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Abstract: This paper deals with the problem of adaptive path tracking of autonomous
underwater vehicles with time-varying dynamics. The controller design is based on a speed-
gradient adaptive law. A high-performance control behavior is aimed, so the full actuator
dynamics is considered together with that of the vehicle. To this end, a state/disturbance
observer is developed in the state feedback employing inverse dynamics. It is proved that the
error paths can converge asymptotically to null when only the nonlinear static characteristic
of the thrusters is involved in the design. When the actuator dynamics is considered too, only
attractivity of the error paths to a residual set can be stated. The framework for this last proof
relies on the concept of total stability. One main characteristic of our approach is that it can
cope with a wide variety of bounded time-varying parameters with no limitations at all on their
rates or a-priori knowledge. Copyright c° 2007 IFAC
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1. INTRODUCTION

In the past decade, new design tools and systematic design
procedures has been developed to adaptive control for a set
of general classes of nonlinear systems with uncertainties,
for instance, integrator backstepping (Krstíc et al. [1995]),
speed-gradient control (Fradkov et al. [1999]), among oth-
ers.
In the absence of modeling uncertainties, adaptive con-
trollers can achieve in general global boundedness, asymp-
totic tracking, passivity of the adaptation loop irrespec-
tively of the relative degree, and systematic improvement
of transient performance (Krstíc et al. [1993]).

When modeling uncertainties are included in the controller
design, the basic adaptive laws can generally be modified
so that the system can tolerate, in a global sense, a large di-
versity of unmodeled dynamics in the form of linearly and
nonlinearly parameterized uncertainties enclosing time-
varying parameters (Zhang and Ioannou [1996], Zhang and
Ioannou [1998], Ikhouane and Krstíc [1998], Arcak et al.
[2000]).
Generally speaking, robust stabilization with respect to
unknown time-varying parameters demands the a-priori
knowledge of bounds of compact parameter sets among
other considerations. Nevertheless, only in few cases, as-
ymptotic tracking may be achieved under special condi-
tions of signals in the control loop.
Common applications of submarine vehicles employed as
platforms of mechanical tools or scientific instrumental can
often be described as time-varying dynamics, with a-priori
1 Corresponding author: Mario A. Jordán: e-mail: mjor-
dan@criba.edu.ar; phone +54-291 4861519 (169).

unknown parameters which may also change suddenly,
periodically or erratically (El-Hawary [2001]). These facts
support here the aim of control them adaptively. Moreover,
in sampling missions, speed and high-performance in path
tracking are usually required, even in critical cases by
perturbed scenarios with currents and waves, in where
robustness properties are also demanded.
The main objective of the paper is to present high-
performance adaptive controllers for path tracking of ar-
bitrarily time-varying systems with hydrodynamics. The
description of the actuator dynamics as parasitic or dom-
inant in comparison with the vehicle dynamics, plays an
important role in the design and analysis of the approach
and its convergence of the error tracking paths using
the framework of total stability. A case study for an au-
tonomous navigation vehicle with flying paths in 6 degrees
of freedom (DOF), aims finally to illustrate features of the
presented approach per simulation.

2. TIME-VARYING NONLINEAR DYNAMICS

According to (Fossen [1994]), the vehicle dynamics is
.
v=M−1(t)(-C(t,v)v-D(t, |v|)v+g(t,η)+τ c(t)+τ t(t)) (1)
.
η=J(η)(v+ vc), (2)

where v =[u, v, w, p, q, r]T ∈ <6×1 × <+0 describes the
body motion modes: surge, sway, heave, roll, pitch and
yaw, respectively, and η ∈ <6×1 × <+0 with the form
η =[x, y, z,ϕ, θ,ψ]T for the same modes, respectively, but
observed from the earth-fixed frame. The J is the rotation
matrix expressing the transformation from the inertial
frame to the body-fixed frame. The matrices M (inertia
matrix), C (Coriolis matrix) and D (drag matrix) and the
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vectors g (buoyancy vector), vc (current vector), τ c (cable
force) and τ t (thruster force) are explained in (Jordán and
Bustamante [2006]). As indicated therein, some of them
can be structurally decomposed into combinations of time-
varying and state-dependent matrices as in the case of
C =

