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Abstract: A discrete-time internal model principle based adaptive algorithm for identifying signals
composed of a sum of exponentially damped sinusoids is presented. The time varying state variables
of an internal model principle controller in a feedback loop can provide estimates of the exponentially
damped sinusoidal signal parameters, the damping factor and the frequency. By using additional integral
controllers, the estimation errors can be eliminated. The convergence of the proposed algorithm is
justified using discrete-time averaging theory. Simulation results demonstrate the performance of this
algorithm for signal identification.

1. INTRODUCTION

In this paper, we consider signals composed of a sum of
exponentially damped sinusoids with the following form,

s(k) =
N

∑
i=1

si(k) =
N

∑
i=1

aie
−σik sin(ωik +ϕi) (1)

where the uncertain σi and ωi are the damping factor and the
frequency, respectively. This form can also represent constant-
amplitude sinusoids, and constant signals. The objective is to
estimate the parameters σi and ωi. There have been many
techniques developed to deal with predictable signals, such as
narrow-band or sinusoidal signals, since they appear in both
signal processing and control applications, including active
noise control, radar signals, rotating mechanical systems, com-
puter hard disk drive etc., Brown and Zhang [2003]. These tech-
niques include linear quadratic regulator based modern control,
higher harmonic control, Sievers and von Flotow [1992], adap-
tive notch filter, Regalia [1991], adaptive feedforward cancel-
lation (AFC), Bodson and Douglas [1997], adaptive observer
technique, Marino and Tomei [2002].

Another common approach for perfect cancellation of signals
is based on a fundamental control principle, the internal model
principle, (IMP) Francis and Wonham [1976]. This principle
states that perfect disturbance rejection or reference tracking
is achieved when a model of the dynamic structure of the
disturbance or reference signal is incorporated in a stable feed-
back loop. The accuracy of regulation depends critically on the
fidelity of the IMP controller. Errors of less than one percent
in model coefficients can lead to unacceptable residual errors.
Thus, the ability to adaptively tune the model parameters, which
can be completely specified as damping factors and frequen-
cies, is of great benefit. Then adaptive IMP controllers can
provide exact reproduction of the predictable part of a signal,
and when they do, they provide highly accurate estimates of
the signal parameters. One application of the IMP to periodic
disturbance rejection is repetitive control for time-lag systems
and multi-link manipulators, Tsao et al. [2000]. Serrani et al.
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[2001] also presented a solution to a nonlinear output regulation
problem based on the IMP.

An IMP based adaptive algorithm for canceling quasi-periodic,
or narrow-band signals with uncertain frequencies is presented
in Brown and Zhang [2003]. This approach begins with a state
space implementation of the standard IMP controller with the
best estimate of the frequency used. A simple mapping from
the states of the controller to the error in the frequency estimate
was developed and this “measurement” of the frequency error
is used to update the parameters of the IMP controller. When
this adaptive IMP controller is placed into a feedback loop,
the resulting closed-loop system achieves perfect frequency
estimation of the elements of a sum of sinusoidal signals.

In addition to sinusoidal signals, EDS signals are often used
to model audio signals, such as speech or music, which con-
tain relatively fast variations in amplitude. The conventional
sinusoidal model is thus extended by allowing the amplitude
to evolve exponentially as given by (1). A well-known ap-
proach to EDS signal parameter estimation is the polynomial
or linear prediction method as in Kumaresan and Tufts [1982].
Traditionally, EDS signal model is associated with a high-
resolution parameter estimation method, such as matrix pencil,
ESPRIT or Kung’s algorithm, Boyer and Rosier [2002]. Hua
and Sarkar [1990] presented a matrix pencil method as an alter-
native approach which exploits the structure of a matrix pencil
of the EDS signal si(t), instead of the structure of prediction
equations satisfied by si(t). In Badeau et al. [2002], the EDS
signal parameters, damping factor and frequency, are estimated
using a subspace-based matrix pencil high resolution method.
The tracking of the slow variation of the signal parameters is
achieved using an adaptive least mean square algorithm.

