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Abstract: Integral sliding mode(ISM) based composite nonlinear feedback(CNF) tracking
controller to track step signal is proposed. The proposed controller combines advantages of CNF
controller like quick response without overshoot and robustness of ISM controller. Integral sliding
mode is used along with CNF controller to reject disturbances and track nominal trajectory.
Actuator saturation effect is considered and the stability of overall system is guaranteed with
saturated actuator. Chattering is reduced by use of sigmoid function and non-linear switching
gain. Effectiveness of the proposed scheme is demonstrated by simulation results.
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1. INTRODUCTION

Performance specifications of any system are often speci-
fied in terms of step response. For a quick response damp-
ing ratio should not be too large because large damping
ratio increases settling time. However too small damping
ratio gives rise to overshoot and ringing. Thus, most of
design schemes make a trade-off between these two tran-
sient performance indices. Z. Lin et al. [1998] proposed
the seminal idea of composite non linear feedback(CNF).
In CNF initially damping ratio is kept very low to ensure
quick response and as output approaches the set point
system is made highly damped to avoid overshoot by non-
linear feedback. M. C. Turner et al. [2000] first proposed
general form of this concept for high order SISO and
MIMO systems with state feedback in which authors have
generalized the concept with some restrictions which even-
tually leads to exclusion of systems which were originally
considered by Z. Lin et al. [1998]. This concept is further
extended by Chen et al. [2003] for more general class of
systems with only output feedback and it is also proved
that CNF controller is better than time optimal controller
for asymptotic tracking case. From practical point of view
asymptotic tracking is more important. K. Peng et al.
[2005] proposed enhanced CNF controller with integral
action in forward path. Enhanced CNF controller is not
robust for all types of disturbances and integral action
may lead to so called integral windup phenomena. In G.
Cheng et al. [2007] proposed robust CNF controller based
on disturbance estimation. Here constant disturbance is
assumed which is observed by an observer and the effect
of constant bias is compensated. But in actual system time
varying disturbances are inevitable. To the best of our

knowledge no attempts have been made to make CNF con-
troller robust against time varying disturbance. To reject
the disturbance, structure of CNF controller should not be
changed otherwise the actual motive of CNF controller will
be lost. Proposed ISM-CNF based controller retains actual
structure of CNF controller while rejecting disturbances
and thus it ensures invariance.

Drazenovic [1969] established that the controlled system
in the sliding mode is completely robust against certain
class of parameter variations and external disturbances
satisfying matching condition. Basic theory on sliding
mode control can be found in textbook written by Ed-
ward et al. [1999] and survey paper by Gao et al. [1993].
In conventional sliding mode control system motion is
constrained to lie in (n- m) dimensional manifold with
suitable control action. Here m is the number of inputs and
n is the order of the system. With discontinuous control
action system trajectory is forced to lie on sliding manifold.
Motion of trajectory from initial condition towards sliding
surface until it hits sliding surface is called reaching phase.
During the reaching phase controlled system is not robust
and even matched disturbances can affect the system. To
solve this problem Utkin et al. [1996] proposed integral
sliding mode concept. An integral term is added in sliding
manifold, this guarantees that the system trajectories will
start in the manifold right from the beginning, therefore
reaching phase is eliminated. The main idea is to define
control law as a sum of nominal control and a discon-
tinuous control. Nominal control takes care of nominal
plant dynamics and discontinuous control rejects the dis-
turbances. Nominal control can be of any form which is
able to follow reference trajectory within a given accuracy.
In this work we have taken CNF controller as the nomi-
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nal controller along with ISM controller as discontinuous
controller to reject the disturbance. Hence it is possible to
avail of the advantages offered by CNF controller and re-
jecting disturbances through integral sliding mode control.