P6
i=1Ci(t). × Cvi(vi), D = Dl(t) +

P6
i=1Dqi(t) |vi|

and g = B1(t)g1(η) + B2(t)g2(η), with ".×" being an
element-by-element product.
Finally, the generalized thrust force applied on O is

f = BT
¡
BBT

¢−1
τ t, (3)

where the constant matrix B ∈ <6×nτ contains position
coordinates with respect to O of the nτ thrusters. The
thruster dynamics is (cf. Fossen [1994])

f = K1 (|n| .n)−K2 (|n| .va) (4)

n = n1 + n2; n1 = G1(s) f ; n2 = G2(s) ua (5)

ua = GPID(s)(nr − n), (6)

where (x.y) represents an element-by-element product of
vectors, |n| is a vector with elements of n but in absolute
value, n and nr : <+ → <nτ×1, n1, n2 are auxiliary
vectors, va : <+ → <nτ×1 is the axial flow velocity of
the thruster set, ua is the armature voltage vector, K1,
K2 ∈ <nτ×nτ gain diagonal matrices of the thrust static
characteristic, G1 and G2 represent diagonal matrices with
strictly proper Laplace transfer functions, and similarly,
GPID a diagonal matrix with Laplace transfer functions
on the diagonal representing usually PID controllers for
the open-loop thruster DC motors.

3. ADAPTIVE CONTROLLER

Consider now the asymptotic path tracking target as
defined by

lim
t→∞(η(t) − ηr(t)) = 0, lim

t→∞(v(t)−vr(t)) = 0, (7)

for arbitrary finite initial conditions η(t0) ∈ Sη and
v(t0) ∈ Sv and smooth positioning and kinematic path
references ηr(t) ∈ Sη and vr(t) ∈ Sv, respectively. The setsSi will indicate a compact set for the respective variable
i. Let the desired control performance be established by
the energetic cost functional

Q(t,
v
η,

v
v) =

1

2

v
η
Tv
η +

1

2

v
v
T
M(t)

v
v, (8)

which is a radially unbounded and nonnegative in the error
space Sη × Sv, where

v
η = η−ηr (9)
v
v = v− J−1(η) .ηr + J−1(η)Kp

v
η, (10)

and Kp is a design gain matrix with Kp = KT
p ≥ 0.

A suitable selection of τ t is (Jordán and Bustamante
[2006])

τ t(t)=
6X
i=1

Ui.× Cvi(vi)v+U7v+
6X
i=1

Ui+7 |vi| v+ (11)

+U14g1+U15g2+U16d−U17vv−Kv
v
v−JTvη ,

where Ui ∈ <6×6 are controller matrices obtained by
(Fradkov et al. [1999])

U̇i = −Γi ∂Q̇(Ui)
∂Ui

, for t ∈ <+, (12)

with Γi = ΓTi ≥ 0 a positive-definite design gain matrix.
Theorem 1. (Asymptotic convergence).

Consider the system in (1)-(2) with bounded and contin-
uous path references ηr and vr, and known continuous
disturbances τ c and vc. The control system with:
a) bounded, piecewise-continuous, time-varying elements
pjk(t) in the physical matrices M , C1,· · · , C6, Dl,
Dq1 ,· · · , Dq6 , B1 and B2, stated in Section 2, with
existing bounded M−1(t) for t ≥ t0, and eventual
jumps ∆Mi in M(t) being finite and isolated

b) the generalized force τ t calculated as in (11) and
c) the variable controller matrices Ui’s generated by
integration of the adaptive laws (12),

ensures:
1) the asymptotic path tracking, i.e., (7), for arbitrary
initial conditions η(t0) ∈ Sη, v(t0) ∈ Sv, and Ui(t0) ∈
SU , and provided that the design matrices in (10),
(11) and (12) satisfy Kp = KT

p ≥ 0, Kv = KT
v ≥ 0

and Γi = ΓTi ≥ 0 for i = 1, · · · , 17, respectively, and
2) that all signals in the adaptive control loop are
bounded.

