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Abstract: In this paper, a control strategy is proposed for robust stabilization of nonlinear
perturbed plants in the presence of actuator unmodeled dynamics. The block control technique
is applied to design a nonlinear SM manifold for achieving the error tracking, and High Order
Sliding Mode (HOSM) algorithm is implemented to ensure finite time convergence of the state
vector to the designed SM manifold. A robust exact differentiator is designed to obtain the
estimates of the sliding variable and its derivatives. The proposed method is applied to design
robust controllers for a power electric system in the presence of the exciter system unmodeled
dynamics.

1. INTRODUCTION

The dynamics of the most of the industrial plants (for
example electric power system, electromechanical system,
electro-hydraulic system and so on) are highly nonlinear
and, moreover, include actuator dynamics which increase
the relative degree of the complete system. To stabilize the
plant dynamics it is naturally to applied some feedback
linearization (FL) technique: block control( Loukianov
[2002]), backstepping (Krstic et al [1995]) or input-output
linearization (Isidori [1992]), since the model of these
plants can be presented in the nonlinear block controllable
form or (the same) strict-feedback one. All these control
techniques require to calculate the time derivatives of
the plant dynamics vector fields (Lie derivatives), results
in a computationally expensive control algorithm, and
the closed-loop system is susceptible to plant parameter
variations and disturbances. To simplify the control the
fast actuator dynamics is usually skipped, and to overcome
the robust problem the sliding mode (SM) control (Utkin
[1999]) in combination with FL technique (Loukianov
[2002]), can be can be applied. However, the presence of the
actuator unmodeled fast dynamics can destroy the desired
behavior of the sliding mode control systems causing lost
of robustness and accuracy and provoking the chattering
effect (?]). Therefore, the problem of control design for the
systems with unmodeled actuator dynamics becomes to be
a big challenge.

This work was supported by CONACYT Mexico, through Projects
46069Y, 56819 and 57801Y.

In the present paper we propose a control schemes based
on the combination of the block control and sliding mode
control techniques. First, the block control technique is
used to design a nonlinear sliding manifold for achieving
the error tracking. Then the High Order Sliding Mode
(HOSM) algorithm (Levant [1993]) is implemented to
ensure finite time convergence of the state vector to the
designed SM manifold in the presence of the actuator
unmodeled dynamics. Finally, a robust exact differentiator
(Levant [2003]) is used to obtain the estimates of the
sliding variable and its derivatives. The proposed method
is applied to design robust controllers for a power electric
system in the presence the exciter fast unmodeled dynam-
ics (Fridman et al. [2007]). The simulations results show
the reasonable behavior of the designed controllers.

2. THE IDEA OF NONLINEAR BLOCK HIGHER
ORDER SLIDING MODE CONTROLLER

The principal advantage of SM control is robustness in
the presence of external and internal disturbances. In
subsection 2.1, the first order SM controller is presented,
and the HOSM control is described in subsection 2.2

2.1 Nonlinear block controllers with a first order sliding
mode

Consider a class of nonlinear SISO systems presented
(possibly after a nonlinear transformation) in Nonlinear
Block Controllable form (NBC-form) consisting of r blocks
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(Loukianov [2002]) (or strict feedback form (Krstic et al
[1995])) subject to uncertainties

ẋ1 = f1(x1) + b1(x1)x2 + g1(x1, t)

ẋi = fi(x̄i) + bi(x̄i)xi+1 + gi(x̄i, t) (1)
ẋr = fr(x̄r, x̄r+1) + br(x̄r, x̄r+1)u+ gr(x̄r, x̄r+1, t)

.
x̄r+1 = f̄r+1(x̄r, x̄r+1, t), i = 2, . . . , r − 1 (2)

y = h(x̄) =x1 (3)

where the state vector x̄ ∈ Rn is decomposed as
x̄ = (x1, . . . , xr, x1, . . . , xn)

T = (x̄r, x̄r+1)
T , x̄i =

(x1, . . . , xi)
T , i = 1, . . . , r ; y and u ∈ R; fi, bi and h are

known sufficiently smooth functions of their arguments,
gi is a uncertain but bounded function, and bi(x̄i) 6= 0,
i = 1, . . . , r over the set D1 ×D2 :

D1 = {x̄r ∈ Rr | kx̄rk2 ≤ r1} , r1 > 0
D2 =

©
x̄r+1 ∈ Rn−r | kx̄r+1k2 ≤ r2

ª
, r2 > 0.

