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Abstract: Infrequent and delayed output measurements are a commonly found in industrial
processes. Hence, multirate estimation has gained some attention from researchers in the past
decades to provide solutions to receiving data with widely differing sampling intervals. In
this paper we present a discrete-time multirate estimator which combines ideas from Data
Assimilation and the Extended Kalman filter. The performance of the estimator is demonstrated
through a cultivation process study.

1. INTRODUCTION

In order to improve the efficiency of industrial processes,
it is desirable to monitor and control the physical dynamic
variables which are involved in such processes. A problem
often encountered in the pharmaceutical industry is that
some of the quality variables cannot be measured on-line,
but only off-line with a significant time delay of one or
more days due to the analytical methods employed. Both
the irregular sampling times and the long analysis delays
raises important issues when a monitoring and/or a control
system is be deployed. Soft sensors have received signifi-
cant attention during the recent decades, these sensors are
basically used to estimate the value of a variable based
on a dynamical model where the input data are on-line
measurements of other related process variables. There
exists many approaches to design soft sensors, i.e. neural
networks, fuzzy logic, system identification, etc. [Fortuna ,
2007, Lin , 2006]. The precise choice of approach depends
on the process complexity and knowledge as well as on
the available measurement data. However even for soft
sensors the issue of infrequent and delayed data constitute
an important problem to be dealt with in an appropriate
manner. This paper addresses precisely these problems.

The Kalman filter (KF) [Anderson , 1979] results from
the linear-quadratic Gaussian estimation problem, i.e.
estimating the instantaneous state of a linear dynamic
system perturbed by a Gaussian random process noise,
and using measurements linearly related to the state but
corrupted also by a Gaussian random measurement noise.
The resulting estimator is statistically optimal for any
quadratic function of estimation error [Grewal , 2001]. The
Kalman filter was originally designed for linear systems.
However it has been extended to the nonlinear case by
many authors. As a result, several different algorithms are
found in literature; the Extended Kalman Filter (EKF)
[Anderson , 1979, Grewal , 2001], the Ensemble Kalman
Filter (EnKF) [Evensen , 1994, Penland , 2003], and the

Unscented Kalman filter (UKF) [Wan , 2001], just to
mention some of them. Now, depending upon the model
complexity and the order of the system, it is possible to
choose the most appropriated one. For instance, to deal
with large scale systems, the EnKF is very efficient, while if
the system has strong nonlinearities the UKF works better,
or when the model is small scale with weak nonlinearities,
the EKF give good results.

An important assumption behind the standard KF in
order to guarantee an optimal estimation is that inputs
and outputs measurements are assumed available at each
time instant. This assumption is often not fulfilled for
quality variables in processes. One approach to tackle this
problem is multirate estimation [Lee , 1992, Lu , 2004,
Zhang , 2005] however this approache still requires regular
sampling of the slowly sampled data. This assumption may
be expensive too fulfil when slowly sampled data stem
from chemical analytical analysis where long and irregular
delays may occur. Therefore a new multirate estimator
called Multirate Data Assimilating Kalman Filter (MDA-
EKF) is presented in this paper. This estimator is based on
a technique used in research areas e.g. weather forecasting,
where observation data is combined with outputs from a
numerical model to produce an optimal estimate of the
evolving state of the system [Barrero , 2006, Cohn , 1996,
Evensen , 2003]. Then, by assimilating data into a model
via the KF, at the time instants when measurement data
actually is ready, it is possible to obtain a convergent but
suboptimal state estimate.

Moreover, the Kalman filter can be used to estimate not
just dynamical variables but also model parameters, recur-
sively. For instance, when process operation changes, due
to either physical modifications on the plant, or to changes
in operational/environmental conditions. Then the model
parameters can be adjusted on line using the Extended
Kalman Filter thus potentially rendering the estimation
more robust.
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The purpose of the present paper is to develop and demon-
strate the applicability of a multirate data assimilating
extended Kalman filter which can handle long delays and
variations in initial conditions. The paper is organized as
follows, in the first section the problem is formulated, then
in the second section Multirate Data assimilation using the
EKF is introduced. In the section three, a case study con-
cerning estimation of biomass and product concentration
in an industrial cultivation process is given, and finally the
conclusions are presented.