Proof.
Invoking the continuity of τ t, vc, τ c and the right-hand
side of the U̇i’s in (12),it can concluded that there exists
a scalar function L(β) for any β > 0, such that it is valid

|τ t(η,v, Ui)|+ |vc|+ |τ c|+
17X
i=1

°°°°°Γi ∂Q̇∂Ui
°°°°° ≤ L(β) (13)

for |η| ≤ β, |v| ≤ β, |vc| ≤ β, |τ c| ≤ β and k
Ui k≤ β in Sη, Sv, Svc , Sτc , and SU , respectively,
where k.k is some matrix induced norm. After inclusion
of global Lipschitz continuous feedback functions and
exogenous perturbations on the right-hand of the

.
η and

.
v,

it can argued that there exists a unique, global Lipschitz
continuous solution with components η, v and Ui on Sη,
Sv and SU , respectively, all of them for t ∈ <+.
Now, consider Q in (8) and following candidate of
Ljapunov function

V (t,
∼
η,
∼
v, Ui) = Q

³
t,
∼
η,
∼
v
´
+Q1(Ui − U∗i ) (14)

with

Q1(Ui−U∗i ) =
1

2

17X
i=1

6X
j=1

(uij−u∗ij )TΓ−1i (uij−u∗ij ) (15)

and uij the column vector j of Ui, and analogously, u
∗
ij
the

column vector j of every matrix U∗i : <+ → <6×6 defined
as

U∗i (t) = Ci(pjk(t)), with i = 1, ...6 (16)
U∗7 (t) = Dl(pjk(t)) (17)
U∗i (t) = Dqi(pjk(t)), with i = 8, ...13 (18)
U∗14(t) = B1(pjk(t)) (19)
U∗15(t) = B2(pjk(t)) (20)
U∗16(t) =M(pjk(t)) (21)

U∗17(t) = Ṁc(pjk(t)) , (22)

with pjk(t) time-varying elements in every physical matrix
U∗i and Mc = M(t) − Pi∆Miδ(t − ti) with ti ∈ St0
describing isolated time points for mass jumps.
In the following, consider Q̇(Ui) with (11) for t ∈ <+∩St0 ,
i.e., excluding the time points of sudden mass changes.
Thus, taking the time derivative on V on any open interval
(ti, ti+1) with ti, ti+1 ∈ St0 , one achieves

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15986



V̇
³
t,
∼
η,
∼
v,
∼
xj ,Ui

´
=Q̇

³
t,
∼
η,
∼
v,Ui

´
+

17X
i=1

6X
j=1

(uij -u
∗
ij )

TΓ−1i u̇ij .

(23)
As Q̇(Ui) is chosen globally convex in any compact convex
set in the space of the controller parameter, it is valid that
for any pairs of controller matrices (Ui, U 0i)

Q̇
³∼
η,
∼
v, U

0
i

´
− Q̇

³∼
η,
∼
v, Ui

´
≥

17X
i=1

6X
j=1

(u0ij − uij )T
∂Q̇

∂uij

(24)
for any Ui ∈ SU , U 0

i ∈ <6×6, η ∈ <+ → Sη and v ∈ <+ →
Sv. Hence, for the particular choice of pairs (Ui, U∗i ) in
(24) with u0ij ≡ u∗ij (t) in (16)-(22) and u̇ij = −Γi ∂Q̇

∂uij

from (12), one achieves from (23)-(24)

V̇
³
t,
∼
η,
∼
v, Ui

´
≤ Q̇

³∼
η,
∼
v, U∗i (t)

´
. (25)

Thus, using U∗i in (11) one attains

Q̇
³∼
η,
∼
v, U∗i (t)

´
= −vηTKpvη − v

vKv
v
v (26)

and so together with (8), (25) can be further bounded on
every open interval (ti, ti+1) ⊂ (t0,∞) as
V̇
³
t,
∼
η,
∼
v, Ui

