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Abstract:  
 
In the field of the traffic modelling, among the many problems to be solved, the 
intersection modelling problem constitutes on of the most difficult. In particular, network 
modelling requires an intersection model which must be both simple and realistic in order 
to describe the behaviour of the flow or vehicles. In this paper, the intersection model 
based on the GSOM model class (generic second order macroscopic model) is presented 
and discussed. Based on several simulation runs, simulation results are described. 
According to the fixed boundary conditions, acceptable results are obtained and 
demonstrate the right information propagation in/out the node. Copyright © 2008 IFAC 
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1. INTRODUCTION: INTERSECTION 
MODELLING IN THE LWR MODEL 

 

The motorway network is viewed as an oriented 
graph including arcs which represent the sections, 
and nodes which correspond to geometrical change 
of characteristics (modification of lane numbers, 
on/off ramps, capacity change etc) or actual 
intersections. To simulate the dynamic aspects of the 
traffic flow, we need to model the different elements 
constituting the network. In this paper, traffic 
dynamics on both arcs and nodes are considered. 
 
The main difficulties with modelling traffic on 
sections and intersections lie with choosing the 
correct definition of the boundary conditions.  
Let us first consider the case of the macroscopic first 
order LWR (Lighthill-Whitham-Richards) model 
(Lighthill-Whitham 1955, Lighthill 1956) 
 
Let us consider the simple case of a road section 
limited by two nodes (a) at the entrance and (b) at the 
exit (see figure 1).  
 
 
 
 
 
 
 

 
 
The boundary condition of the in-link node ( )a  is 

given by the couple demand/supply: upstream 

demand u∆  and link supply aΩ . In Lebacque 1996, 

the in-flow at the node ( )a  of the network is shown 

to be:  
 

[ ]aua Minq Ω∆= ,    (1)   

 
For the out-link node (b), the boundary conditions 
are defined in a symmetric way. In particular the out-
flow at node (b) is shown to be: 
 

[ ]dbb Minq Ω∆= ,    (2) 

 

with b∆ the link demand and dΩ the downstream 

traffic supply. 
However, if we consider the general case where the 
node admits several in/out links, the main difficulty 
consists in connecting the boundary conditions 
adjacent to the node in order to solve the node 
modelling problem. 
 
During the last decade, the intersection modelling has 
become an active research area. In the literature of 
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Figure 1. Boundary conditions of a section 
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traffic modelling of a single intersection, several 
approaches have been developed and suggested. 
 
In this paper, two point wise intersection types are 
referred to:  
 

- Static point wise intersections without an 
internal state 

- Dynamic point wise intersections with an 
internal node state 

 
For both types the dimension of the intersection is 
neglected, when compared to the dimension of the 
motorway sections.  
The emphasis of the paper will be on the internal 
state node model. 
 
The modelling of the dynamic point wise intersection 
including an internal state has been introduced in 
(Lebacque and Khoshyaran, 2005). The modelling 
consists to consider the node as a section whose state 
is described by the number of vehicles present in the 
node. The traffic dynamics of the intersection result 
from the combination of the demand/supply couples 
for the node and the conservation of vehicles (Full 
details in section 3). In the static intersection model, 
the size and the internal state are neglected.  
 
The node model of a point wise intersection without 
an internal state is characterized by the demands at 
the upstream sections iδ , and the supplies of the 

downstream sections jσ and the flows entering and 

exiting the intersection, i.e. iq  and jr (see figure 2.). 

 
 
 
 
 
 
 
 

Figure 2. A point wise intersection without 

internal state 

In general, intersection models are defined by a 
relation between the traffic conditions, i.e. the 
supplies and the demands, and the through-flows: 
[ ] ( )σδ= ,, frq .  

Lebacque and Khoshyaran, 2005 have established 
that this kind of models must satisfy the invariance 

principle in order to be consistent. Mathematical 
development of intersections modelling can be found 
in (Coclite and Piccoli, 2002; Lebacque and 
Khoshyaran, 2005).  
 
In this paper, the developed model is based on the 
resolution of the dynamic point wise intersection, in 
the context of the GSOM model introduced in 
Lebacque, Mammar, Haj-Salem 2007. The next 

section is dedicated to the description of this model, 
which extends considerably the LWR model.  
 

