖v − v
(j)
1:k‖ < δ1 (7)

and
∣

∣

∣

{

i : ‖v(i) − v(j)‖ < δ2

}∣

∣

∣
is maximal. (8)

Then use v
(j)
k+1, . . . , v

(j)
m as the prediction vk+1, . . . , vm of

the vehicle speed at sk+1, . . . , sm.
Here |S| denotes the number of elements in the set S, and,
the variables δ1 and δ2 are given positive constants.

That algorithm finds a sample, which is for s1, . . . , sk

consistent with the information of the current speed mea-
surements v1, . . . , vk (as formulated by (7)), and, which is a
representative sample (as required by (8)). As an interpre-
tation, it is plausible to argue that a sample which is close
to the currently measured speed profile v1, . . . , vk at points
s1, . . . , sk , i.e., a sample that provides a sufficiently small
value of d, should also give good information about the

future progression of the speed at the points sk+1, . . . , sm.
In general, there will be more than one sample that is clas-
sified as being close to v1, . . . , vk. Hence a sample should
be chosen, that has as many samples in its neighborhood
as possible, and therefore, describes a typical trajectory
within the set of all samples leading to small values of d.
The choice of the parameters δ1 and δ2 as well as the type
of the norm will be specified within the description of the
implementation of the prediction algorithm below.

In order to develop an algorithm that can be implemented
in a vehicle controller with limited memory space available,
a data compression step is needed. For that purpose the
matrix

A =
[

v(1) . . . v(r)
]

(9)

is defined. Here, r ≫ m is assumed, i.e., the number of
samples is much larger than the number of grid points on
the arc length. Let

A = U Σ V

be the singular value decomposition of A where the
columns of the matrix

U = [u1 . . . um] (10)

are the left singular vectors. Practically, the number of
dominating singular values, denoted by n, is much smaller
than m. From standard linear algebra results, it is known
that each sample can be approximated by a linear combi-
nation of the first n left singular vectors

v(j) ≈ [u1 . . . un]







α
(j)
1
...

α(j)
n






, (11)

where α
(j)
1 , . . . , α

(j)
n are appropriate real numbers.

By using the approximation (11), each sample v(j) ∈ R
m

can be replaced by the related (shorter) vector

α(j) :=
[

α
(j)
1 . . . α(j)

n

]T

. (12)

The vector α(j) will be named parameter vector in the
sequel.

A further reduction of the required memory space can
be obtained by discretization of the parameter space, i.e.,
defining a set of grid points and rounding of the parameter
vectors to the grid points. By counting the number of
parameter vectors rounded to a given grid point, the
frequency function h of the rounded parameter vectors is
obtained. Practically, the support of h, denoted by B, is a
finite set of grid points, and moreover, it has turned out
that B can be chosen to be constant, even if the number of
samples will increase during vehicle operation. Since the
inequality

|B| ≤
∑

α∈B

h(α) = r (13)

holds, a significant data reduction is obtained from m · r
real numbers stored in the matrix A (that still increases
with the number r of samples) to a total number of |B|
integers h(α) (α ∈ B).

Based on the representation of the samples by the fre-
quency function h in the domain B and on the matrix
U , the prediction algorithm (A) can be put into a form
that is suitable for implementation. Denote U1 and U2 the
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submatrices of U that consist of the first k rows and the
last m − k rows of the matrix U , respectively.

Prediction Algorithm (B)

(1) With the set M defined by

M := {α ∈ B : ‖v − U1 α‖2 < δ1} (14)

chose the smallest δ1 > 0 such that for the number

rM :=
∑

α∈M

h(α) (15)

of samples leading to parameter vectors in M the
inequality

rM > ζ ·
√

r (16)

holds, where ζ > 0 is a given constant.
(2) Use the (not necessarily unique) parameter vector

defined by

α∗ := arg max
α∈M

h(α) (17)

for the calculation of the prediction

[vk+1 . . . vm] = (U2 α∗)T . (18)