´
≤ −c(t)Q

³
t,
∼
η,
∼
v
´
≤ −c0 Q

³
t,
∼
η,
∼
v
´
≤ 0
(27)

where c and c0 are positive real values that accomplish

c(t) =
max {λi (Kp) ,λi (Kv)}

max {λi (I/2) ,λi (M(t)/2)} (28)

c0 = sup
t∈<+

c(t), (29)

and λi(.) are the eigenvalues of the matrix indicated in
parenthesis. Accordingly, as V̇ is decreasing on (ti, ti+1),
it is valid with (27)

V (ti+1)− V (ti) ≤ −c0
Z ti+1

ti

Q(t)dt <∞. (30)

One infers from (27) that Q(t) is also a decreasing function
on every interval (ti, ti+1). So, there exists a KR-function
φ1(

v
η,

v
v) (see for instance Vidyasagar [1993]) that fulfills

for all t ∈ <+

φ1(
v
η,

v
v) =

1

2

v
η
Tv
η +

1

2
sup
t∈<+

λmax (M(t))
v
v
Tv
v (31)

0 ≤ Q(t, vη, vv) ≤ φ1(
v
η,

v
v), (32)

with λmax being the maximal eigenvalue of M(t). Hence,
by (30) one gets along the trajectories on (ti, ti+1)

V (ti+1)− V (ti) ≤ −
Z ti+1

ti

φ1(t)dt ≤ 0. (33)

Due to (27), the function termed as χ(ti, ti+1) =R ti+1
ti

φ1(t)dt > 0 characterizes a series in the metric space³v
η,

v
v
´
along the solutions with elements satisfying

χ(ti, ti+1) > χ(ti+1, ti+2). (34)
Thus, for every ε > 0, there is an integer N suffi-
ciently large such that for i, j ≥ N one has |χ(tj , ti+1)−
χ(ti, ti+1)| < ε, i.e., χ(ti, ti+1) is a Cauchy sequence in the
space

v
η,

v
v and its limit for infinite number of time points

ti is a constant greater or equal to zero.
Clearly, if ti, ti+1 → ∞ then, by (33) and (34), one
accomplishes (V (ti+1)− V (ti)) → 0 and χ(ti, ti+1) →
0 as well. So one deduces that lim

t→∞ (η(t)−ηr(t)) = 0.

In consequence and using (10), lim
t→∞

¡
v− J−1(η) .ηr

¢
=

lim
t→∞

¡
v − J−1(ηr)

.
ηr
¢
= lim
t→∞ (v − vr) = 0 as well.

On the contrary, if the last time point for a mass jump
is ti < ∞, then at the limit t → ∞, the integral on both
sides of (27) on the period (ti,∞) leads

V (ti)− V (∞) ≤ c0
Z ∞
ti

Q
³
t,
∼
η,
∼
v
´
dt <∞. (35)

Since the integral (35) exists and Q
³
t,
∼
η,
∼
v
´
is uniformly

continuous and bounded on (ti,∞) one can invoke the
Lemma of Barbalat to show thatQ (t) tends to zero for t→
∞ (see for instance Fradkov et al. [1999]). Consequently, it
yields that the error trajectories of the result 1) converge
to zero asymptotically.

To demonstrate the result 2) it can be stated from the
previous results thatZ ∞

t0

Q
³
t,
∼
η,
∼
v
´
dτ =

nX
i=0

χ(ti, ti+1) <∞. (36)

with n an integer with n ∈ [1,∞]. So, with (8) and the
boundness of M and

∼
v, it can be stated also

R∞
t0

¯̄̄∼
v
¯̄̄
dτ <

∞ and
R∞
t0

¯̄̄∼
v
¯̄̄2
dτ <∞. Thus from (12), it follows

|Ui| ≤ ci
Z ∞
t0

¯̄̄∼
v
¯̄̄
dτ <∞, for ci > 0. (37)

Similarly, for the particular case

|U17| ≤ c17
Z ∞
t0

¯̄̄∼
v
¯̄̄2
dτ <∞, for c17 > 0. (38)