Suppose

A1) A solution of the system
.
x̄r+1 = f̄r+1(0, x̄r+1, t) (4)

described zero dynamics in (1)-(3) with any initial condi-
tion from D1× D2 converges exponentially to a compact
set

kx̄r+1k2 ≤ b1 < r2, b1 > 0.

The general first order SM design procedure is the follow-
ing. First, the output tracking error is defined as

z1 = y − yref (t)

where is yref (t) a reference signal. Then, using a Block
Control linearized transformation (Loukianov [2002])

zi = ϕi(x̄i), i = 2, ..., r (5)

the system (1)-(2) can be represented as

ż1 = −k1z1 + z2 + g̃1(z1, t)

żi = −kizi + zi+1 + g̃i(z̄i, t), i = 2, . . . , r − 1 (6)

żr = f̃r(z̄r, x̄r+1) + b̃r(z̄r, x̄r+1)u+ g̃r(z̄r, x̄r+1, t)
.
x̄r+1 = fr+1(z̄r, x̄r+1, t)

where z̄i = (z1, . . . , zi)T , 1, . . . , r, kj > 0, j = 1, . . . , r− 1
and b̃r = b1b2 · · · br.
Taking advantage of the system (6) structure we choose

s = zr = ϕr(x̄r) (7)

as a sliding variable for the discontinuous control law

u = −u0b̃−1r sign(s). (8)

Proposition 1 The control law (7)-(8) under the following
condition:

u0 >
¯̄̄
f̃r(z̄r, x̄r+1) + g̃r(z̄r, x̄r+1, t)

¯̄̄
guaranties the convergence of the closed-loop system mo-
tion to the manifold s = 0 in a finite time defined as

ts < t0 +
1

η
kz̄r(t0)k2 , η > 0.

Now, for the system constrained to the sliding manifold
s = zr = 0, the system (6) reduces to

ż1 = −k1z1 + z2 + g̃1(z1, t)

żi = −kizi + zi+1 + g̃i(z̄i, t) (9)
żr−1 = −kr−1zr−1 + g̃r−1(z̄r−1, t)
.
x̄r+1 = f̄r+1(z̄r−1, 0, x̄r+1, t), i = 2, . . . , r − 2

and thus the original nonlinear problem is reduced to an-
alyze the robustness property of the decomposed reduced-
order SM dynamics (9) which can be considered as linear
system with nonlinear perturbation, unmatched with re-
spect to the control u in the system (6). It is apparent when
s = 0, stability of the system (9) linear part is defined by
of the coefficients ki, 1, ..., r − 1 values. Assume
A2) There exist positive constants qij and di such that

|g̃1(z1, t)|≤ q11 |z1|+ d1;

|g̃2(z̄2, t)|≤ k1q21 |z1|+ q22 |z2|+ d2

|g̃i(z̄i, t)|≤
iX

j=1

k
(i−j)
j qi,j |zj |+ di,

i= 3, ..., r − 1, j = 3, ..., i.

To achieve the robustness property with respect to un-
known but bounded uncertainty, the controller gains ki,
i = 1, ..., r − 1 have to be chosen hierarchically high.
Thus, since g̃1(z̄1, t) does not depend on k1, the value of
this coefficient can be chosen such that the term k1z1 in
the first block of (9) will dominate. By block lineariza-
tion procedure, the term g̃2(z̄2, t) depends on k1 but not
k2,...,kr−1. Then for fixed k1, the appropriate choice of k2
value the term k2z2 in the second block of (9) will be also
dominating, and so on. Finally, a constructive step-by-step
Lyapunov technique approach (Loukianov [2002]) estab-
lishes the stability property of the sliding mode motion on
the manifold zr = 0, and provides the required values of
the controller gains k1, ..., kr−1. So

Theorem 1. Let Assumptions A1 and A2 hold. Then
there exist positive scalars k1, ..., kr−1 and h1, ..., hr−1 such
that a solution of the system (9) is uniformly ultimately
bounded, i.e.

lim sup
t→∞

|zi(t)| ≤ hi, i = 1, ..., r − 1.

To derive the linearized transformation (5) it needs to
calculate the successive derivatives of f1(x1), fi(x̄i) and
b1(x1), bi(x̄i), i = 2, . . . , r − 1 in (1)-(2), that results in
a computationally expensive control algorithm. Moreover,
to achieve robustness with respect to unmatched pertur-
bation g̃1(z1, t) and g̃i(z̄i, t), i = 2, . . . , r − 1 in (9) the
controller gains k1, ..., kr−1 must be sufficiently high. To
solve these problems a HOSM controller combined with a
robust exact differentiator (Levant [2003]) will be applied
in the next section.