2. PROBLEM FORMULATION

Given a discrete time nonlinear system

xk+1 = f(xk, uk) + g(xk, uk)wk

yk = c(xk, uk, tk) + vk

where f(·), g(·), and c(·) are nonlinear functions of the
state variable xk ∈ R

n and the input uk ∈ R
p, with

output vector yk ∈ R
m. Where wk and vk are zero mean,

white Gaussian processes. In practice often the quality
measurements are delayed and irregular:
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where zk are infrequent and delayed output measurements
with 0 ≤ dml ≤ k. Notice that the dml values are not
ordered sequentially in time. Thus d12 can be larger than
d11 and less than d13.

Given this problem setting then an optimal estimator, e.g.
in the H2 norm, for xk based on zk and uk is needed.

3. MULTIRATE DATA ASSIMILATING EXTENDED
KALMAN FILTER - MDA-EKF

Data assimilation is a technique whereby observation data
is combined with outputs from a numerical model to pro-
duce an optimal estimate of the evolving state of the sys-
tem [Evensen , 1994, Penland , 2003]. Note that this defini-
tion is similar to that of a standard ‘state space observer‘ in
the systems theory literature [Franklin , 2002, Anderson ,
1979], the difference is that in a state observer it is assumed
that measurements are available at each sampling time
while in data assimilation this assumption is not always
fulfilled. The methodology developed in this paper is to
assimilate data into first-principles based models to render
maximal usage of the data and to improve forecasting.
The data assimilation scheme provides a structure where
multirate measurements can be incorporated easily into
the estimator [Myers , 1996]. As a result, a suboptimal
estimator, in H2 norm, that can handle infrequent and
delayed output measurements is developed.

Basically, the Extended Kalman filter operation is sum-
marized in the time and the measurement updates:

(1) Time Update

x̂k|k−1 = f(x̂k−1|k−1, uk−1)

Ak−1 =
∂f

∂x

∣

∣

∣

∣

x=x̂k−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 + Qk−1

(2) Measurement Update

Ck =
∂f

∂x

∣

∣

∣

∣

x=x̂k|k−1

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k + Rk)−1

x̂k|k = x̂k|k−1 + Kk(yk − Ckx̂k|k−1)

Pk|k = (In − KkCk)Pk|k−1.

Where Pk|k−1 ∈ R
n×n is the error covariance matrix at

time k based on information obtained at time k−1, where
n is the order of the system. Qk ∈ R

n×n the process noise
covariance matrix, Rk ∈ R

m×m the measurement noise
covariance matrix, where m is the number of measured
outputs, and Kk ∈ R

n×m is the Kalman filter gain.

The above description of the extended Kalman filter as-
sumes that measured outputs yk are available each sam-
pling instant k, which guarantees an optimal convergence
of the estimation error to zero [Anderson , 1979]. It often
occur in real processes, e.g. cultivation processes, that
quality variable measurements are infrequent and delayed.
The data assimilation framework, consists of computing
the measurement update only for available output mea-
surements, otherwise, just a time updated is carried out.
Thus for delayed and infrequent measurements Kalman
filtering can still be used, but with careful management
of measurement and time update when the infrequent and
delayed measurements become available.