Hence, it is concluded that the Ui’s are also bounded. ¥
4. ACTUATORS

The main idea so far has consisted in designing a high-
performance control system for the vehicle with a fast
global response. The open-loop vehicle dynamics consid-
ered is in general much more dominant than the thruster
dynamics. Many authors consider thruster dynamics as
parasitic and in turn it is neglected in the controller design.
This is true for vehicles with large inertia and relatively
slow motions. However, as one is interested in a high-
performance path tracking, the actuators are taken into
account by involving their inverse dynamics. The way
to do this will consist in developing a state/disturbance
observer.
Let the generalized force τ t be calculated in (11) by the
adaptive controller and take f in (3) as an ideal thrust.
Furthermore, let this thrust be referred to as fideal. So,
from (4) the ideal thrust fulfills

fideal = K1 (|n| .n)−K2 (|n| .va) , (39)
As (39) is quasiconvex for va 6= 0, then n(t) would
result finitely discontinuous. As the thruster is a passive
system, the consequence of these discontinuities is that
the reference input nr would be unbounded. To tackle
this difficulty and be able to implement nr, one can relax
slightly the condition of perfect tracking of fideal. To this
end, one can define ideal values for the auxiliary vectors
n1 and n2 in (5) as

n
1 = G1(s)fideal (40)
n̄2 = G3(s)n− n1 , (41)

with G3(s) a diagonal matrix with Laplace functions of a
stable low-pass filter for n. The filter matrix G3 is selected
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ad-hoc with a wide band of frequency so as to enable
the filtered vector to be continuous and with only a little
distortion with respect to n.
The setpoint vector nr will be now estimated by means of a
state/disturbance observer. For simplicity in the notation,
let the estimation be described for one generic thruster
alone with scalar variables n, n1, n2, n̄2 and nr as elements
in n, n1, n2, n̄2 and nr, respectively. Furthermore, the
Laplace transfer function in G2GPID(s) in (5)-(6) can be
characterized in state space as

.
x = Ax+ b (nr − n) (42)

n2 = n− n1 = cTx (43)

n̄2 = g3(s)n− n1 = − (1− g3(s))n+ cTx, (44)
with (A,b, c) a minimal matrix set of the system represen-
tation in the observer form, x the state vector and g3(s)
is an element of G3(s) in (41). Then let

.
∧
x = A

∧
x+ b êc + kn2(n̄2 − n̂2), (45)

be an estimation equation for x, with kn2 a gain vector for
the rate error, and

n̂2 = c
T ∧x (46)

êc = knn̄2 + kṅ
.
n̄2 + k

T
x̂

∧
x, (47)

where n̂2 and êc are estimations of n2 and the input error
(nr − n), respectively, and kn, kṅ and kx̂ are gains for the
appropriate components of êc.
On the other hand, with (42), (45), (46) and (44), the state
error

v
x = x−∧x accomplishes
.
v
x =

¡
A− kn2cT

¢ v
x+ b ẽc + kn2 (1− g3(s))n. (48)

with ẽc = (nr − n)− êc.
Using (42)-(43) one gets

ṅ2 = c
TAx+ cTb (nr − n), (49)

which combined with (47) and (44) gives the input esti-
mation error

ẽc =
¡
1− kṅcTb

¢
(nr − n)−

¡
knc

T + kṅc
TA
¢
x−(50)

−kTx̂
∧
x+ (1− g3(s)) (knn+ kṅṅ) .