1.1 Motivation

The CNF controller works well when there is no distur-
bances in the plant. But disturbances are inevitable in
actual plant environment. So far no attempts have been
made to ensure invariance against time varying distur-
bance. However in actual plant time varying disturbance
may be present. It is illustrated through example that
time varying disturbance deteriorates performance signif-
icantly. Even stability can not be guaranteed in face of
disturbance and saturation when plant is open loop un-
stable. To achieve invariance against disturbances another
robust control strategy should be combined with CNF
technique without sacrificing performance of controlled
system. Integral sliding mode naturally allows to combine
other techniques with sliding mode control. Sliding mode
provides invariance against class of disturbance which sat-
isfy matching condition. With integral sliding mode we can
also avoid amplification of unmatched perturbation. This
motivates us to propose a new integral sliding mode based
CNF controller for a general class of step signal tracking
problem.

1.2 Structure of Paper

In the next section we present CNF controller for the
plant with matched uncertainty. We have modified the
linear part of CNF controller to avoid saturation with
ISM controller. Section 3 presents integral sliding mode
with CNF controller and we prove stability of system with
this combined control law. Example and simulation results
are presented in Section 4. We will conclude our work in
Section 5.

2. COMPOSITE NONLINEAR FEEDBACK
CONTROL

In this section we review CNF controller and modify linear
controller part of CNF so that ISMC can be combined
without actuator saturation. Discussion in this Section will
go parallel with Chen et al. [2003] with the modification
that the maximum amplitude of reference signal to be
tracked is affected by the maximum value of uncertainty.
Consider the nominal plant with uncertainty,

ẋ = Ax + Bsat(u) + Bρd(x, t). (1)

y = Cx. (2)

Where x ∈ ℜn, u ∈ ℜ, y ∈ ℜ are , respectively, the state,
input,and controlled output of the system.A,B,C matri-
ces of appropriate dimensions. ρd(x, t) is state bounded
matched uncertainty and only bounds are known. Function
sat:R→ R represents actuator saturation defined as,

sat(u) = sign(u) × Min{umax, ‖u‖}. (3)

Where umax is maximum value of input. Here we have
considered single input case to show effectiveness of the
concept in a simple manner. However it should be noted

that the concept can be extended for multi input case with-
out any modifications. We make following assumptions

(1) Pair(A,B) is controllable.
(2) (A,B,C) has no zeros at s = 0.

Control Objective:Controlled output y should track input
command r, in the presence of disturbances and uncer-
tainty in the plant and without experiencing large over-
shoot.
For system (1) linear feedback control law is given as,

uL = Fx + G1r. (4)

F is chosen such that (A+BF) is an asymptotically stable
matrix, and it should have small damping ratio. Matrix
G1 is defined as

G1 = −[C(A + BF )−1B]−1. (5)

This can be found by finding d.c gain from y to r. When
y tracks r, x will take new steady state value xe which is
given as

xe = −(A + BF )−1BG1r = Ger, (6)

where Ge = −(A + BF )−1BG1 This can be found by
finding d.c gain between x and r. Let us make co-ordinate
transformation as

x̃ = x − xe, (7)

where x̃ is the error between actual state and desired state.
The linear control law becomes

uL = Fx̃ + Hr, (8)

where H = [I − F (A + BF )−1B]G1.
The maximum value of command input r that can be
followed is determined as follows.

Lemma 1. Let the real symmetric matrix P > 0 be the
solution of the following Lyapunov equation

(A + BF )T P + P (A + BF ) = −W, (9)

for positive definite matrix W. Such a P exist, because
(A+BF) is a stable matrix.
let cδ > 0 be the largest positive scalar satisfying the
following condition

| Fx |≤ umax(1 − δ)∀x ∈ Xδ = {x|xT Px ≤ cδ}, (10)

where δ ∈ (0, 1). Then the linear feedback control law
(4) makes system output to track asymptotically a step
command input of amplitude r, when initial error and r
satisfy

