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Abstract: The paper deals with an evaluation and comparison of the estimation performance of
two non-linear observers in simulation as well as in a practical application. The objectives are to
underline the different parameters synthesis of both observers, the choice of the numerical solver
and the difficulty to obtain good performances with an electropneumatic system. A High Gain
Observer and an Extended Kalman Filter (EKF) synthesis have been performed with Matlab,
compared in the same Simulink model and finally implemented in the system.

NOMENCLATURE

y, v, a position, velocity and acceleration of
the actuator [m][m/s][m/s2]

pX pressure in the chamber X [Pa]
pE exhaust pressure[Pa]
uP , uN servodistributors voltages [V ]
k polytropic constant
Fext external force [N ]
VX chamber X volume [m3]
b viscous friction coefficient [N/m/s]
M total moving load mass [Kg]
TX chamber X temperature [K]
r perfect gaz constant [J/kg/K]
SX piston X area [m2]
qm mass flow rate provided from the servo-

-distributor. [kg/s]
X P or N

1. INTRODUCTION

The position or force control of electropneumatic actu-
ators is well-known to be difficult. The main difficulties
in modelling pneumatic actuators are their highly nonlin-
ear behaviors Mc Cloy [1968], Shearer [1956], Blackburn
et al. [1960]. These ones are associated with the non-
linear dynamic properties of pneumatic systems such as
servodistributor flow characteristics, the thermodynamic
properties of air compressed in a cylinder and the nonlinear
friction between the contacting surfaces of the slider-piston
system. In such a context, previous works Richard and
Scavarda [1996] have shown the efficiency of nonlinear
controls. Several nonlinear approaches have been investi-
gated: input/output linearization Richard and Scavarda
[1996], sliding mode Bouri and Thomasset [2001], higher
order sliding mode Laghrouche et al. [2004], backstepping
Smaoui et al. [2004]. These works have been developed
for both Single Input-Single Output (SISO) system (only
position or force is controlled) and Multi Input-Multi Out-
put (MIMO) system (control of position and one pressure,

for example). For the application of such control laws, all
state variables need to be known. In order to minimize the
number of sensors but also to attenuate the noise injected
in the controller, there is a real interest to design observers
Girin et al. [2006]. This paper presents a simulation and ex-
perimental comparison of an EKF and high gain observer
on a pneumatic system. It is organized as follows: Section 2
deals with the modelling of the pneumatic servosystem.
Section 3 gives a proof of the observability of the system
when only the position and the pressure in a single cham-
ber are measured. Sections 4 and 5 respectively describe
the design of a high gain observer and an extended kalman
filter. Section 6 exhibits the results. A simulation and
experimental comparison with both algorithms is finally
carried out.

2. MODELLING

2.1 Dynamic model

Fig. 1. The electropneumatic system

The electropneumatic system (figure 1) uses the follow-
ing structure: two three-way proportional servodistrib-
utors/actuator/mass in translation. The actuator under
consideration is an in-line electropneumatic cylinder using
a simple rod. The electropneumatic system model can be
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obtained by using three physical laws: the mass flow rate
through a restriction, the pressure behavior in a cham-
ber with variable volume and the fundamental mechani-
cal equations. The two servodistributors are supposed to
be identical. This component is a pneumatic flow valve
and consists of a matching spool-sleeve assembly and a
proportional magnet directly controlling the movement
of the spool against a spring. The spool is controlled in
position by means of a position sensor. On the contrary
of many other valve designs used in automotive or rail-
way applications or in pneumatic circuits, the spool-sleeve
technology has been preferred to the poppet technology.
This means that pressure accuracy around zero opening
has been set to the detriment of leakage. So this technology
leads to characteristics without dead zone. In our case, the
bandwidth of the Servotronic Joucomatic servodistributor
and the actuator are respectively about 200 Hz and 1.5
Hz. Using the singular perturbation theory, the dynamics
of the servodistributors are neglected and their models can
be reduced to a static one described by two relationships
qm (uP , pP ) and qm (uN , pN ) between the mass flow rate
qm , the input voltages uP and uN , and the output pres-
sures pP and pN . The pressure and temperature evolution
laws in a chamber with variable volume are obtained
assuming the following assumptions Shearer [1956]: air
is a perfect gas and its kinetic energy is negligible, the
pressure and the temperature are homogeneous in each
chamber. The temperature variations in each chamber can
be neglected with respect to the supply temperature, i.e.
TP = TN = T . Moreover the process is supposed to
be polytropic and characterized by the coefficient k. The
following electropneumatic system model is obtained:
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
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
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
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
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
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
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ṗN =
krT