Consequentially, the measurement update will consist of
two parts: a) infrequent measurements update: which is
carried out by redefining Ck according to the available
output measurements, and b) delayed measurement up-
date: which is carried out by recomputing the estimate at
time k using the available measurements from k − di up
to k. A flow diagram of the Multirate Data Assimilating
EKF (MDA-EKF) with infrequent and delayed output
measurements is shown in Figure 1.

k = 0

k = k + 1

yk−di

available

yes

no Model
Integration

Measurement
Reorganization

in Time

x̂k+1/k

x̂k+1/k−diEKF

Fig. 1. Multirate Data Assimilating Extended Kalman Fil-
ter (MDA-EKF) Scheme with Infrequent and Delayed
Output Measurements
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4. CASE STUDY

In this section the MDA-EKF estimator is designed for
an industrial cultivation process where monitoring is of
significant concern. This estimator should to infer product
and biomass concentrations in a bioreactor during fed-
batch and continuous operation based on on-line input
measurements and infrequent and delayed quality output
measurements. It is a typical case often found in bio-
chemical processes where samples of bioreactor contents
are taken to be analyzed in lab, then, after several hours
the results become available. Additionally, these delayed
measurements also have different time delays for each
variable as described above in section 1.

First the collected data are described as follows: The input
measured data are mass flow rate of nutrients ṁin, mass
of culture broth mb, and ammonia mass flow rate ṁNH3

.
This data set have a relatively short constant sampling
interval of Ts = 0.0208 units of time. The off-line measured
quality variables are product and biomass concentrations,
this data set is sampled infrequently and delayed in time,
i.e. one unit of time for X and two for P . Henceforth,
since a model-based estimator is to be designed, a gray-
box stochastic modelling approach is proposed because
firstly, the general model dynamics is known and secondly
measured data is available. In the next subsection the
model structure is described.

4.1 First Principles Based Model

The model structure selected for this case is one based on
reactions in a well stirred bioreactor [Nielsen , 2003]. The
general dynamic mass and product balance equations are,

dX

dt
= rx − DX (2)

dP

dt
= rp − DP, (3)

where D = Fin/V is the dilution rate, rx the biomass
growth rate, rp the product production rate, P the product
concentration, and X the biomass concentration. Now
in [Thaysen , 2005], section 9.4, is shown that rp is
proportional to rx during the continuous stage of the
process, hence, we can rewrite (3) as follows

dP

dt
= Yxprx − DP, (4)

where Yxp is the yield coefficient of product on biomass.

The Biomass Concentration Model According to [Lei ,
2001], for this type of processes, the biomass production
rate can be assumed dependent on the addition of ammo-
nia and substrate or, more precisely, the pH difference be-
tween them. Consequently, a mass balance for the proton
concentration [H+] during fed-batch and batch operation,
yields

V
d[H+]

dt
=Fin[H+]s − Fe[H

+]e . . .

+ FH+,gen − FNH3 − [H+]
dV

dt
(5)

where Fin is the feed flow rate of nutrients into the reactor,
Fe the effluent flow rate, and FNH3 the feed flow rate of

ammonia. The reactor volume is modelled as (assuming a
negligible ammonia feed rate)

dV

dt
≈ Fin − Fe, (6)

then substituting (6) into (5) yields

V
d[H+]

dt
=Fin[H+]s − Fe[H

+]e + FH+,gen . . .

− FNH3 − [H+](Fin − Fe). (7)

Assuming perfect mixing, i.e. [H+]e = [H+] yields:

V
d[H+]

dt
= Fin([H+]s − [H+]) + FH+,gen − FNH3,

Now, assuming a constant pH level in the reactor, the
balance becomes

Fin([H+]s − [H+]) + FH+,gen − FNH3 = 0

from which the following relation is obtained

FH+,gen = FNH3 − Finqs,H+

The value of qs,H+ has been determined experimentally
to qs,H+ = 36 mmole/L by [Thaysen , 2005]. Thus the
volumetric proton production rate rH+ can be described
by

rH+ =
FH+,gen

V
=

FNH3 − Finqs,H+

V
, (8)

the proton production rate can be used to compute the
biomass production rate rx as follows

rx =
MDW rH+

YxH

. (9)