∀x̃ ∈ Xδ, (11)

|Hr| ≤ δ1umax, (12)

where, 0 ≤ δ1 < δ and | (δ − δ1)umax |= ρd(x, t)max

maximum bound of disturbance.
Remark:1 In the statement of this lemma we have
redistributed control efforts umaxδ on disturbance and Hr
unlike Chen et al. [2003]. The redistribution is done to
ensure stability of closed loop system with uncertainty.
This will reduce the maximum amplitude of reference
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signal to be tracked depending on bounds of uncertainty.
Proof: by construction

| Fx̃ + Hr |≤ ǫumax (13)

where ǫ = 1 − δ + δ1 and0 < ǫ < 1.
By design, linear control law does not saturate input.
Therefore from (1) and (7) we can write the error dynamics
as follows

˜̇x = (A + BF )x̃ + Axe + BHr. (14)

It is straight forward to see that Axe + BHr = 0 so the
error dynamics becomes

˜̇x = (A + BF )x̃, (15)

which shows error dynamics is stable. Furthermore it
shows Xδ = {x|xT Px ≤ cδ} is an invariant set of closed
loop system (15).

Remark 2: In above lemma to prove stability, linear
controller is constrained to remain uL ≤ ǫumax. This will
put upper limit on the amplitude of reference signal to be
tracked. Following equations should satisfy to track step
signal of amplitude r

|r| ≤
√

cδ(GT
e PGe)−1, (16)

|Hr| ≤ δ1. (17)

The inequality(16) can be proved as follows

xT Px ≤ cδ,

⇒ xT
e Pxe ≤ cδ,

⇒ (Ger)
T P (Ger) ≤ cδ,

⇒ rT GT
e PGer ≤ cδ,

⇒ rT rGT
e PGe ≤ cδ,

because r is a scalar. Manipulating the above equation we
get

|r| ≤
√

cδ(GT
e PGe)−1.

2.1 Nonlinear Control

(A+BF) is having low damping factor. To increase the
damping factor non-linear control is added with linear
controller and it is given as follows

uN = Ψ(r, x)BT P (x − xe), (18)

where Ψ(r, x) is any non positive function locally lipschitz
in y. Non linear control is used to change the system’s
closed loop damping ratio as the output approaches step
command input. Initial choice for selection of Ψ(r, x)given
by Z. Lin et al. [1998] is modified to get extra degree of
freedom by Chen et al. [2003]. Non linear function should
be chosen such that it changes from 0 to -β where β > 0.
One possible choice of function as suggested by Chen et
al. [2003] as

Ψ(r, x) = −
β

1 − e−1
(e−|1−(y−y0)/(r−y0)| − e−1), (19)

where y0 = y(0), and β is used as a tuning parameter.

From equation (4) and (18) we can write combined linear
and non-linear control law as

u0 = uL + uN = Fx + G1r + Ψ(r, x)BT P (x − xe). (20)

Fig. 1. Block diagram with combined ISM-CNF control
law

3. INTEGRAL SLIDING MODE CONTROL

Controller given by eqn.(20) does not provide robust closed
loop performance. We propose integral sliding mode based
controller with CNF controller to make overall control
system robust. In this section we design another non-
linear component which is added with controller given by
equation (20) to provide robust closed loop performance.
Integral sliding manifold proposed by Fridman et al. [2006]
as

s(x, t) = G{x(t) − x0 −

t
∫

0

(Ax + Bu0) dτ }. (21)

In above sliding surface equation u0 can be of any form.
The u0 when substituted in nominal plant(i.e eqn.(1) with-
out disturbance term ρd(x, t)) gives nominal trajectory.

In the above eqn.
∫ t

0
(Ax + Bu0) dτ represents desired

trajectory and x(t) is actual trajectory. So sliding surface
can be seen as the difference between actual and the
desired trajectory projected on G. The difference occurs
due to disturbances. By using appropriate control action
this difference can be nullified and actual trajectory tracks
the required one.

Our objective is to find discontinuous control law to force
sliding motion on s(x,t)=0. Let this discontinuous control
is uN1. Therefore actual control law becomes

u = u0 + uN1 = uL + uN + uN1. (22)

Here discontinuous control uN1 required for enforcing
sliding motion is added with CNF controller. Figure 1
shows block diagram with ISM-CNF control law. To find
discontinuous control law we construct Lyapunov function
as

V (x, t) = 0.5sT (x, t)s(x, t). (23)

By using equations (1),(21) and (22) we can write
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V̇ (x, t) = [Gẋ − G(Ax + Bu0)]
T s(x, t)

= [GBuN1 + GBρd(x, t)]T s(x, t)

= [uN1 + ρd(x, t)]T (GB)T s(x, t).