VN (y)

(

q
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(uN , pN) +
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rT
pNv

)

v̇ =
1

M
(SP pP − SNpN − Fext − bv)

ẏ = v

(1)

Where:

Fext = (SP − SN) pext (2)

And:

{

VP (y) = VP (0) + SP y

VN (y) = VN (0) − SN y
With :







VP (0) = VDP + SP

l

2

VN (0) = VDN + SN

l

2

(3)

The main difficulty for model (1) is to know the mass flow
rate qm (uX , pX). In order to establish a mathematical
model of the power modulator flow stage, many works
present approximations based on physical laws Araki
[1981], Mo [1989] by the modelling of the geometrical
variations of the restriction areas of the servodistribu-
tor as well as by the experimental local characterization
Richard and Scavarda [1996]. These methods are based on
approximations of fluid flow through a convergent nozzle
in turbulent regime, corrected by a coefficient Cq Mc Cloy
and Martin [1980] or on the norm ISO 6358. The authors
in Belgharbi et al. [1999] have developed analytical models
for both simulation and control purposes. In this paper we
will used one of proposed models where the mass flow rate
qm is considered as an algebraic function:

qm(uX , pX) = ϕ (pX) + ψ (pX , sign (uX))uX (4)

ϕ(pX) in (4) is a 5th polynomial function whose evolution
corresponds to the mass flow rate leakage, it is identical
for all input control value u. ψ(pX , sign(uX)) is a 5th

polynomial function whose evolution is similar to the one
described by the methods based on approximations of
mass flow rate through a convergent nozzle in turbulent
regime Mc Cloy and Martin [1980]. It is a function of
the input control sign because the behaviour of the mass
flow rate characteristics is clearly different for the inlet
(uX > 0) and the exhaust (uX < 0). For a discussion and
more details on the choice of functions and their degrees
please refer to Belgharbi et al. [1999]. For the sake of
clarity, let ki (1 ≤ i ≤ 10) define as : k1 = krTϕ(pP );
k2 = krTψ(pP , sign(uP )); k3 = −kSP ; k4 = krTϕ(pN );

k5 = krTψ(pN , sgn(uN )); k6 = kSN ; k7 =
SP

M
; k8 =

−
SN

M
; k9 =

−b

M
; k10 =

−Fext

M

Then, the electropneumatic actuator is modelized through
the following nonlinear system:
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






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













ẋ1 =
1

VP (x4)
[k1(x1) + k2(x1, uP )uP + k3x1x3]

ẋ2 =
1

VN (x4)
[k4(x2) + k5(x2, uN)uN + k6x2x3]

ẋ3 = k7x1 + k8x2 + k9x3 + k10

ẋ4 = x3

(5)

with x = [x1 x2 x3 x4]
T = [pP pN v y]T ∈ X , and

u = [uP uN ]T ∈ U , X = {x ∈ IR4 |xmin ≤ xi ≤
xMAX , 1 ≤ i ≤ 2, ximin ≤ |xi| ≤ xiMAX , 3 ≤ i ≤ 4} and
U = {u ∈ IR2 | |uP | ≤ uMAX , |uN | ≤ uMAX}. x1,2min and
x1,2MAX are the minimum/maximum values of pressure
in each chamber, x3min and x3MAX (resp. x4min and
x4MAX) the minimum/maximum values of velocity (and
position) of the rod actuator. uMAX is the maximum value
of servodistributors voltage.