Moreover, there exist particular values for kx̂, kn and kṅ
in (50) accomplishing¡

1− kṅcT b
¢
= 0

kTx̂ = −
¡
knc

T + kṅc
TA
¢
,

(51)

so that

kṅ =
1

bm−1
(52)

kTx̂ =−
∙−am−1
bm−1

+ kn,
1

bm−1
, 0, ..., 0

¸
, (53)

with m the order of the system G2GPID(s). So the
perturbation error turns into
ẽc = −

¡
knc

T + kṅc
TA
¢ v
x+ (1-g3(s)) (knn+ kṅṅ) . (54)

In turn, the dynamics of the state error in (48) with (54)
and the choice

kn2 = −knb, (55)
turns into·

v
x = (I − kṅbcT )Avx+ kṅb (1− g3(s)) ṅ, (56)

where (1− g3(s)) is a high-pass filter that magnifies the
errors

v
x and ẽc when rapid changes of n occur. It is seen

in (56), that only the high-frequency components of ṅ will
excite the error system. In this sense, it is meaningful for

the stability analysis to consider two cases, namely, when
ṅ = ṅs and when ṅ = ṅs +∆niδ(t − ti), where ṅs is the
continuous part of ṅ and ∆ni are the jumps of n.
Finally, the setpoint nr to input the thrusters is calculated
with help of (47) as

n̂r(t) = êc(t) +G3(s)n(t). (57)

The proof of convergence of the adaptive control system
together with observer is given in Section 6.

5. EVALUATION OF THRUST ERROR

Let the thrust error be defined as the difference between
the real thrust f in the system and that one calculated in
(11) by the control algorithm, it is fideal. Let this thrust
difference be referred to as ∆f . The appearance of ∆f
is the consequence of the inability of the energy system
of reproduce arbitrary fideal faithfully when it is required
the generation of a train of impulses for n̂r each time that
n need to be discontinuous in time. Instead of that, the
system uses the filter matrix G3 that provides a filtered
version of n and ṅ which can be implemented according to
an energetic viewpoint.

So a component of ∆f is defined as (See Fig. 1)
∆f = k1 (|nt|nt − |n|n)− k2 (|nt| va − |n| v̄a) , (58)

where nt is the true shaft rate homologous to n used in
the observer. From the thruster dynamics and (58) one
obtains

gPIDg2
1− gPIDg2

(n̂r − nr) = (nt − n)− g1
1− gPIDg2

∆f, (59)

which leads to the norm

|∆f |∞≤

¯̄̄
g
PID

g2
1−g

PID
g2

¯̄̄
1¯̄̄

g1
1−g

PID
g2

¯̄̄
1

|n̂r−nr|∞ +
1¯̄̄
g1

1−g
PID

g2

¯̄̄
1

|nt−n|∞ .

(60)

6. THE PERTURBED TRACKING PROBLEM

Let the perturbed path error system of the adaptive
control system be obtained by combining (1)-(2) and (9)-
(10) as (see Fig. 1)

.
v
η=−Kp

v
η + J

v
v + J vc (61)

.
v
v=−M−1 (C +D)

³v
v + J−1

³
η̇r −Kp

v
η
´´
+ (62)

+M−1 g − d
¡
J−1η̇r

¢
dt

+ J̇−1Kp
v
η +

+J−1Kp

³
J
v
v−Kp

v
η+J vc

´
+

+M−1τ c +M−1B (fideal +∆f) ,

with B (fideal +∆f)= τ t resulting from (3). On the other
side, the unperturbed system is obtained by taking∆f = 0
in (62).
Definition 1. (Total stability, Hahn, 1959)

The equilibrium point described by
v
η =

v
v = 0 is said

totally stable, if for each ε > 0 there exist two positive
real values δ1(ε) and δ2(ε) such that the solution

v
η(t) and

v
v(t) of the error tracking system fulfills¯̄̄v

η(t,
v
η(t0),

v
v(t0))

¯̄̄
< ε for t > t0 (63)¯̄̄v

v(t,
v
η(t0),

v
v(t0))

¯̄̄
< ε for t > t0 (64)
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provided that
¯̄̄v
η(t0)

¯̄̄
< δ1 and

¯̄̄v
v(t0)

¯̄̄
< δ1 in the state

space region delimited by (63)-(64) and |∆f | < δ2. ¥

Figure 1 - Perturbed adaptive control system

Theorem 2. (Stability of the perturbed system).
Consider the system in (1)-(2) with thruster dynamics (3)-
(6), bounded and uniformly continuous path references
ηr and vr, a bounded and uniformly continuous

.
vr, and

known disturbances τ c and vc. The control system with:
a), b) and c) like a), b) and c) in Theorem I
d) the reference shaft speed setpoint vector n̂r attained
as in (57),

guarantees that the equilibrium point of the perfect track-
ing, i.e.,

v
η =

v
v = 0, is totally stable.