Where MDW is the molecular weight of C-mole dry weight
biomass and YxH is the yield coefficient of mole protons
produced per C-mole biomass produced. Inserting (8)
into (9) yields a more useful formulation of the biomass
production rate:

rx = αrH+ = α
FNH3 − Finqs,H+

V
, (10)

where α represents the product between physiological
(MDW , YxH) and vessel properties. For more details, the
reader is referred to chapter 6 in [Thaysen , 2005]. As a
result, replacing (10) into (2) and (4) yield the relatively
simple model based upon process knowledge:

dX

dt
= α

FNH3 − Finqs,H+

V
− DX

dP

dt
= Yxp α

FNH3 − Finqs,H+

V
− DP. (11)

4.2 Model Parameter Estimation

After having derived a model structure (11), the data
available can be used to tune the model by estimating
the unknown parameters. First of all, rewrite (11) as a
function of the measured inputs; ṁin, ṁNH3, and mb.

dX

dt
=

ρb

mb

[

α

(

ṁNH3

MNH3

− qs,H+

ṁin

Sin

)

−
ṁin

Sin

X

]

dP

dt
=

ρb

mb

[

Yxp α

(

ṁNH3

MNH3

− qs,H+

ṁin

Sin

)

−
ṁin

Sin

P

]

,

(12)

where the known parameters are: the density of the broth
ρb = 1.03 kg/L, the concentration of the feed flow
Sin = 1.1 kg/L, the molar mass of ammonia MNH3 =
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17.03e−3 kg/mole, and the number of proton equivalents
qs,H+ = 0.036 mole/L. Then, the parameters that have to
be estimated are: the vessel and physiological constant α,
and the yield coefficient of product on biomass Yxp.

To estimate these unknown parameters a computer pro-
gram for performing Continuous Time Stochastic Mod-
elling (CTSM version 2.3) is used. This program has
been developed at Informatics and Mathematical Mod-
elling (IMM), and CAPEC at the Technical University of
Denmark (DTU). Continuous time stochastic modelling
means semi-physical modelling of dynamic systems based
on stochastic differential equations. Stochastic differen-
tial equations contain a diffusion term to account for
random effects, but are otherwise structurally similar to
the above ordinary differential equations. Therefore con-
ventional modelling principles can be applied to set up
the model structure. With the model structure given,
the program provides methods for model validation and
estimating unknown parameters of the model from data,
including the parameters of the diffusion term [Kristensen
, 2004]. Consequently (12) can be rewritten as follows,

dX =

(

ρb

mb

[

α

(

ṁNH3

MNH3

− qs,H+

ṁin

Sin

)

−
ṁin

Sin
X

])

dt . . .

+ σX (ut, t, θ)dw

dP =

(

ρb

mb

[

Yxp α

(

ṁNH3

MNH3

− qs,H+

ṁin

Sin

)

−
ṁin

Sin
P

])

dt . . .

+ σP (ut, t, θ)dw,

where θ = [α Yxp] is a vector of unkown parameters, w
are standard Wiener processes, and σX(·) and σP (·) are
nonlinear functions. The outputs are

y1 = X + ex

y2 = P + ep,

where ex and ep are measurement white noise processes
N(0, σe).

The data collected for 10 batches out of 15 are used for es-
timating the parameters θ with CTSM, using a Maximum
Likelihood (ML) method. The remaining batches are used
for validation. The results obtained are shown in Table
1, where it is observed that the values of the parameters
Yxp, α, initial conditions X0, P0, and σxx, and σep

are
reliable as indicated by the standard deviation and the t-
score analysis. However the results for σpp, and σex

are not
good, these parameters are important for learning about
the process noise of P , and measurement noise of X this
information will be used later for the tuning of the MDA-
EKF.