Usual choice for discontinuous control is

uN1 =−M(x, t)sign((GB)T s(x, t)). (24)

Where M(x,t) is positive definite function and calculated
based on maximum disturbance bounds. With this discon-
tinuous control law we can get

V̇ (x, t) < 0.

Remark3: In the above proof we have not considered ac-
tuator saturation. But by construction uL is less than umax

and discontinuous control is replaced by equivalent control
(ueq) as proposed by Utkin et al. [1996] for analysis pur-
pose. We can find ueq = −ρd(x, t). So maximum value of
ueq is ρdmax(x, t). By construction, uL+ρdmax(x, t)≤umax.
So when the nonlinear component of CNF controller uN

added with u0 it causes actuator saturation. Next we find
closed loop error dynamics for system(1) with input (22).
From eqns. (1),(22) and (7) we can write the error dynam-
ics as

˙̃x = (A + BF )x̃ + Bw + Bρd(x, t) (25)

= (A + BF )x̃ + Bg, (26)

where,

g = w + ρd, (27)

w = sat(Fx̃ + Hr + uN + uN1) − Fx̃ − Hr. (28)

We will replace uN1 with its equivalent value for the
analysis purpose, and equivalent value of uN1 is given as

(uN1)eq = ueq = −ρd(x, t). (29)

As we stated in remark 2 addition of uN with uL and uN1

creates saturation at input. By design contribution from
other components is less than umax. In next theorem we
will prove stability of closed loop system (1) with control
input (22).

Theorem 1 For the system in (1) output obtained by
the application of the control proposed in (22) will track
the desired constant reference trajectory asymptotically.
In the proof of theorem we consider that the amplitude of
reference signal is restricted by (16) and (17).
Proof: For error dynamics equation (14), Define Lya-
punov function as

V = x̃T Px̃. (30)

⇒ V̇ =−x̃T Wx̃ + 2x̃T PBg. (31)

Our aim is to ensure V̇ should be negative definite. Here
g is the only variable parameter. Now we calculate V̇ for
three different cases.
Case:1 If

|Fx + Hr + uN1 + uN | ≤ umax

therefore,

g = w + ρd(x, t),

= Fx + Hr + uN1 + uN − Fx − Hr + ρd(x, t),

= uN ,

= Ψ(r, x)BT Px̃.

Because uN1 + ρd(x, t) = 0. It implies,

V̇ =−x̃T Wx̃ + 2Ψ(r, h)x̃T PBBT Px̃ ≤ −x̃T Wx̃

Case:2 if

|Fx + Hr + uN1 + uN | > umax

By construction, |Fx + Hr + ρd(x, t)| ≤ umax so

g = umax − Fx − Hr − ρd(x, t).

Therefore
g > 0 and uN > umax−Fx−Hr+uN1 > 0. Which implies
that x̃T PB < 0. Hence

V̇ =−x̃T Wx̃ + 2x̃T PBw ≤ −x̃T Wx̃.

Case:3 If

|Fx + Hr + uN1 + uN | ≤ −umax

therefore,

g =−umax − Fx − Hr + ρd(x, t)

=−umax − Fx − Hr − uN1

⇒ g < 0

⇒ uN < umax − Fx − Hr − uN1 < 0

⇒ x̃T PB > 0

⇒ 2x̃T PBg < 0

therefore

V̇ ≤ −x̃T Wx̃.

Therefore in all case when x and r satisfy conditions (11)

and (12) we have shown that V̇ ≤ −x̃T Wx̃ when x̃ ∈ Xδ

This implies

lim
t→∞

x(t) = xe. (32)

Therefore

lim
t→∞

h(t) = Cxe = r. (33)

Above theorem proves the stability of closed loop system
with combined input from CNF law and ISM law.