Motivated by the IMP based adaptive algorithm in Brown and
Zhang [2003], an extended adaptive algorithm for EDS distur-
bance cancellation was developed in Lu and Brown [2007].
The control law results in a system output error that decays
exponentially fast with a decay rate independent of σi. This
is equivalent to what is meant when integral control is said to
provide perfect set-point tracking. This work was developed
only in continuous-time framework and strictly as a control
algorithm. Here we develop a discrete-time implementation of
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Fig. 1. Block diagram of an internal model control system

this algorithm, and convert the control algorithm into a signal
processing algorithm.

This paper is organized as follows: In Section 2, the motiva-
tion, the continuous-time state-space representation of the IMP
controller, is introduced. Then the derivation of the IMP based
adaptive algorithm for EDS signal identification in discrete-
time is presented. The convergence and stability property of the
proposed adaptive algorithm is analyzed based on a discrete-
time two time scale averaging theory in Section 3. Simulation
results are demonstrated in Section 4, followed by a conclusion
in Section 5.

2. INTERNAL MODEL PRINCIPLE BASED ADAPTIVE
ALGORITHM

2.1 Adaptive Algorithm in Continuous-Time

The basic structure of the feedback system is shown in Fig.
1, where L is a tuning function that is properly designed to
stabilize the system, H represents the IMP controller. d is an
EDS signal, which is defined as follows,

d(t) = ae−σct sin(ωct +ϕ), σc > 0, ωc > 0, a > 0 (2)

where σc, ωc are the damping factor and frequency, respec-
tively. e is the error signal. Thus, following IMP theory, a
continuous-time state-space representation of an IMP controller
is [

ẋ1

ẋ2

]
=

[
−σc ωc

−ωc −σc

][
x1

x2

]
+

[
0
1

]
e (3)

uh = [K1 K2]

[
x1

x2

]
(4)

where K1, K2 are tuning gains.

If the initial conditions for x1 and x2 are given by x1(0) =
acosϕ√
K2

1 +K2
2

, x2(0) = asinϕ√
K2

1 +K2
2

, then for all t > 0, e = 0 and

x1(t) =
a√

K2
1 +K2

2

e−σct cos(ωct +ϕ) (5)

x2(t) =
a√

K2
1 +K2

2

e−σct sin(ωct +ϕ) (6)

By letting x = |x|∠θ = x1(t)+ jx2(t), we can get

|x| = a√
K2

1 +K2
2

e−σct (7)

θ = tan−1

(
x2(t)

x1(t)

)
= ωct +ϕ (8)

where tan−1(·) is defined to have a range given by real numbers
such that θ is continuous in t. Differentiating both sides of (7)
and (8), we have

σc = − 1

|x|
d|x|
dt

(9)

and

ωc =
dθ

dt
(10)

In practice, the model parameters in (3) and (4) are approxima-
tions, giving

σ̂c = − 1

|x|
d|x|
dt

= −x1ẋ1 + x2ẋ2

x2
1 + x2

2

= σ − ex2

x2
1 + x2

2

(11)

and

ω̂c =
dθ

dt
=

d

dt
tan−1

(
x2(t)

x1(t)

)
=

ẋ1x2 − x1ẋ2

x2
1 + x2

2

= ω − ex1

x2
1 + x2

2

(12)

Thus the error between σ̂c and σ can be expressed as

σ̃ = − ex2

x2
1 + x2

2

(13)

Similarly, the error between ω̂c and ω is

ω̃ = − ex1

x2
1 + x2

2

(14)

(11) and (12) can be used to estimate the damping factor and
frequency of the EDS signal.