3. OBSERVABILITY ANALYSIS

3.1 Preliminaries

Consider the nonlinear system:

ẋ = f(x) + g(x)u
ỹ = h(x)

(6)

with x ∈ X ⊂ IRn the state vector, u ∈ U ⊂ IRm the input
vector and ỹ ∈ IRp the measurement vector, such that:

ỹ = h(x) = [ỹ1 · · · ỹp]
T

= [h1(x) · · ·hp(x)]
T
.

Definition 1. System (6) is observable for x ∈ X and
u ∈ U if there exists p integers li (1 ≤ i ≤ p) such that

(1) l1 ≥ l2 ≥ · · · ≥ lp,

(2)

p
∑

i=1

li = n,
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(3) The transformation

Φ =
[

ỹ1 ˙̃y1 · · · ỹ
(l1−1)
1 · · · ỹp · · · ỹ(lp−1)

p

]T

(7)

is a state transformation for x ∈ X and u ∈ U . The
integers {l1 . . . lp} are called observability indices.

3.2 Application to the electropneumatic system

Consider the nonlinear system (5). Only the position of
the actuator and the pressure in P chamber are measured,

i.e. ỹ = [ỹ1 ỹ2]
T := [y pP ]T = [x4 x1]

T . State l1 = 3 and
l2 = 1: items 1 and 2 of Definition 1 are fulfilled. It yields

Φ =









ỹ1
˙̃y1
¨̃y1
ỹ2









=









x4

x3

k7x1 + k8x2 + k9x3 + k10

x1









(8)

Consider its Jacobian matrix

∂Φ

∂x
=







0 0 0 1
0 0 1 0
k7 k8 k9 0
1 0 0 0






(9)

This matrix is a full rank one for all x ∈ X and u ∈ U ,
which implies that item 3 of Definition 1 is fulfilled.
Then, system (5) is observable from the knowledge of only
carriage position and pressure pP .

Remark 2. With the previously considered output vector,
system (5) is observable for every input u(t), viewed that
jacobian matrix (9) does not depend on u(t).

Remark 3. The choice of output vector is not unique: for
example, system (5) is also observable with measure of pN

instead of pP .

4. HIGH GAIN OBSERVER

4.1 Preliminaries

The synthesis of this observer is based on uniform observ-
ability property of (6) Bornard and Hammouri [1991]. This
class of observers is interesting due to its applicability to
a large class of nonlinear systems, and its easy design.
Suppose that system (6) is uniformly observable: then,
there exists a state coordinate transformation (7) ζ = Φ(x)
such that system (6) is locally equivalent to:

ζ̇ = Aζ + Θ(ζ, u)
ỹ = Cζ

(10)

with A = diag [A1 · · · Ap]n×n
, Ai (1 ≤ i ≤ p) defined as:

Ai =















0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0















li×li

, (11)

C = diag [C1 · · · Cp]p×n
, Ci = I1×li , Θ(ζ, u) =

[ΘT
1 ΘT

2 · · · ΘT
p ]T , and Θi = [0 · · · 0 h

(li−1)
i ]T . Further-

more, suppose that:

H1. The function Θ is globally Lipschitz with respect to
ζ, uniformly with respect to u.

Let K denote a gain matrix such that (A − KC) is
Hurwitz, and Λ(T ) = diag[Λ1 Λ2 · · · Λp]

T with Λi =

diag[Ti T
2
i · · · T ki

i ], with Ti > 0. Then, system:

˙̂
ζ = Aζ̂ + Θ(ζ̂, u) + Λ−1K(ỹ − Cζ̂) (12)

with ζ̂ ∈ IRn, is an asymptotic observer for (10). Further-
more, dynamics of this observer can be made arbitrarily
fast through K and Ti. From (8)-(12), an observer for: (6)
reads as

˙̂x = f(x̂) + g(x̂)u+

[

∂Φ(x̂)

∂x̂

]

−1

Λ−1K(ỹ − h(x̂)) (13)

4.2 Application to the electropneumatic system

Consider nonlinear system (5). Only the position of the
actuator and the pressure in chamber are measured, i.e.