The set M contains all parameter vectors α ∈ B that lead
to a vector U1α (consisting of speed values at s1, . . . , sk)
which differs less than δ1 from the currently measured
speed profile v. Since the euclidian norm is used, the set M
is an ellipsoid in the parameter space. On the one hand,
the distance bound δ1 should be as small as possible in
order to use only those samples for the prediction which are
nearly identical to the currently observed speed profile v.
On the other hand, the prediction should rely on a number
of samples that is ”large enough”, which requires that δ1

is not too small. Moreover, due to the finite total number
r of samples, for small δ1 the set M might be empty. The
algorithm above handles this tradeoff by using a heuristic
approach, which has been shown in simulations to be a
practicable solution. It is based on the idea to chose δ1

in such a way that the number rM increases with r but
the ratio rM

r
tends to zero for increasing r. The use of

the square root in (16) is only one way to satisfy these
requirements. The value of ζ allows the control of the ratio
rM

r
when the algorithm is put into operation for the first

time based on a given inital number of samples.

With (17) the parameter vector α∗ is chosen to be the
most frequent one of all parameter vectors in B. This
means that the speed values vk+1, . . . , vm predicted by (18)
are calculated based on a sample which is most frequent
amongst all samples that are similar to the observed speed
values v1, . . . , vk on the arc length points s1, . . . , sk.

The prediction algorithm (B) is one option of implemen-
tation of the prediction algorithm (A). The rounding of
the parameter vectors to the grid points and the counting
of the frequency of each rounded parameter vector can be
considered as a realization of the idea lying behind (8)
since the rounding to the grid points can be interpreted
as the application of a weighted maximum norm in (8).
The choice of a sample that is close to the currently
measured speed values v1, . . . , vk in (7) is realized by (14)
in conjunction with (17).

4. SIMULATION EXAMPLE

The example is based on a data set of the form (1) obtained
by measurements in a tram vehicle operating in fixed-
route service in public transport in the city of Dresden in
Germany. Since the route of the tram vehicle is partially
shared with other vehicles, the movement of the tram
is highly disturbed and the samples have very different
characteristics. In Figure 2 the measured speed profiles
over the arc length between two regular stops are shown.
There are r = 131 samples available, the total length of
the route is 360 m. The additional stops at s = 50 m and
s = 200 . . .220 m are caused by traffic lights.

0 50 100 150 200 250 300 350 400
0

2
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8

10

12

s in m

v
(s

)
in

m s

Fig. 2. Samples of the vehicle speed profile between two
regular stops

In order to illustrate the results of the prediction algorithm
described in Section 3, one of the samples is taken out of
the set (1) of measurements, respectively. That sample is
used for the validation of the prediction algorithm, i.e., it
is considered as the speed profile to be predicted.

The remaining samples are preprocessed as desribed in
Section 2. Then, on a common grid on the arc length
defined by sl = l · ∆s, l = 1, . . . , m, ∆s = 2 m, m = 180,
the speed profiles (6) are calculated. The matrix A is built
up as in (9), and, via singular value decomposition, the
matrix U is obtained. For illustration purposes, the matrix
U is restricted to two colums, i.e., n = 2 holds in (11) and
the parameter space is only two-dimensional. The grid in
the parameter space is equally spaced over the range shown
in Figure 3 with a step width of 1. The parameter vectors
α(j) related to the sample v(j) are calculated according
to (11) and based on that, the freqency function h and
its support B is determined. For the given samples, the

distribution of the parameter vectors α(j) =
[

α
(j)
1 α

(j)
2

]T

rounded to the grid points of the parameter space is
depicted in Figure 3. After these preliminary steps, the
prediction algorithm (B) from Section 3 can be applied.

The results obtained with that algorithm are depicted in
Figures 4 to 9. In Figure 4 the solid line shows the speed
profile of the vehicle between the two regular stops at
s = 0 m and s = 360 m. This is the sample taken out
of the set of all samples as mentioned above. The current
step is k = 10, i.e., the current arc length is sk = 20 m,
which is marked by a circle. That means that the speed at
the arc length points s1 = 2 m, . . . , sk = 20 m is already
known and the speed at sk+1 = 22 m, . . . , sm = 360 m has
to be predicted. In Figure 5, the set M , which is calculated
with ζ = 1 throughout this example, is depicted by dots.
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Fig. 3. Distribution of the parameter vectors α(j)

The parameter vector α∗ determined by (17) is marked by
a triangle symbol. Additionally, the vector

α̃ := arg min
α∈R2

‖[v1 . . . vm]
T − Uα‖2, (19)

which is the optimal parameter vector (not rounded to the
grid) in case that the speed profile were known a priori,
is marked by a cross symbol. As can be seen in Figure 5,
the information available at k = 10 is not sufficient to get
the vector α∗ close to the vector α̃. The resulting speed
profile prediction is shown in Figure 4. Up to sk = 20 m
the dashed-dotted line depicts the approximation of the
measured speed profile given by

[v1 . . . vk]
T

= U1 α∗.