In Figure 2, the Root Mean Square Error (RMSE) for

Table 1. Paramater Estimation Results using
CTSM

Estimate σ t-score p(> |t|)

X0 1.87e-2 3.121e-3 6.00 0.00

P0 5.11e-3 2.34e-3 2.18 0.03

α 1.95e-1 1.35e-3 144.38 0.00

Yxp 16.73e-1 1.41e-2 119.05 0.00

σxx 2.66e-3 1.37e-4 19.47 0.00

σpp 6.88e-10 7.42e-9 0.09 0.93

σex 3.03e-16 3.04e-14 0.01 0.99

σep 1.96e-4 1.06e-5 18.41 0.00

the model estimation is shown with black bars. It can be
seen that even though the fitting of the model is good

for most cases, there are some batches were the RMSE is
quite large. This is due to the fact that, in case of a perfect
model, the model estimation depends mainly on the initial
conditions. Consequently if the initial conditions for some
batches change for any reason the estimation of the model
will be biased. Therefore an estimator depending upon
measurements such as the Kalman filter can be used to
resolve this sensitivity problem.

4.3 Biomasss and Product Estimation using MDA-EKF

An important feature of the classical Kalman filter, and in
general of the state space observers, is that the estimation
is based on input and output process measured data.
Consequently, the problem of unknown initial conditions
can be solved by recursively adding a correcting factor to
the system based on the difference between the estimated
and measured outputs.

Hence, to improve the estimation performance of the
model, the discrete-time MDA-EKF described in section
3, with sample time Ts = 0.0208 time units , is used.
Accounting for the information obtained in the previous
section (Table 1) about the process and measurement
noises, σxx, σpp, and σex

, σep
, respectively, the process

and measurement noise covariance matrices are set as
follows,

Q = diag[σxxσT
xx σppσ

T
pp]

Rk = diag[σex
σT

ex
σep

σT
ep

],

Next, the system (12) can be rewritten as

dX

dt
=

ρb

mb

[

α

(

ṁNH3

MNH3

− qs,H+

ṁin

Sin

)

−
ṁin

Sin

X

]

+ wX(t)

dX

dt
=

ρb

mb

[

Yxp α

(

ṁNH3

MNH3

− qs,H+

ṁin

Sin

)

−
ṁin

Sin

P

]

+ . . .

+ wP (t),

where wX(t) and wP (t) are Gaussian random processes
with N(0, σwX

= σxx) and N(0, σwP
= σpp), respectively.

Note that the system has to be discretized in time in order
to apply MDA-EKF.

Figure 2 shows the RMSE for MDA-EKF estimation with
white bars. Generally speaking, the results show that the
gain from the application of the discrete-time MDA-EKF
is limited. This is caused by a) the outputs measured data
have long delays,i.e. one unit of time for X and two for P ,
hence the estimation correction starts only after the first
output measurements are made available, and b) unknown
variations in the inputs and model parameters.

To facilitate accommodation to biased initial conditions
and other process disturbances it is interesting to inves-
tigate whether some parameters may vary in time. This
is investigated for nutrient concentration in the feed flow
Sin, and the yield coefficient of product on biomass Yxp.
Thus, an augmented system is proposed to include this
dynamics into the model. This can be incorporated by
assuming Yxp and Sin as random walk processes, with the
initial conditions given in Table 1. Thus,

dSin

dt
= wSin

(t)

dYxp

dt
= wYxp

(t),
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Fig. 2. RMSE Comparison Between Model and MDA-
EKF. The black bars are the RMSE for model es-
timation, the white ones the RMSE for MDA-EKF
estimation, and the gray ones the RMSE for MDA-
EKF estimation with augmented system.

where wSin
(t) and wYxp

(t) are Gaussian random processes
with N(0, σw).

To tune the MDA-EKF covariance matrices for this aug-
mented system, the values in Table 1 were taken as initial
conditions. Then by trial and error these were refined to
obtain better estimation results.