ỹ = [ỹ1 ỹ2]
T := [y pP ]T = [x4 x1]

T . State l1 = 3
and l2 = 1 (l1 + l2 = 4). Through state coordinates
transformation (8), system (5) is equivalent to (with A1

and A2 defined by (11)):

ζ̇ =

[

A1 03×1

01×3 A2

]

ζ +







0
0

ϕ1(ζ, u)
ϕ2(ζ, u)






ỹ =

[

C1 01×1

01×3 C2

]

ζ (14)

with ϕ1 = k7β1 + k8β2 + k9ζ2, ϕ2 = β1,

β1 =
1

VP (ζ1)
[k1(ζ4) + k2(ζ4, uP )uP + k3ζ4ζ2] ,

β2 =
1

VN (ζ1)

[

k4(ζ3) + k5(ζ3, uN)uN +
k6

k8
ζ2ζ3

−
k6k7

k8
ζ2ζ4 −

k6k9

k8
ζ2
2 −

k6

k8
k10ζ2

]

.

(15)

System (5) is locally uniformly observable. For x ∈ X
and u ∈ U , hypothesis H1 is fulfilled. Thus, from (12),
an observer for (14) reads as:

˙̂
ζ =

[

A1 03×1

01×3 A2

]

ζ̂ +









0
0

ϕ1(ζ̂ , u)

ϕ2(ζ̂ , u)









+Λ−1







K11 0
K12 0
K13 0
0 K2







(

ỹ −

[

C1 01×1

01×3 C2

]

ζ̂

)

(16)

with Λ−1 =









T−1
1 0 0 0
0 T−2

1 0 0
0 0 T−3

1 0

0 0 0 T−1
2









, T1 > 0 and T2 > 0.

5. EXTENDED KALMAN FILTER

5.1 Preliminaries

The extended Kalman filter has been broadly used in
the areas of control as a state estimator for nonlinear
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stochastic systems Gelb [1984]. It is essentially a set
of mathematical equations that allow to implement a
estimator that is optimal in the sense that it minimizes
the estimated error covariance. It is noteworthy that the
conditions necessary for optimality rarely exist, and yet
the filter apparently works well for many applications in
spite of this situation. Consider the non-linear system:

ẋ = f(x, u) + w
z = h(x, v)

(17)

Here x ∈ IRn and z ∈ IRm respectively represent the
state and measurement vector. u stands for the control
and f(x, u) denotes the nonlinear function describing the
evolution of the system. The variables w and v represent
the process and measurement noise, which are usually un-
known in the practical application. The extended Kalman
filter for the system (17) is given by:







˙̂x = f(x̂, u) +KEKF (z − Cx̂)
KEKF = PCTR−1

Ṗ = JP + PJT +Q− PCTR−1CP

(18)

with appropriate initial values x̂0 and P0 (initial value vec-
tor and error covariance matrix) as well as adequate matri-
ces Q (process noise covariance matrix), C (measurement
matrix) and R (measurement noise covariance matrix) one
can show the Riccati equation admits a solution. KEKF

stands for the Kalman gain of the EKF. The matrix J
denotes the jacobian matrix:

J =
∂

∂x
f(x, u) (19)

The matrices P0, Q and R represent the tuning parameters
for the extended Kalman filter. As there is no general
rule for the choice of these tuning parameters besides
some restrictions as positive definiteness and an adequate
dimension, they have to be adjusted experimentally. It is
worth noting that in literature it is common to choose
them as diagonal matrices.

5.2 Application to the electropneumatic system

The non-linear function f(x, u) is given by:










































ṗP =
krT

Vp(y)

[

qm(uP , pP ) −
SP

rT
PP v

]

ȧ =
1

M

[

SPkrT

VP (y)

(

qm(uP , pP ) −
SP pP v

rT

)

− . . .