2. THE GSOM MODELLING APPROACH 
 
Following the pioneering LWR model, a great 
number of models reproducing the dynamics of 
traffic in a realistic way have been developed in the 
literature. However, during the last decade, the 
researches are focused on the higher order dynamic 
traffic modelling aspect. The recent models of Aw-
Rascle 2000 and Zhang 2002 (see also Garavello and  
Piccoli, 2006) have solved the defects of the previous 
generation of models such as the Payne model 
(Payne, 1971) or the (Zhang, 1998) model for 
instance. The (Aw-Rascle 2000) and (Zhang 2002) 
models (called ARZ model) have recently been 
investigated and analytical and numerical solutions 
are proposed for different traffic conditions: in the 
homogeneous (Mammar et al, 2005) and 
heterogeneous (Lebacque et al, 2005) case.   
 
The proposed intersection model is based on the 
EARZ (Extended Aw-Rascle Zhang) second order 
model recently introduced by Lebacque (Lebacque et 

al, 2007), now extended as the GSOM model class 
(Khoshyaran Lebacque 2007). The GSOM exhibits 
the particularity that it permits an adequate 
adaptation of the simulation model to field data 
measurements. This is achieved by using the 
invariant denoted I. The GSOM model is defined by 
the following equations: 
 

( )
( ) ( )

( )







ℑ=

=∂+∂

=∂+∂

Iv

vII

v

xt

xt

,ρ

0ρρ

0ρρ

    (3) 

 
The system (3) is conservative. The conserved 

variables and flux vector are  ( )t
IyU ρ,ρ ==   

and ( )
t

def

vIpvUF 







== ρ,ρ  respectively.  

where p is the relative traffic pressure. 
 
(Mammar et al, 2006), (Lebacque et al, 2007) have 
shown that an adequate choice of invariant I, makes 
it possible to derive several traffic models already 
developed in the literature. For instance, with 

( ) ( ) IVI e +ρ=ρℑ , , where ( )ρ= eVv  denotes the 

equilibrium speed-density relationship (fundamental 
diagram), the derived model corresponds to the ARZ 
model.  
 
The analytic resolution of the EARZ / GSOM model 
is based on the properties of invariant I: 
 

- According to equation (3), the invariant I is 
constant along the vehicular trajectories: 

0
.

=∂+∂= IvII xt     (4) 

( )i ( )j

( )iρ
( )

jρ

jr
iq

jσ
iδ

•
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- The discontinuities of invariant I are 
propagated with the traffic speed. 

 
The invariant I is a driver attribute. 
Let us consider the Riemann problem depicted in 
(Figure 3). The Riemann problem consists in finding 
the solution at the discontinuity point of two traffic 
conditions: upstream and downstream of the 
discontinuity point defined by the traffic conditions, 

( )ll I,ρ  and ( )rr I,ρ  respectively.  

 
 
 
 
 
 
 

Figure 3. A Solution for the Riemann problem 

 
Under the initial condition and the assumption that 
the variable I is piecewise constant, Lebacque 
(Lebacque et al, 2007) has demonstrated that the 
analytic resolution of the GSOM is equivalent to the 
piecewise resolution of the LWR model. 
 

( )
( ) ( )xIxI

xI

l

xt

,,ρρ,ρ,with

0,ρ,ρ

ℑ=ℜ

=ℜ∂+∂
           (5) 

 
Note that the function ℑ  admits a discontinuity with 
respect to position: ( ) ( ) 0if,,, <ρℑ=ρℑ xIxI l  and 

( ) ( ) 0if,,, >ρℑ=ρℑ xIxI r . 

The solution of the Riemann problem is based on the 
application of the shifted supply and demand by a 
quantity I as depicted in Figure 4.  

 
Figure 4. The translated supply/demand by I >0  

Recall that the supply function (resp. demand) 
corresponds to the maximum number of vehicles that 
can enter (resp. wish to exit) a cell during one time 
slice. The functions supply and demand are 
expressed as follows: 
 

( ) ( )
( ) ( ) rliIMaxI

rliIMaxI

iri

iri

,,ρ,ρ

,,ρ,ρ

ρ

ρ0

=∀ℜ=Ω

=∀ℜ=∆

≥

≤≤            (6) 

 

Flow q  and pressure p  are given by the usual 

formula of Min: 
 

[ ]





=

δσ=

l

lr

Iqp

Minq

.