4. EXAMPLE AND SIMULATION RESULTS

In this section we study normalized pendulum (double
integrator) with disturbance. Consider linear uncertain
plant of double integrator

[

ẋ1

ẋ2

]

=

[

0 1
0 0

] [

x1

x2

]

+

[

0
1

]

sat(u) + d (34)
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y = [ 1 0 ]

[

x1

x2

]

(35)

Where d is the disturbance and in this simulation we will
take it as

d =

[

0
kx1x2sin(x1)u1(t − τ)

]

, (36)

where u1(t − τ) is unit step signal delayed by τ period.
For this system our control objective is that state x1

should track unit step as fast as possible without having
overshoot. Maximum value of input is taken as umax = 1.
CNF controller proposed in Chen et al. [2003] for this plant
is given as,

uL = [−6.5 − 1]x + 6.5r (37)

uN = −(e‖1−y‖ − 0.36788) [ 1.4481 10.8609 ] (x −

[

1
0

]

)

Total control effort becomes

u0 = uL + uN . (38)

Fig. 2. Plot with CNF controller without disturbance

Fig. 3. Solid line shows performance with ISM-CNF con-
troller and dotted line shows performance with CNF
controller alone

Now we will design integral sliding mode control law.
Above law is given just for comparison with new ISM-
CNF based control law. We are comparing our results with
original CNF law because there is no robust algorithm
available to reject time varying perturbations. ISM law
can be designed as

uN1(x, t) = −η|s|α|x2|sign((GB)T s(x, t)). (39)

Above law is similar to power rate reaching law specified
in Gao et al. [1993]. Use of sign function results in very
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Fig. 4. Plot of sliding surface s(x,t)
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Fig. 5. Plot of input u

Table 1. Controller parameters for simulation

Parameter Value

η 23.77

α 0.5

θ 0.002

τ 0.2 sec.

k 0.4

high chattering so sigmoid function is used in place of
sign function in actual simulation to reduce chattering so
control law becomes

uN1(x, t) = −η|s|α|x2|
((GB)T s(x, t))

‖((GB)T s(x, t))‖ + θ
. (40)

Where θ is a small positive number which decides width
of band where sliding surface is constrained. So switching
is done when it crosses the band.

As recently proved in Fridman et al. [2006] to avoid
amplification of unmatched perturbation G should be
generalized inverse of input matrix B. So G becomes,

G = B+ = [ 0 1 ] . (41)

Sliding surface can be computed by eqn (21). Simulation
is carried out for the plant with following parameters.

Figure-2 shows CNF controller without disturbance and
x1 tracks unit step in 2 seconds, here disturbance d=0.
When we add disturbance term in plant with CNF con-
troller performance deteriorates. It tracks reference within
3.5 seconds which is clear from Figure-3. With ISM-CNF
controller Figure-3 shows that x1 tracks reference within 2
seconds as if there is no disturbance in the plant. Therefore
ISM-CNF controller rejects disturbance completely and
controlled plant behaves as a nominal plant with nominal
controller. Figure-4 shows sliding surface which is a mea-
sure of deviation of actual trajectory from ideal nominal
trajectory without disturbance. It is seen from Figure-4
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that sliding surface remains close to zero. Figure-5 shows
there is no chattering in the input because of use of sigmoid
function in place of sign function.

5. CONCLUSION

ISM-CNF controller provides quick response without any
overshoot. ISM-CNF controller does not have any switch-
ing element unlike time optimal control. Change of gain is
smooth. ISM-CNF strategy gives better performance than
time optimal control for asymptotic tracking. With ISM-
CNF controller we get invariance. Controlled plant rejects
any disturbance which satisfy matching condition. ISM-
CNF controller is able to avoid amplification of unmatched
perturbation by the universal choice of G matrix. Stability
of system is assured in spite of saturation at actuator.
Effectiveness of this new ISM-CNF scheme to achieve
invariance against disturbances is proved.
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