Figure 2 shows with gray bars the RMSE for MDA-EKF
estimation with the augmented system. Clearly a reduc-
tion of the RMSE is obtained for most of the batches.
It is noteworthy that when the RMSE is relatively large
the benefit obtained by estimating Yxp and Sin is rather
important. Furthermore, Figure 3 shows two examples of
the model performance and MDA-EKF estimation. In the
first case for batch 11, the estimation is reasonably good,
and just a slight retuning of Yxp and Sin is needed. In
the second case for batch 14, the estimation is performing
poorly during the fed-batch part, but after assimilating
some delayed measurements into the model, the estimator
starts reducing the estimation error. In addition in the
bottom of the figure it is shown how the parameters Yxp

and Sin are retuned helping to improve the performance
of the filter. This case demonstrates the adaptivity of the
MDA-EKF estimator with the augmented system when
the process is operating under conditions which deviate
from standard operation.

5. CONCLUSIONS

In this paper a new estimator is developed to handle
infrequent and delayed process measurements where Mul-
tirate Data Assimilation is performed using the Extended
Kalman Filter (MDA-EKF). This estimator is capable of
assimilating infrequent and delayed output measurements
into the model by minimizing, in a suboptimal way, the
H2 norm of the estimation error. An industrial case study
illustrates the model development and the tuning the esti-
mator. A first principle based model structure was chosen
where the parameters were estimated with data obtained
from the process by means of Continuous Time Stochas-
tic Modelling [Kristensen , 2004]. The results obtained
showed a good fitting of the model with the validation
data, however in some cases the estimation error was large
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Fig. 3. Time sequence comparison Between Model and
MDA-EKF Estimation for batch 11 (top four subfig-
ures) and bacth 14 (bottom four subfigures). Within
each of the two sets of four subfigures in the first and
second subfigures the crosses represent the real mea-
surements, the solid line the MDA-EKF estimation,
and the dashed line the model estimation. In the third
figure, the solid line is ṁin, the dashed line mb, and
the dotted line ṁNH3

. Finally in the fourth figure, the
solid line is Yxp, and the dashed line Sin. Notice that
the data has been normalized.

presumably due to unknown disturbances. In order to
improve the on-line performance of the model, a multirate
data assimilating Kalman filter estimator was proposed,
the MDA-EKF.

The first results obtained with the MDA-EKF estimator
did not improve the performance of the filter very much,
showing that the large estimation error in those batches
was caused by variations in the model parameters as
well as model inputs more than in the initial conditions.
Therefore, after analyzing the model parameters which
potentially could vary in time, the yield coefficient of
product on biomass Yxp and the nutrients concentration
in the feed flow Sin were incorporated as augmented state
variables.

With the augmented system, the MDA-EKF estimator
significantly reduced the estimation error in the batches
which previously showed poor fit. The resulting fit is very
similar to batches with good fit, confirming the above
hypothesis. Investigating the behavior of the augmented
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state variables, Yxp and Sin, it was found that for batches
with bad fit, these parameters were strongly retuned while
for the ones with good fit only slight retuning occurred.
Subsequently it was revealed by further analysis that a
specific sensor in the batches with poor fit needed recali-
bration. In conclusion, the MDA-EKF has been developed
into an estimator which can handle infrequent and delayed
output process measurements and adapt to variations in
model and input parameters.

6. ACKNOWLEDGEMENTS

The first author has been financially supported with a
grant from the European Commission ALFA office, within
the Project II-0407-FA, ”Latin American BioProcess Con-
trol”.

The authors are grateful to Novo Nordisk A/S for permis-
sion to use their data for this work.

REFERENCES

B.D.O. Anderson, and J.B. Moore. Optimal Filtering.
Prentice-Hall, 1979.

O. Barrero, B.L.R. De Moor, and D.S. Bernstein. Data As-
similation for Magneto-Hydrodynamics Systems. Jour-
nal of Computational and Appied Mathematics, vol-
ume 189, pages 242–259, 2006.

O. Barrero, and S.B. Jorgensen. Multirate Process Data
Assimilation using the Extended Kalman Filter. In-
ternal Report, Department of Chemical Engineering -
CAPEC, Technical University of Denmark, 2007.