2.2 Nonlinear block controllers with higher order sliding
modes

Assume that the system (1)-(2) models both the plant and
its actuator with the relative degrees k and q, respectively,
so k + q = r. Therefore, choosing s0 (5)

s0 = zk+1 = ϕk+1(x̄k+1), 1 < k < r − 2 (10)
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as a sliding variable, and then taking its successive deriv-
atives, straightforward calculations give

ż1 = −k1z1 + z2 + g̃1(z1, t)

żi = −kizi + zi+1 + g̃i(z̄i, t), i = 2, . . . , k − 1
żk = −kkzk + s0 + g̃k(z̄k, t), (11)
ṡj = sj+1, j = 0, . . . , q − 2

ṡq−1 = f̃q−1(z̄k, s̄q−1, x̄r+1) + b̃q−1(z̄k, s̄q−1, x̄r+1)u

+ g̃q−1(z̄k, s̄q−1, x̄r+1, t) (12)
.
x̄r+1 = f̄r+1(z̄k, s̄q−1, x̄, t)

where s̄q−1 = (s0, s1, ..., sq−1)
T , b̃q−1 = b1b2 · · · br and

k + q = r. Denote

N1,q = |s0|
p
q , i = 1, ..., q − 1

Ni,q =
³
|s0|

p
q + |s1|

p
q−1 + · · ·+ |si−1|

p
q−i+1

´ q−i
p

Nq−1,q =
³
|s0|

p
q + |s1|

p
q−1 + · · ·+ |s0|

p
2

´ 1
p

, (13)

ψ0,q = s0, ψ1,q = s1 + β1N1,qsign(ψ0,q)

ψi,q = si + βiNi,qsign(ψi−1,q), i = 2, ..., q − 1
where β1, ..., βq−1 and p are positive numbers. Then the
controller

u = −u0b̃−1q−1sign[ψq−1,q(s0, s1, ..., sq−1)] (14)

under the condition

u0 >>
¯̄̄
f̃q−1(z̄k, s̄q−1, x̄r+1) + g̃q−1(z̄k, s̄q−1, x̄r+1, t)

¯̄̄
provides for appearance sliding mode on the q-sliding point
set

si = 0, i = 0, ..., q − 1 (15)
in finite time (Levant [1993]). The dynamics on the q-
sliding set (15) are described by the reduced (n− q)-order
system

ż1 = −k1z1 + z2 + g̃1(z1, t)

żi = −kizi + zi+1 + g̃i(z̄i, t), i = 2, . . . , k − 1
żk = −kkzk + g̃k(z̄k, t) (16)

.
x̄r+1 = f̄r+1(z̄k, , 0, x̄r+1, t).

The HOSM controller (13)-(14) in the combination with
the q-order exact robust differentiator (Levant [2003])
achieves the closed-loop system (11)-(12) and (13)-(14)
robustness with respect to the matched gr(x̄r, t) as well
unmatched gi(x̄i, t), i = k+1, . . . , r−1 perturbation terms
in (1)-(3).

In the following we present an example of application of
the proposed method to control an electric power system.

3. HOSM CONTROLLER FOR A SYNCHRONOUS
GENERATOR WITH EXCITER SYSTEM

3.1 Problem statement

The excitation control system functionally consists of
the exciter and Automatic Voltage Regulator (AVR) (see
Fig.1).

The aim of this regulator is to keep the terminal voltage
equal to the prescribed value, Vref . To provide sufficient

 

∑  
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Fig. 1. Excitation control system
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Fig. 2. Single machine - infinite bus

damping multi-modal oscillations at all credible operat-
ing conditions a supplementary control loop, known as
the Power System Stabilizer (PSS) is often added. Tradi-
tionally, the PSS design is based on linearized dynamics
equations (see for example, Sauer et al. [1998]), and
consequently only local stability for a specific operation
point is achieved.

To provide low sensitivity of the closed loop system with
respect to large perturbations, a SM controller was pro-
posed in (Loukianov [2004]). The proposed first order SM
controller, however, can loose robustness and produce os-
cillations (chattering) in the presence of the exciter system
unmodeled dynamics with the relative degree two, (which
were not counted in (Loukianov [2004])). So, to design a
bounded controller for synchronous generator keeping of
insensitivity with respect to perturbation and the reduc-
tion of chattering despite the presence of the unmodeled
exciter dynamics, the proposed above control approach is
applied.