Proof.
Take now the Ljapunov function in (14) into account. From
now on one can consider the analysis only for t ∈ SQ =
[t0,∞)∩ St0 with t = ti ∈ St0 ⊆ (t0,∞) the time points at
where sudden mass changes∆Mi occur, which is a nowhere
dense set. Combining (14) and (25) one obtains
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³
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∼
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∼
v, Ui

´
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∂t
+

∂V

∂
v
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¦
v
η +
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∂
v
v

¦
v
v ≤ (65)
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+
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´
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¦
v
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³
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∼
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∼
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´
∂
v
v

¦
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Using (8), it is valid¯̄̄̄
¯̄∂Q

³
t,
∼
η,
∼
v, U∗i

´
∂t

¯̄̄̄
¯̄≤12

°°°°∂M(t)∂t

°°°° ¯̄̄vv¯̄̄2 , (67)
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∼
η,
∼
v, U∗i

´
∂
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η

¯̄̄̄
¯̄≤¯̄̄∼η ¯̄̄,

¯̄̄̄
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∼
η,
∼
v, U∗i

´
∂
v
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¯̄̄̄
¯̄≤kM(t)k̄̄̄ ∼v¯̄̄.(68)

Moreover, as ηr(t) and vr(t) are uniformly continuous,
and the solutions η(t) and v(t) are Lipschitz continuous,
and M is uniformly bounded, then there exist positive
constants c0, c1 and c2 such that¯̄̄̄

∂V

∂t

¯̄̄̄
≤ c0,

¯̄̄̄
¯∂V∂∼η

¯̄̄̄
¯ ≤ c1 and

¯̄̄̄
∂V

∂
∼
v

¯̄̄̄
≤ c2, (69)

are valid for some domainD =
n¯̄̄∼
η
¯̄̄
≤ ε0,

¯̄̄∼
v
¯̄̄
≤ ε0

o
, where

ε0 is a positive constant, and t ≥ t0.
As V is a decreasing function for the equilibrium point

v
η =

v
v = 0 in the unperturbed system (cf. Theorem 1), there
exist three functions of class K, referred to as α(|η̃| , |ṽ|),

β(|η̃| , |ṽ|) and γ(|η̃| , |ṽ|) such that α+Q1 ≤ V ≤ β +Q1
and V̇ ≤ −γ in D, where Q1 is defined in (15). Considering
(61)-(62), one has

V̇
PS (t,
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∼
v) = V̇S(t,

∼
η,
∼
v) +

∂V
PS

∂t
+

µ
∂V

PS

∂
∼
v

¶T
M−1B∆f ,

(70)
where V̇PS and V̇S are the time derivatives of V evaluated
along the solutions of the perturbed and unperturbed
systems, respectively. Given any ε < ε0 there exist a δ1
and a δ2 such that α(ε) > β(δ1), and a perturbation (60)
such that ¯̄̄

∆f
³
t,
∼
η,
∼
v
´¯̄̄
≤ δ2 (71)

for
∼
η,
∼
v ∈ D and t ≥ t0. Let
γ0 = min

δ1≤|η̃ |≤ε,δ1≤|ṽ|≤ε and t≥t0
γ(t, |η̃| , |ṽ|). (72)
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≤ ε, δ1 ≤
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v (t)
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≤ ε for some time t = t1, one

has
V̇
PS(t,

∼
η,
∼
v) ≤ −γ0 + c0 + c2

°°M−1B°° δ2. (73)
Choosing δ2 = κ (γ0 − c0) /

¡
c2
°°M−1B°°¢, where 0 <

κ < 1, V̇PS (t,
∼
η,
∼
v) < 0 for all time t ≥ t1 > t0, so

that
¯̄̄∼
η
³
t,
∼
η (t0) ,

∼
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< ε,

¯̄̄∼
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Hence, the equilibrium point described by
v
η =