. . .
SNkrT

VN (y)

(

qm(uN , pN ) +
SN

rT
pNv

)

− ba

]

v̇ = a
ẏ = v

(20)

and the measurement used for the correction stage of
Kalman’s equation consists of position of the piston and
the pressure in the gas chamber P:

z = Cx =

[

1 0 0 0
0 0 0 1

]

x =

[

pP

y

]

(21)

The jacobian matrix is given by:

J =







J11 0 J13 J14

J21 J22 J23 J24

0 1 0 0
0 0 1 0






(22)

Where:


































































































































J11 =
krT

VP (y)

[

∂qm(uP , pP )

∂pP

−
SP

rT
v

]

J13 = −
SPk

VP (y)
pP

J14 = −
SPkrT

(VP (y))
2

[

qm(uP , pP ) −
SP

rT
pP v

]

J21 =
SP

M
J11 −

SP

M

krT

VN (y)

[

∂qm(uN , pN )

∂pN

+
v

rT

]

J22 = −
krT

VN (y)

[

∂qm(uN , pN)

∂pN

−
SN

rT
v

]

−
b

M

J23 = −
S2

pk

MVP (y)
pP −

S2
Nk

MVN (y)
pN + . . .

. . .
SNkrT

MVN (y)

[

∂qm(uN , pN )

∂pN

+ bv

]

J24 =
−S2

NkrT

M (VN (y))2

[

qm(uN , pN) −
SN

rT
pNv

]

− . . .

. . .
S2

PkrT

M (VP (y))
2

[

qm(uP , pP ) −
SP

rT
pP v

]

(23)

6. RESULTS

6.1 Simulation results

The objectives of this section are to underline the different
parameters synthesis of both observers, the choice of
the numerical solver and the difficulty to obtain good
performances for an electropneumatic system. The High
Gain Observer and EKF synthesis have been performed
with Matlab and compared in the same Simulink model
for a direct comparison of both observers.

High Gain Observer: specific tuning
The High Gain Observer needs to choose the matrix gain
K:

• Choice of K1. Dynamics connected to h1 block is
tuned by K1,

K1 =

[

K11 0 0
0 K12 0
0 0 K13

]

such that (A1 −K1C1) is Hurwitz.

• Choice of K2. Dynamic connected to h2 block is
fixed by K2 such as (A2 − K2C2) is Hurwitz. As
A2 = 0 and C2 = 1, this condition is fulfilled if
K2 > 0.

With these choices for K1 and K2, and using the state

transformation x̂ = Φ−1(ζ̂), an exponential observer for
(5) reads as:










































˙̂x1 =
[k1 + k2uP + k3x̂1x̂3]

VP (x̂4)
+ T−1

2 K2(x1 − x̂1)

˙̂x2 =
[k4 + k5uN + k6x̂2x̂3]

VN (x̂4)
+ (T−3

1 K13/k8

−K12
k9

k8
T−2

1 )(x4 − x̂4) −K2
k7

k8
T−1

2 (x1 − x̂1)

˙̂x3 = k7x̂1 + k8x̂2 + k9x̂3 + k10 + T−2
1 K12(x4 − x̂4)

˙̂x4 = x̂3 + T−1
1 K11(x4 − x̂4)

(24)
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Fig. 2. EKF: Desired position, position and velocity esti-
mation errors

EKF: specific tuning
For the EKF the matrices Q, R−1 and P0 were chosen
in order to ensure their positive definition (diagonal ma-
trices). Another aspect of the EKF is that the jacobian
matrix J has to be calculated in real-time. Because of
the complexity of the model given by (20) and (4) and
in order to ensure the correctness of the derivation of the
vector field f(x, u) with respect to the state vector x, the
calculation of J (23) has been done and checked with the
mathematic software Maple.