2.2 Derivation of the Adaptive Algorithm in Discrete-Time

The discrete-time state-space equation of the IMP controller
can be converted from its continuous-time counterpart (3) and
(4) as[

x1(k +1)
x2(k +1)

]
= e−σ

[
cosω sinω
−sinω cosω

][
x1(k)
x2(k)

]
+

[
0
1

]
e(k) (15)

uh(k) = [K1 K2]

[
x1(k)
x2(k)

]
(16)

Therefore at sampling instant t = kTs, continuous-time estima-
tion errors (13) and (14) are equal to the following discrete-time
estimation errors

σ̃(k) = − e(k)x2(k)

x2
1(k)+ x2

2(k)
(17)

ω̃(k) = − e(k)x1(k)

x2
1(k)+ x2

2(k)
(18)

and the estimates of the damping factor and frequency can be
updated by using two integral controllers

σ(k +1) = σ(k)+ εσ̃(k)

= σ(k)− ε
e(k)x2(k)

x2
1(k)+ x2

2(k)
(19)

ω(k +1) = ω(k)+ εKbω̃(k)

= ω(k)− εKb

e(k)x1(k)

x2
1(k)+ x2

2(k)
(20)

where ε is a small adaptation gain, Kb is a constant, and both
are positive.

From (19) and (20), it can be seen that if x1(k) = 0 and x2(k) =
0, the integral update laws are undefined as both the numerators
and denominators are 0. This problem can be avoided by adding
a small constant C in the denominators of both equations, or
setting ε = 0 when |x| is less than a constant.

Fig. 2 and Fig. 3 show the structure of the IMP based adaptive
feedback system. The function Fk(x,e) is what have been
derived in (17) and (18). Due to the structure of the IMP
controller, a controller can only achieve identification of a
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Fig. 3. Block diagram of an adaptive IMP feedback control
system for multi-EDS signals

single EDS mode. If the signal d(k) is composed of multiple
EDS modes, multiple adaptive IMP controllers are placed in
parallel.

By incorporating the adaptive update laws (19)-(20), the IMP
controller parameters, σ and ω , converge to the true values σc

and ωc of the EDS signal. If σc or ωc changes with time, e
is not 0 and the adaptive algorithm will estimate and track the
changing parameters.

3. CONVERGENCE AND STABILITY ANALYSIS

The stability analysis of the proposed adaptive algorithm in
continuous-time is presented in Lu and Brown [2007]. Singular
perturbation theorem, Khalil [2002] and averaging theorem,
Sastry and Bodson [1989] are used for the analysis. Bai et
al. adapted these two theorems in a combined discrete-time
version, Theorem 2.2.4. Exponential Stability Theorem for Two-
Time Scale System, in Bai et al. [1988].

The feedback system is now formulated as a two time scale
model. Due to the limitation of space, we will address only
the case where the signal is composed of a single EDS. The
techniques for extending the proof to the multi-EDS case are
shown in Brown and Zhang [2003], Lyndon J. Brown and Qing
Zhang [2004]. The primary change in the proof is that the
equilibria x10 and x20 defined in equations (32) and (33) will
have terms corresponding to each mode, and the calculation of
the averaging function will be far more complicated. However,
as simple sinusoids, these extra terms will ultimately contribute
nothing to the average, beyond possibly requiring longer aver-
aging times. Detailed calculations of the averaged function has
also been omitted for space reasons. The state-space equations
for the adaptive feedback system in Fig. 2 are as follows:

xp(k +1) = Apxp(k)+Bpu(k) (21)

e(k) = Cpxp(k) (22)

u(k) = −K1x1(k)−K2x2(k)+d(k) (23)

d(k) = ae−σck sin(ωck)+ c1 (24)

x1(k +1) = (e−σ cosω)x1(k)+(e−σ sinω)x2(k) (25)

x2(k +1) = −(e−σ sinω)x1(k)+(e−σ cosω)x2(k)+ e(k)
(26)

σ(k +1) = σ(k)− ε
e(k)x2(k)

x2
1(k)+ x2

2(k)
(27)

ω(k +1) = ω(k)− εKb

e(k)x1(k)

x2
1(k)+ x2

2(k)
(28)

where (21) and (22) are state-space representation for L(z). The
presence of the bias c1 in the exogenous signal (24) does not
affect the convergence property of the algorithm if L(1) = 0.

Perturbation analysis proceeds by fixing σ(k) = σ , and ω(k) =
ω . Under these conditions, the transfer function of the IMP
controller is

H(z) =
K2z+K1e−σ sinω −K2e−σ cosω

z2 −2ze−σ cosω + e−2σ

:=
N(z)

D(z)
.