3.2 State space plant model

The complete mathematical model of the single ma-
chine infinite-bus system (see Fig. 2) consists of electrical
and mechanical dynamics and load constraints, and after
Park’s transformation (Sauer et al. [1998]), it can be
expressed in the state-space form as follows∙

ẋ1
ẋ2

¸
=

∙
f1(x1,x2)
f2(x1,x2)

¸
+

∙
b1
b2

¸
efd +

∙
d1
0

¸
Tm (17)

where x1 = (x1, x2, x3)T = (δ, ω, λf )T , x2 = (x4, , ..., x8)T =
(λg, λkd, λkq, id, iq)

T ; δ is the power angle; ω is the angular
velocity; ωs is the rated synchronous speed; λf is the
field flux; λg, λkd, λkq, id and iq are the direct-axis and
quadrature-axis stator fluxes and currents, respectively;
efd is the excitation voltage, and the mechanical torque
Tm is assumed to be a slowly varying function of time.
Thus: Ṫm = 0,

f1 =

⎡⎢⎣ (x2 − ωs)
(−a23x8x3 + a24x7x4

−a25x8x5 + a26x7x6 + a28x7x8)
(−a33x3 + a35x5 − a37x7)

⎤⎥⎦
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Fig. 3. Type 1 exciter control system

f2 =

⎡⎢⎢⎢⎢⎢⎢⎣

(−a44x4 + a46x6 − a48x8)
(a53x3 − a55x5 − a57x7)
(a64x4 − a66x6 − a68x8)

(−a71 cosx1 + a73x3 + a75x5
−a77x7 + x2(−a74x4 − a76x6 + a78x8))

(−a81 sinx1 + a84x4 + a86x6
−a88x8 + x2(a83x3 + a85x5 − a87x7))

⎤⎥⎥⎥⎥⎥⎥⎦
b1 = [0, 0, b3]

T ,b2 = [0 , 0, 0, b7, 0]
T
,d1 = [0, dm, 0]

T

aij , (i, j = 2, ..., 8), b3 , b7 and dm are positive constant
parameters.

3.3 Exciter control system (actuator)

In this paper we consider the typical exciter system of
IEEE Type 1 which includes the continuously acting AVR
and exciter. The block diagram for this system is shown
in Fig. 3.

From the block diagram we write the following equations:

TE
defd
dt

= −(KE + SE)efd + V̄R (18)

TA
dVR
dt

= −VR +KARf +KA(Vref − Vt) + u (19)

TF
dRf

dt
= −Rf −

KF (KE + SE)

TE
efd +

KF

TE
VR (20)

where Vt is the generator terminal voltage, Vref is the
regulator reference voltage setting, VR is the exciter input,
Rf is the rated feedback stabilizing transformer, TE and
KE are the exciter time constant and gain, respectively; TF
and KF are the regulator stabilizing circuit time constant
and gain, respectively; TA and KA are the regulator am-
plifier time constant and gain, respectively. The saturation
V̄R function is approximated in this case by the smooth
function V̄R(VR) =

2VR
π tan−1 λπVR

2VRmin
where λ = 1 is

the slope of V̄R(VR); SE(efd) = AeBefd , A = 0.031 and
B = 6.93, and the control u to be bounded by

|u| ≤ u0 (21)
with u0 > 0.

It is important to note that the actuator (18) - (20) has
already a voltage control regulator. In this case only a rotor
speed stabilizing controller design is considered. The ad-
vantages of the proposed controller is that, this controller
can be implemented to a existing exciter control system
with AVR, changing only the Power System Stabilizer
(PSS).

3.4 High order sliding mode block controller for synchronous
generator

To satisfy the control objective, rotor angle stability, we
define the control error as

z2 = x2 − ωs ≡ ϕ2(x2) (22)

Then using the first subsystem in (17) and then (18)-(19)
and (22), straightforward calculations result in

ż1 = z2 (23)
ż2 = f2(x2, Tm) + b2(x2)x3 (24)
ẋ3 = f3(x2) + b3efd (25)
ėfd = ff (efd) + bfVR (26)

V̇R = fR(efd, VR, Vref , Vt, Rf ) + bRu (27)
where z1 = x1 ≡ ϕ1(x1), f2(x2, Tm) = a24x7x4−a25x8x5+
a26x7x6 + a28x7x8 + dmTm, b2(x2) = −a23x8, f3(x2) =
−a33x3 + a35x5 − a37x7, ff (efd) = −KE+SE

TE
efd, bf =

1
TE

, fR(·) = 1
TA
[−VR+KARf +KA(Vref −Vt)], bR = 1

TA
.