v
v = 0 is to-

tally stable. ¥
7. CASE STUDY: VEHICLE IN 6 DOF

In order to show the features of the presented adap-
tive approach with full thruster dynamics, let numerical
simulations on a vehicle be considered. A scheduled 3D
reference path for a sampling mission is described in Fig.
2. All the system parameters are supposed unknown at
the start position. The design parameters for the adaptive
laws are tuned as follows
Kp=diag(1, 1, 1, 3, 3, 1)
Kv=diag(5×104, 5×104, 7.5×104, 5×104, 105, 2.5×104)
Γi=diag (4) i = 1, ..., 13
Γ14=Γ15=diag(200), Γ16=diag (40) , Γ17=diag (0.16) ,
and the design parameters for the observer are

kn = 5× 10−3

G3(s) = diag

µ
5× 106

(s+ 1000) (s+ 5000)

¶
.

Figure 2 - Reference path of a sampling mission

In Figs. 3-5 the evolutions of vehicle variables in a period
containing the events of mass sampling and sloshing are
depicted. In Fig. 3 this evolution corresponds to x and θ
modus. One notices that no appreciable tracking errors are
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found by the sudden mass changes and sloshing. Similarly,
the true shaft rate n and the respective filtered ideal rate
g3nideal displayed in Fig. 4 for one vertical and one hori-
zontal thrusters, show good coincidence. On the contrary,
the thrust errors ∆f evidence significant rapid changes
at the places when sudden mass sampling occur, but also
each time that thrusts cross about zero. Nevertheless, the
magnitudes of these errors in percentage of the saturation
value are less than 0.5%. So the achieved all-round perfor-
mance of the adaptive control system is significantly high.

Fig. 3 - Evolution of the of position and kinematics
trackings in the modus pitch

Fig. 4 - Evolution of the true and filtered ideal shaft rates

Fig 5 - Evolution of one element of the force error ∆f in
percentage of the saturation value

8. CONCLUSIONS

In this paper, a speed-gradient adaptive algorithm for
asymptotic path tracking in 6 DOF for a large class
of autonomous systems with hydrodynamics and in the
presence of time-varying parameters has been presented.
The approach embraces arbitrary bounded and smooth
exogenous reference paths ηr(t) and vr(t), and unknown
bounded piecewise-discontinuous parameters, which are
generally distributed as hundreds of parameters in ma-
trices describing the inertia, buoyancy, hydrodynamics,
Coriolis and centripetal forces. These time variations are
in compliance with real perturbations and operations in
oceanic applications.
The development of the general adaptive control system is
carried out in the frame of total stability, in which a state-
dependent perturbation is introduced in the analysis and

controller design. This concerns the existence of parasitics
in the actuators in comparison with the dominant vehicle
dynamics, which could commonly be neglected. If, on the
contrary, a high-performance controller is aimed (as the
approach developed in this paper) the actuator dynamics
has to be considered in the controller design to achieve
first-rate properties in the tracking behavior. The price to
be paid for that is the unavoidable presence of a bounded
state-dependent perturbation, that can be minimized con-
veniently by using ad-hoc design parameters.
In the case that only the static nonlinearities of the
thrusters are taken in account, it was proved the adaptive
control is asymptotic stable for every arbitrary piecewise-
continuous change of parameters, regardless whether the
changes are smooth or sudden, periodic or stochastic,
increasing or decreasing, or combinations of them. It is
pointed out that this case is realistic and therefore im-
portant, because often the parasitics can be neglected in
vehicles with relative significant inertia and drag resis-
tance. In the case that the full dynamics of the thruster is
considered, total stability is proved instead.
Finally, the features of the proposed approach were illus-
trated in a case study for a remotely operated vehicle
with hundreds of unknown parameters and a complex
3D reference path scheduled for a sampling mission. The
obtained all-round performance was significantly high.
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