The tuning function can also be expressed as a rational polyno-

mial form as L(z) = B(z)
A(z) . Thus the transfer function from d(k)

to e(k) can be given by

Ged(z) =
B(z)D(z)

A(z)D(z)+B(z)N(z)

= (z2 −2ze−σ cosω + e−2σ )Q(z)

where Q(z) = B(z)
A(z)D(z)+B(z)N(z) . The transfer functions from d(k)

to x1(k) and x2(k) can also be derived as

Gx1d(z) = (e−σ sinω)Q(z),

Gx2d(z) = (z− e−σ cosω)Q(z).

Now in order to formulate the two time scale model, we
introduce new state variables, σe, ωe, xpe, x1e, x2e, as follows:

σe(k) = σ(k)−σc (29)

ωe(k) = ω(k)−ωc (30)

xpe(k) = xp(k)− xp0(k) (31)

x1e(k) = x1(k)−a|Q|e−σck−σ(k) sinω(k)sin(ωck +∠Q)

:= x1(k)− x10(k) (32)

x2e(k) = x2(k)−a|Q|e−σck−σ(k)
[
e−σc sinωc cos(ωck +∠Q)

+(e−σc cosωc − e−σ(k) cosω(k))sin(ωck +∠Q)
]

:= x2(k)− x20(k) (33)

where xp0, x10, x20 are steady state solutions when the slow
states are fixed at σ and ω . |Q| and ∠Q denote the magnitude
and angle of Q(z) evaluated at z = −σc + jωc respectively, and
σ = σ(k), ω = ω(k). By letting

x(k) =

[
σe(k)
ωe(k)

]
, y(k) =

[
xpe(k)
x1e(k)
x2e(k)

]
,

and substituting these new state variables into the system state
equations, we can derive a two time scale model form

x(k +1) = x(k)+ ε

[
f1(k,x,y)
f2(k,x,y)

]
(34)

y(k +1) = A(x(k))y(k) (35)
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where

f1 = − Cp

(
xpe(k)+ xp0(k)

)(
x2e(k)+ x20(k)

)
(
x1e(k)+ x10(k)

)2
+

(
x2e(k)+ x20(k)

)2
(36)

f2 = −KbCp

(
xpe(k)+ xp0(k)

)(
x1e(k)+ x10(k)

)
(
x1e(k)+ x10(k)

)2
+

(
x2e(k)+ x20(k)

)2
(37)

and

A =




Ap −K1Bp −K2Bp

0 e−σe−σc cos(ωe +ωc) e−σe−σc sin(ωe +ωc)
Cp −e−σe−σc sin(ωe +ωc) e−σe−σc cos(ωe +ωc)




(38)

For the adaptive feedback system (34) and (35), we have the
following stability and convergence theorem.

Theorem 1. Consider the dynamic system (34)-(35), with input
signal given by (24). If the following assumptions are satisfied

(1) The tuning function L(z) is not equal to zero when z =
e−σc+ jωc , and a 6= 0;

(2) For all fixed σ and ω , matrix A has eigenvalues less than
one, i.e., the system of Fig. 2 with H(z) given by (15),
(16), has poles strictly within the unit circle;

(3) L(1) = 0,

then there exists ε∗, such that for all 0 < ε < ε∗, the origin of
(34) and (35) is locally exponentially stable. Note assumption
(3) is not required if d(k) is zero mean, i.e. c1 = 0.

Proof of this theorem results from direct application of Theo-
rem 2.2.4. in Bai et al. [1988]. This has two main requirements.
It requires the fast system (35) to be stable, which is satisfied
by assumption (2), and the average of the slow system (34) is
also required to be stable. In Lu and Brown [2007], it is shown
that

ωc

2π

∫ 2π/ωc

0
f1 = ω −ωc +

ωc

π
× ln

(σ −σc)
2 +ω2

ω2
c

and
ωc

2π

∫ 2π/ωc

0
f2 = σ −σc +

2

π
ωc tan−1 σ −σc

ω
when x1e, x2e and xpe are zero and time index k has been
replaced by a continuous time variable. Stability of the resulting
average system is easily shown by Lyapunov’s first method.
The details showing that the average calculated by summation
is equivalent is more complicated and has been omitted. Other
technical conditions of Theorem 2.2.4 can be easily verified.