The second subsystem in (17) and equation (20) describe
the internal power system dynamics.

It can be noted that the excitation voltage efd was taken
in (Loukianov [2004]), as usually, as the control input for
the power system, and implementation of the derived there
discontinuous control algorithm in real life conditions,
that is, in the presence of the additional exciter system
dynamics (18) - (20), yields chattering.

The subsystem (23) - (27) has the NBC-form (or strict
feedback form) where the relative degree with respect to
the control error z2 is four. Therefore, to simplify the
control algorithm, we first, following the Block Control
technique, choose the virtual control in the second block
(24) of the form

x3 = −b−12 (x2)[f2(x2, Tm) + k2z2 − z3] (28)
where the term −k2z2 presents the desired dynamics for
the control error z2, k2 > 0, and z3 is a new variable. Now,
the sliding variable s0 = z3 can be calculated from (28) as
s0 = b2(x2)x3 + f2(x2, Tm) + k2(x2 − ωs) ≡ ϕ3(x1,x2)

(29)

Using (29) and (23) - (25), the equation of the projection
motion of the system (23) - (27) on the subspace s0 can
be derived as

ṡ0 = f0(x1,x2, Tm) + b0(x2)efd

where f0(·), f0(·) = ∂ϕ3
∂x1
f1(x1,x2) +

∂ϕ3
∂x2
f2(x1,x2) is a

continuous function, b0(·) = b3b2(·). Now, using s0 (29)
and its derivatives

s1 = ṡ0 = f0(x1,x2, Tm) + b0(x2)efd (30)
s2 = s̈0 (31)

as new variables, the system (23) - (27) can be represented
of the form
ż1 = z2 (32)
ż2 = −k2z2 + s0 (33)
ṡ0 = s1, (34)
ṡ1 = s2 (35)
ṡ2 = fs(x1,x2, Tm, efd, VR, Vref , Vt, Rf ) + bs(x2)u (36)

where fs(·) is a smooth function, bs(·) = b0(·)bR. Taking
in the account that the subsystem (34) - (36) is of the
third order and using the constraints (21), we select the
following third order SM algorithm (13)-(14) :

u=−u0sign[ξ2 + 2(|s0|
2 (37)

+ |ξ1|
3
)
1
6 sign(ξ1 + |s0|

2
3 )sign(s0)]

combined with the 2nd-order exact robust differentiator
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ξ̇0 = υ0, υ0 = −λ0 |ξ0 − s0|
2
3 sign |ξ0 − s0|+ ξ1

ξ̇1 = υ1, υ1 = −λ1 |ξ1 − υ0|
2
3 sign |ξ1 − υ0|+ ξ2

ξ̇2 = −λ2sign |ξ2 − υ1|
where ξ0, ξ1 and ξ2 are the estimates of the sliding variable
s0 and its derivatives s1 and s2 , respectively. In (Levant
[2003]), it was shown that there exist λ0 > 0, λ1 > 0 and
λ2 > 0, such that the estimates ξ0, ξ1 and ξ2 converge to
the real variables s0, s1 and s2, respectively, in finite time.
Under the following condition:

u0 >> |ueq(x1,x2, Tm, efd, VR, Vref , Vt, Rf )| (38)

where ueq(·) = b−1s (·)fs(·), the state vector of the closed-
loop system (32) - (37) converges to the set s0 = 0, ξ1 =
0, ξ2 = 0 or

s0 = 0, s1 = 0, s2 = 0 (39)

in finite time, and sliding mode starts on (39) from this
time (Levant [1993]). The condition (38) defines the
closed-loop system stability region and obviously holds for
all the possible values of Vref and Tm. The sliding motion
on (39) is described by the reduced order SME

ż1 = z2, ż2 = −k2z2 (40)
ẋ2 = f2(x1 ,x2) (41)
+ b2ueq(x1,x2, Tm, efdss, VRss, Vref , Vt, η)

η̇ = −a1η − a2efdss + a3VRss (42)

where η = Rf , a1 = 1
TF

, a2 =
KF (KE+SE)

TFTE
, a3 =

KF

TFTE
and

the values efdss and VRss are calculated as solutions for
s1 = 0 (29) and s2 = 0 (30), respectively.