,
     (7) 

with ( )lll

def

l I,ρ∆=δ the upstream demand and with 

( )( )
( )( )( ) ( )lrrr

def

llrrrrrr

llrrrr

IIIII

IIv

,,,,,

,,

1
,

1
,

ρΞ=ρℑℑΩ=σ

ℑΩ=σ

−
ρ

−
ρ   (8) 

the downstream supply ( rv  denotes the downstream 

speed and 1
,

−
ρℑr  the inverse of the downstream 

equilibrium speed function with respect to density). 

Note that the density ( )
lrr

def

m Iv ,1
,

−
ρℑ=ρ  is such that 

( )lmrr Iv ,ρℑ= . 

The reader is referred to (Lebacque et al 2005) and 
(Lebacque et al 2007) for the derivation of the above 
expression (8) of the downstream supply.  
Note that the upstream demand and downstream 
supply as defined in (7) and (8) can be used to define 
proper boundary conditions, (Lebacque et al 2007), 
thus generalizing the LWR boundary conditions 
(Lebacque 1996).  
 
The supply downstream to the section depends on the 
upstream invariant I of this section. These 
dependencies constitute the main problem of the 
intersection modelling to be solved. This is the aim 
of the next section.   
 

3. GSOM BASED INTERSECTION MODEL 
 
In this section, the intersection model based on the 
GSOM is described. In order to help readers 
understand the difficulty of modelling intersections, 
we consider an intersection composed of node (J), 
upstream (ingoing) arcs (i) and downstream 
(outgoing) arcs (j) as depicted in Figure 1. To each 
arc ( )l of the intersection, a density 

l
ρ  and an 

invariant
l

I are associated.   

 
The intersection model consists in determining, at 
each moment, the in- and out-flows ( )tqi  and ( )trj  

respectively by taking into account the upstream and 
downstream boundary conditions of the intersection. 
The boundary conditions are the upstream demands 

( )( )iiii It ,ρ∆=δ  and the downstream supplies  

( ) ( ) ( )







Ξ=σ tItIt jjjjj

~

,,ρ  

which depend on the attribute jI
~

 of the drivers 

entering the link ( )j . We recall that, following (8), 

the expression of the downstream supplies is: 
 

( )( ) ( )( )( )
jjjjjjjjjjjjj IIIIIv

~
,

~
,,

~
,

~
, 1

,
1
, ρℑℑΩ=ℑΩ=σ −

ρ
−

ρ
 

 ( )ll I,ρ ( )rr I,ρ

p

q

( )l∆ ( )rΩ

lℑ
rℑ
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(with jv  the downstream speed and 1
,

−
ρℑ j  the inverse 

of the equilibrium speed function with respect to 
density) 
As we can notice, the difficulty of modelling an 

intersection lies in determining the attribute value jI
~

 

of the drivers entering the links ( )j . The value of 

these driver attributes also depend on the driver 
attributes of the upstream links of the intersection 
following some relationship (Mammar et al 2006): 

( )ijj IIIfI ,......, 21

~

=  

 
In order to overcome this difficulty, we consider that, 
at each time, the intersection node is characterised by 
an internal state. This state is defined by: 
  

- The total number of vehicles present in the 
node: ( )tN .  

- The number of vehicles ( )tN j  leaving the 

node to the out-link ( )j  where 

( ) ( ) ttNtN
j

j ∀=∑  

- A driver attribute 
~

I  

Consequently, the supply ( ) ( )( )tItN
~

,Ω  and the 

global demand ( ) ( )( )tItN
~

,∆  of the intersection 

depend on the total number of vehicles ( )tN  and on 

the invariant ( )tI
~

 within the intersection. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. A punctual intersection with an internal 

state.  

 
The calculation of the partial supplies at the level of 
each upstream section is given by a linear split of the 
global supply: 
 

( ) 







Ωβ=Ω

~

, ItNii
   (9) 

where the iβ  are the split coefficients, which are 

proportional to the number of lanes of the upstream 
links. 
 
Similarly, for the upstream section ( )j , we define 

the partial demand of the intersection using a FIFO 
model (demand proportional to composition): 

( )
( )
( )

( ) ( )







∆=∆

~

, tItN
tN

tN
t

j

j          (10)   

 
To calculate the variation of the number of vehicles 

( )tN j  at each time, the in/out vehicle flows must be 

calculated according to the following equations: 
 

( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

( ) ( ) ( )

( ) ∑∑

∑

−=

+−=

∆=

Ω=

j

j

i

ii

i

iijjj

jjj

iii

IrIqNI
dt

d

tqtrtN

tttr

tttq

γ

σ

δ

.