The two time scale requirement of the theory leads to the
idea that ε∗ will be significantly less than the magnitude of
the smallest eigenvalue of (I −A). Practically, for exponential
stability of x(k) to require convergence of σ and ω to their true
values in the presence of noise, ε must be significantly greater
than σc. Otherwise, x(k) will go to zero simply as a result of
d(k) going to zero. Thus selection of L(z) and ε must be done
to ensure that a three time scale system is generated in order for
the algorithm to function.

4. SIMULATIONS

In this section, the performance of the proposed adaptive algo-
rithm is examined via simulations. All simulations are created
in MATLAB and Simulink environment using discrete solver
with time units normalized such that Ts = 1 unit time. In this
case, the frequency unit rad/s means radians per sample. Three
signals are used to conduct the simulations: (1) A single EDS

signal with step changes on both parameters plus a constant
offset and Gaussian noise; (2) A single EDS signal with time
varying damping factor plus a constant offset and Gaussian
noise; (3) A multi-EDS modes signal plus a constant offset
and Gaussian noise. The tuning function is chosen as L(z) =
(z2 − z)/(z2 − 0.75z + 0.01), so that the closed-loop feedback
system is stable. Note that for pure sinusoidal signals, Zhang
and Brown [2006] present a performance analysis for the IMP
based adaptive algorithm for uncertain frequency identification.
In this article, the tuning function L(s) is chosen as a function
of ω such that the closed-loop system is a bandpass filter with
a notch of width W. By incorporating this bandpass filter in
L(s), formulae are derived for calculating the variance for the
estimated frequency. With a signal to noise ration given by SNR
the variance of ω was found to be ε2 ∗ W ∗ ω ∗ SNR where
ε is the adaptation gain as in this work. This analysis can be
extended to EDS signals that we are interested in.

For the first simulation, the EDS signal is given by

d(k) = 3e−0.005k sin(0.5k)+1+n(k), 0 ≤ k ≤ 149.

At 150 sample point, its damping factor changes from 0.005
to 0.01 and its frequency has a step change from 0.5 rad/s to
0.6 rad/s. In order to avoid the discontinuities in the signal
magnitude and phase, the signal is given by

d(k)= 3e−0.01k+0.75 sin(0.6k−15)+1+n(k), 150≤ k≤ 300.

The additive Gaussian noise n(k) has zero mean and vari-
ance 0.0001. The initial conditions are σ(0) = 0.008, ω(0) =
0.2 rad/s. The tuning parameters are K1 = 0.5, K2 = 0.3, ε =
0.05, Kb = 2. The magnitude of the dominant eigenvalue of
matrix A is 0.9062. The algorithm presented here, with an inte-
gral action contained in the tuning function L(z), is not affected
by the presence of constant offsets, unlike other algorithms in
the literature. Fig. 4 shows the signal and error response plots.
The error converges to zero at 40 samples with a decay rate
significantly greater than the EDS signal’s damping factor. Fig.
5 shows that the IMP controller’s parameters converge to the
true values of the EDS signal at about 40 samples. After the
step changes in both parameters, it takes about 50 samples for σ
and 25 samples for ω to converge to their new values. In order
to evaluate the performance of the algorithm, we measure the
variances of estimated parameters in a steady-state time period.
From sample point 50 to sample point 150, the measurements
are var(σ) = 7.7×10−8, var(ω) = 1.8×10−7.

For the second simulation, the EDS signal is

d(k) = 3exp
(
∑

k

i=0
0.02sin(0.03i)