From sk = 22 m to sk = 360 m the dashed-dotted line
shows the prediction of the speed profile calculated by

[vk+1 . . . vm]
T

= U2 α∗.
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Fig. 4. Prediction of the speed profile at k=10

In Figures 6 and 7 and in Figures 8 and 9 the results for
k = 30 and k = 90 are shown, respectively. It can be
seen that the more information is gained with increasing
k, the closer the parameter vector α∗ comes to α̃, and,
the more accurate the prediction at the arc length points
sk+1, . . . , sm is. The prediction calculated at k = 90 does
not change noticeable for k > 90 so that the real speed
profile can be foreseen at about half of the total distance
between the two stops.

It should be mentioned that for illustration purposes, the
sample to be predicted was chosen in such a way that the
optimal value of the objective function in (19) is small,
i.e., the chosen sample is suitable to be approximated by
only two left singular vectors. For the considered example
of a tram operating in fixed-route service, the number
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Fig. 5. Parameter space at k=10 with α∗ = [104, 7]
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Fig. 6. Prediction of the speed profile at k=30
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Fig. 7. Parameter space at k=30 with α∗ = [115, 7]
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Fig. 8. Prediction of the speed profile at k=90

n of left singular vectors necessary to parametrize all
samples is larger than n = 2, depending on the required
accuracy n is in the range from 5 to 10. Moreover, simple
considerations show, that the advantage of the proposed
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Fig. 9. Parameter space at k=90 with α∗ = [119, 3]

prediction algorithm over just using the mean of the speed
profiles strongly depends on the characteristics of the
speed profiles, which means, that an accurate prediction
presupposes that there is a correlation between the past
and the future in each of the speed profiles. In other cases
of operation, the degree of compliance with that restriction
should be clarified prior to the application of the proposed
algorithm.

5. SUMMARY

In this paper, an approach towards the real-time prediction
of the speed profile of a vehicle operating in fixed-route
service is presented in order to use this information for
the predictive control of the vehicle hybrid drive train.
The proposed algorithm utilizes previously taken measure-
ments, e.g., by a GPS device, of the vehicle motion during
fixed-route travel. That history information together with
measurements along the currently driven part of the route
is processed in order to predict the future speed profile of
the vehicle. From the predicted speed profile, the calcula-
tion of the load power demand by using a model of the
drive train and the vehicle dynamics is straightforward.

The main idea of the approach is the selection of a sample
out of the entire set of training samples in the history
database in such a way that this sample gives maximum
information about the future progression of the current
vehicle speed. In order to obtain a prediction algorithm
that is implementable into a vehicle controller several
steps were performed. First, the samples were preprocessed
for noise suppression and data compression. Then by the
prediction algorithm, a speed profile is chosen out of
the samples in the history database in such a way that
it is close to the currently measured speed profile and
representative for speed prediction. The practicability of
that approach is illustrated by using real-life data sets
obtained in a tram vehicle.

The future tasks include the comparison of the obtained
results to the outputs of prediction models that use transi-
tion probabilities for the description of the possible future
progression of the speed, e.g., Markov chains. Since these
methods require more extensive data sets which are not
yet available, this is subject to future investigations.
In this paper the prediction of the speed profile between
two regular stops of the vehicle in fixed-route service is
considered. Another promissing way seems to be the use of

a receding prediction horizon strategy. Here, an important
topic is the time-weighting of the past speed measurements
for the current ride and the appropriate choice of the
length of the prediction horizon.
Finally, it is planned to apply the approach to other
vehicles and operational conditions, e.g., to trams with
exclusive right of way, busses in urban fixed-route service
and also to vehicles in individual service on known routes.
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