S. Cohn, and R. Todling. Approximate Data Assimilation
Schemes for Stable and Unstable Dynamics. Meteoro-
logical Society of Japan, volume 74, pages 63–75, 1996.

G. Evensen. Sequential Data Assimilation with a Non-
linear Quasi-Geostrophic Model Using M,onte C,arlo
Methods to Forecast Error Statistics. Journal of Geo-
physical Research, volume 99(C5), pages 10,143–10,162,
1994.

G. Evensen. The Ensemble K,alman Filter: Theoretical
Formulation and Practical Implementation. Ocean Dy-
namics, volume 53, pages 343–367, 2003,

L. Fortuna, A. Rizzo, S. Graziani, and M.G. Xibilia. Soft
Sensors for Monitoring and Control of Industrial Pro-
cesses Series: Advances in Industrial Control. Springer,
2005.

G.F. Franklin, J.D. Powell, and A. Emami-Naeni. Feed-
back Control of Dynamic Systems. Prentice Hall, edi-
tion 4th, 2002.

S.M. Grewal, and A.P. Andrews. Kalman Filtering: The-
ory and Practice Using Matlab. Wiley Inter-Science,
edition 2nd, 2001.

R.D. Gudi, and S.L. Shah, and M.R. Gray. Multirate
State and Parameter Estimation in an Antibiotic Fer-
mentation with Delayed Measurements. Biotechnology
and Bioengineering, volume 44, pages 2451–1464, 1994.

R.D. Gudi, S.L. Shah, and M.R. Gray. Adaptive Multirate
State and Parameter Estimation Strategies with Appli-
cation to a Bioreactor. AIChE, volume 41, pages 1271–
1278, 1995.

N.R. Kristensen, H. Madsen, and S.B. Jorgensen. Param-
eter Estimation in Stochastic Grey-Box Models. Auto-
matica, volume 40, pages 225–237, 2004.

J.H. Lee, M. Morari. Robust Inferential Control of Multi-
Rate Sampled-Data Systems. Chemical Engineering
Science, volume 47, pages 865–885, 1992.

F. Lei. Dynamics and non-linear phenomena in contin-
uous cultivations of S,acharomyces C,erevisiae. Ph.D.
Thesis, Department of Chemical Engineering, Technical
University of Denmark, 2001.

B. Lin, B. Recke, J.K.H Knudsen, and S.B. Jorgensen.
A Systematic Approach for Soft Sensor Development.
Computers & Chemical Engineering, In Press, 2006.

X. Lu, H. Zhang, and W. Wang. Optimal Filtering for
Discrete Time-Varying Systems with Multiple Time-
Delay Measurements. Proceedings of International Con-
ference on Control, Automation, Robotics and Vision,
Kunming, China, pages 1735-1740, 2004.

M.A. Myers, S. Kang, and R.H. Luecke. State Estima-
tion and Control for Systems with Delayed Off-Line
Measurements. Computers & Chemical Engineering,
volume 20(5), pages 585–588, 1996.

J. Nielsen, J. Villadsen, and G. Liden. Bioreactor En-
gineering Principle. Kluwer Academic/Plenum, edi-
tion 2nd, 2003.

C. Penland. A Stochastic Approach to Nonlinear Dynam-
ics: a review. Bulletin of the American Meteorological
Society, volume 84, pages 921–925, 2003.

M. Thaysen. Hybrid Modeling of Enhanced Bioreactor
Performance. Ph.D. Thesis, Department of Chemical
Engineering, Technical University of Denmark, 2005.

E.A. Wan, and R. Van der Merwe. Kalman Filtering
and Neural Networks. Wiley Series on Adaptive and
Learning Systems for Signal Processing, Communica-
tions, and Control, 2001.

H. Zhang, M.V. Basin, and M. Skliar. Kalman Filter for
Continuous State-Space System with Continuous, Mul-
tirate, Randomly Sampled and Delayed Measurements.
Proceedings of American Control Conference, Portland,
OR, USA, pages 3462–3467, 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11438