)
sin(0.5k)+1+n(k),

with its damping factor defined as σc(k) = 0.02sin(0.03k). The
additive Gaussian noise has zero mean and variance 0.0001.
The initial conditions are σ(0) = 0.05, ω(0) = 0.2 rad/s. The
tuning parameters are K1 = 0.5, K2 = 0.3, ε = 0.12, Kb = 0.83.
Since the damping factor is time varying, in order to minimize
the tracking delay, the integral gain for σ has been increased
while keeping the integral gain for ω unchanged. Fig. 6 shows
the EDS signal with time varying damping factor and the error
response of the adaptive feedback system. It can be observed
that the error decays to zero at a rate independent of the EDS
signal’s damping factor. The top plot in Fig. 7 demonstrates
the tracking performance of the adaptive algorithm. The esti-
mated damping factor tracks the true value after 40 samples
with 8.5 samples delay. The estimated constant frequency is
illustrated in the bottom plot. From sample point 50 to sample
point 260, the variances for estimated parameters are calcu-
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Fig. 4. Single EDS signal with a parameter step change and
error response

0 50 100 150 200 250 300
−0.05

0

0.05

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

D
a

m
p

in
g

 f
a

c
to

r
F

re
q

u
e

n
c
y
 (

ra
d

/s
)

Sample 

Sample 

Fig. 5. Parameter estimation of a single EDS signal with a
parameter step change

lated as var(ω) = 1.2× 10−6 and the variance of σ defined as

var(σ(i)−0.02sin(0.03(i−8.5))) equals 9.3×10−7.

The signal for the third simulation is

d(k) = d1(k)+d2(k)+2+n(k),

where

d1(k) = 2e−0.007k sin(0.3k),

d2(k) = 3e−0.012k sin(0.5k)

with initial conditions

σ1(0) = 0.005, ω1(0) = 0.2 rad/s,

σ2(0) = 0.015, ω2(0) = 0.65 rad/s.

The additive Gaussian noise has zero mean and variance
0.0001. The tuning parameters are the same for each IMP con-
troller as K1 = 0.1, K2 = 0.1, ε = 0.03, Kb = 1. The magnitude
of the dominant eigenvalue of matrix A is 0.9504. Fig. 8 shows
the multi-EDS signal and the error response of the feedback
system. As ε has been reduced, we see slower convergence in
Fig. 9 and 10. This has been seen to be required in practice and
can be inferred from the averaging proof as the averaging period
is now calculated for a sum of sinusoids. From sample point 200
to sample point 300, the variances for estimated parameters are
var(σ1) = 3.8×10−7, var(ω1) = 1.1×10−7, var(σ2) = 4.6×
10−7, var(ω2) = 1.5×10−7.
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Fig. 6. Single EDS signal with time varying damping factor and
error response
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Fig. 7. Parameter estimation of a single EDS signal with time
varying damping factor
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Fig. 8. Multi-EDS signal and error response

5. CONCLUSION

An IMP based adaptive algorithm is developed in discrete-
time for identifying exponentially damped sinusoidal signals.
Both the damping factor and frequency of the signal can be
estimated using the time varying state variables of the IMP con-
troller. This adaptive algorithm can not only identify constant
parameters, but also track slowly time varying parameters. By
constructing a series of IMP controllers in parallel, the adaptive

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5093



0 50 100 150 200 250 300
−0.05

0

0.05

0 50 100 150 200 250 300
0.15

0.2

0.25

0.3

0.35

D
a

m
p

in
g

 f
a

c
to

r
F

re
q

u
e

n
c
y
 (

ra
d

/s
)

Sample 

Sample 

Fig. 9. Parameter estimation for EDS mode d1(k)
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Fig. 10. Parameter estimation for EDS mode d2(k)

feedback system can identify a signal composed of a sum of
EDS components, with each IMP controller corresponding to
one EDS component.

In the first simulation, the slow system has almost the same
speed as the fast system. In the third simulation, the fast system
is faster by a factor of 2 than the slow system. From these
simulations, our algorithm has shown its functionality despite
the limitation that the slow system shall be slower than the fast
system. In order to speed up our algorithm, we can place the
closed-loop poles closer to the origin by tuning the function
L(z). Also note that the variance measurements are zero for
noise free simulation cases.

The proposed algorithm is shown to be locally exponentially
stable, with convergence rates given by the design parameters,
independent of the signal strength and almost independent
of the signal parameters.(By almost we refer to the natural
restrictions that convergence cannot be faster than 1/ωc, and
must be faster than σc.) Because of the local nature of the
stability result, initial choice for σ and ω can be critical.
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