High Gain Observer and EKF: other parameters tuning
The initial value for the state vector is the same in both
cases. Another aspect concerns the numerical solving. For
the electropneumatic system the state vector contains
the position measured in m and pressures measured in
Pa, which corresponds to a difference roughly of eight
power of ten. The numerical gap between these variables
leads in practice to an ill-conditioning matrix J which
causes numerical problems in the resolution of the Riccati
equation in (18). To overcome this problem, variable step-
size solvers like ”ode 23s(stiff/Rosenbrock)” either ”ode
15s (stiff/NDF)” either ”ode 23t (Mod.stiff/Trapezoidal)”
or ”ode 23tb (stiff/TR-BDF22)” were used to simulate
the EKF. Tests apply only on the High Gain observer
simulation revealed that its performances do not depend
very much on the solver chosen and the same simulation
results were obtained using a more simple solver algortihm
such as ”ode 1(Euler)” with a fixed step size.

Discussion of the simulation results
The simulation results of the EKF and High Gain Observer
are given on Figures 2, 3, 4 and 5. Simulation results show
the High Gain observer improves the position estimation
by almost two powers of ten with respect to the EKF,
but it is worth the other state variable (Figures 2 and
4). However the pressure, velocity and acceleration esti-
mations given by the EKF are better than those obtained
with the High Gain observer. Whatever the method used
to estimate the state variables, the performances depend
on the choices of tuning parameters such as initial values,
weighting matrices, the matrix gain K, etc.. At this stage,
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Fig. 3. EKF: Acceleration and pressure estimation errors
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Fig. 4. HG Observer: Position and velocity estimation
errors
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Fig. 5. HG Observer: Acceleration and pressure estimation
errors

different choices could be made by the user and the time
spent on tuning the observers must be of course stand in
proportion to the expected performances. However, one
can underline the difficulty to correctly tune the EKF,
especially the well choice of the weighting matrices, to
achieve desired performance.

6.2 Practical results

Because of the dSPACE card used in practice does not
support variable step size solvers, the implementation of
the extended Kalman filter failed in spite of a lot of choices
of tuning parameters. Concerning the implementation of
the High Gain observer, the same tuning parameters were
chosen. Practical results are shown in Figures 6 and 7.
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Fig. 6. HG Observer: Practical position and velocity esti-
mation errors
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Fig. 7. HG Observer: Practical acceleration and pressure
estimation errors

The convergence time of the high-gain observer is difficult
to determine exactly, as the estimation error curves, es-
pecially the position error plot, are quite noisy. From the
velocity, acceleration and pressure plots we can estimate
the convergence time around 0.6 s. This result is greater
compared to the simulation result, where it only took
about 0.4 s. Experimental results show that the estimation
errors of the state variables are suitable (Figures 6 and
7). The estimation errors obtained in practice are slightly
more important than those obtained in simulation. The
differences can come from modelling errors, the optimal
choice of the tuning parameters and the presence of noise.

7. CONCLUSION

The objective of this paper was to evaluate and compare
the estimation performance of two non-linear observers
in simulation as well as in a practical application. In
the simulation the EKF and the High Gain Observer
have quite similar results. Whatever the method used to
estimate the state variables, the performances depend on
the choices of tuning parameters such as initial values,
weighting matrices, the matrix gain K, etc.. At the stage
of the simulation, different choices could be made by the
user and the time spent on tuning the observers must be of
course stand in proportion to the expected performances.
However, one can underline the difficulty to correctly
tune the EKF, especially the well choice of the weighting
matrices, to achieve desired performance. In practice, some

other difficulties rise and the simulation results should
be viewed with some degree of reservation because the
EKF could not be implemented in real-time on the actual
system. The implementation of the High Gain Observer
revealed satisfactory results. Nevertheless one may get an
idea of the real performance of the EKF when examining
these comparison results because some other simulations
were made with additive measurement noise on one of
the measured variables. Here the good behavior of the
EKF compared to the High Gain Observer is clear. More
investigations should be adressed in order to check the
robustness of both observers with respect to this aspect.
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