,Min

,Min

          (11) 

where ijγ  denotes the turning rate of vehicles exiting 

from section (i) and choosing section (j) at time t.  
 

4. SIMULATION STUDY 
 

The numeric resolution of the GSOM model is based 
on the principle of the Godunov scheme. This 
principle consists in decomposing the time and 
sections into time steps of duration t∆  and cells of 
length x∆  respectively (See  

 

 

Figure 6).   

By considering the traffic state of each cell 
approximated by a function which is piecewise 
constant, the flow of traffic between two consecutive 
cells during a step time t is obtained by solving a 
Riemann problem. 

 
 

 

 

 
 
 
 

 

 

 

Figure 6. The principle of the Godunov scheme. 

 
Assuming that the invariant I is bounded, we obtain 
the following discritized equations of the GSOM 
model: 

(c-1) (c) (c+1) 

x1+cx
cx  1−cx

t

c 1ρ +
t

cρ  t

c 1ρ −

Iρ,

x

t
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1

1

−

−

t

c

t

c

p

q
 

t

cI 1+

t

cI  
t

cI 1−  

δi 

rj 
Ωi 

• 

• 

• 
• 

• 
∆j 

( IN
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    (12) 

 
The stability of the numeric schema is guaranteed by 
the satisfiability of the following CFL condition: 
 

( )Itx ,ρMax. 0ρ
ℑ∆=∆ ≥     (13) 

The CFL condition depends on the values of I. In 
order to use (13), it is necessary to assume that the 
attribute I is bounded, an assumption which is easily 
satisfied by measurement data. By applying the same 
approach at the node level with a small temporal 

discretization step N, ∈α
α

∆
=δ

t
t , we obtain the 

following discritized equations: 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ttItrtItq
ttNtN

tIttI

ttNttN

ttqtttrtNttN

i

i

i

j

j

i

iijjjj

δ
δ

δ

δδ

δγδδ









−⋅

++
+=+

+=+

+−=+

∑

∑

∑

~2~~

 

with ( ) ( )∑=
j

j

def

trtr  

To demonstrate the consistency of the numeric 
scheme, we consider the geometric configuration of 
the intersection given by Figure 5. For this study, we 
consider an invariant I equal to the differential 
between the current speed and equilibrium speed (the 
ARZ Aw-Rascle Zhang model).  
 
In order to study the vehicles behaviour inside the 
intersection according to attribute I, we consider the 
network entries fed with a variable demand which 
depends on invariant I at the network entry. This 
invariant varies according to the time as shown in 
Figure 7.  

 
Figure 7. Relative speed (function of time) 

The split coefficients are constant and equal to 
75.01 =β  and 25.02 =β . Similarly, for each section, 

the numeric values of the proportions of the turning 
movements are equal to: 25.013 =γ , 20.014 =γ , 

55.015 =γ , 3.023 =γ , 6.024 =γ , 1.025 =γ . 

 
Figure 8 and Figure 9 show the evolution of the 
traffic state in term of relative speed but also in term 
of number of vehicles inside the intersection which is 
function of the time. 
 

 
Figure 8 Time evolution of the number of vehicles 

inside the node  

 
Figure 9. Time evolution of the relative speed 

inside the node 

Figure 10 represents the evolution of the density at 
each intersection entry. As we can remark, the 
congestion generated at the second entry is more 
important to the one of the first in-link. This 
phenomenon is explained by the fact that the split 
coefficient of the first in-link is higher. 
Consequently, the traffic flow is more important. 

 
Figure 10. Time-space density evolution at the 

ingoing level.   
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Figure 11 represents the evolution of density on each 
outgoing link. As we can notice, at the outgoing 
level, the density varies accordingly to the value of 
the attribute I inside the node. 
 

 

 
Figure 11. Time-space evolution of the density on 

outgoing links.    

4. CONCLUSION 
 

The approach used to model intersections is based on 
the GSOM model and the supply/demand notions 
which allow an adequate expression of the boundary 
conditions. It is fully compatible with the Godunov 
discretization of sections. The first results we have 
obtained in simulation are promising and completely 
satisfactory. This is why we think that the developed 
model is worth validating on real data. 
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