Note that the linear subsystem (40) described the lin-
earized mechanical dynamics, has the desired eigenvalue
−k2, while the subsystem (41)-(42) represents the rotor
flux and exciter system internal dynamics. The second
equation in (40) with k2 > 0 is asymptotically stable,
hence lim

t→∞
z2(t) = 0, and the angle z1(t) = z1(0) +Z ∞

0

z2(γ)dγ tends to a steady state value δss as the

control error z2(t) tends to zero. On the invariant subspace
z1 = δss, z2 = 0, s0 = 0, s1 = 0, s2 = 0,x2 ∈ R5, η ∈ R in
the state space of closed-loop system (32) - (37) and (41)-
(42) the dynamics of x2 and η are zero dynamics. To derive
these dynamics, first, using (29) and (30) we calculate the
excitation flux x3 and voltage efd values on the invariant
set (39) as

x3ss = b−12 (x2)[f2(x2, Tm)], efdss = b−10 (x2)[f0(x1,x2, Tm)
(43)

Now, substituting the angle and speed steady state values
x1 = δref and x2 = ωs in (43) and then in subsystem
(41)-(42) results in the following linear system with non-
vanishing perturbation:

ẋ2 = A2x2 + g2(δss, ωs,x2, Tm) (44)
η̇ = −a1η + gη(δss, ωs,x2, Tm) (45)

Note that sliding mode dynamics (40)-(42) can be con-
sidered as particular case of the SME (16) while the zero
dynamics (44)-(45) are particular case of (4). Since the
mappings g2 and gη in (44)-(45) are smooth and bounded,
the matrix A2 is Hurwitz and a1 > 0, therefore, the
assumptions A1 and A2 (see Section II) in this case

are met. Hence, a solution of (40)-(42) by Theorem 1 is
ultimately bounded and, moreover, the control error z2(t)
(22) converges exponentially to zero.

3.5 Simulation results.

The performance of the proposed controller were tested on
the complete 8th order model of the generator connected
to an infinite bus through a transmission line, Fig.2.

The steady state is computed as x1(∞) =1.33140,
x2(∞) =376.9900, x3(∞) =0.82038, x4(∞) =-0.79228,
x5(∞) =0.62594, x6(∞) =-0.79247, x7(∞) =0.80354, and
x8(∞) =0.493190.
The controller gains were adjusted to u0 = 0.2, k2 =
10 and the constants for the sliding differentiator were
selected as λ0 = 125, λ1 = 115 and λ2 = 100.

The first set of simulations, starting in steady state con-
dition, the mechanical torque experienced at t = 0.5s a
pulse0.15p.u. from 0.35 to 0.5 p.u. for 1.0 s, and at t = 1.5
s a pulse 0.15 p.u. from 0.5 to 0.35p.u. for 1.0s, (external
perturbations). Then at t = 5 s, a three-phase short circuit
for a period of 150 ms is simulated at the transformer
terminals. Figure 4 and 5 depict the angle and velocity
responses. The solid line is the response of the proposed
HOSM controller applied to the plant while the dotted
line is the case the response of the classical PSS+AVR.
As evidenced by comparing the dynamic response curves,
the proposed HOSM controller provides better damping
enhancement than the classical one. The Figure 6 shows
that in spite of the strong disturbance the terminal volt-
age and field flux linkage reach a steady state condition,
exhibiting the stability of the closed loop system (HOSM
controller).

Rad.
Mechanical 
perturbations. 

..35.0 upTm =  ..5.0 upTm =  

Short circuit 
(0.15 sec). 

sec. 

HOSM

AVR + PSS

δ  

Fig. 4. Power angle during mechanical perturbation and
short circuit. Performance comparison Sliding Mode
v.s. AVR+PSS controller

 

Mechanical 
perturbations 

..35.0 upTm =  
..5.0 upTm =  

Short circuit 
(0.15 sec). 

sec. 

Rad./sec.

ω

HOSM
AVR + PSS

Fig. 5. Rotor velocity during mechanical perturbation and
short circuit. Performance comparison Sliding Mode
v.s. AVR+PSS controller.
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sec. 

Mechanical 
perturbations 

Short circuit 
(0.15 sec). 

p.u. 

..5.0 upTm =  
..35.0 upTm =  genV  

Fig. 6. Generator voltage affected by a 0.15 sec. short
circuit (HOSM)

sec. 

Rad. 

Mechanical 
perturbations. 

..35.0 upTm =  

..5.0 upTm =  

Short circuit 
(0.15 sec). 

δ  
 
HOSM 

 
FOSM 

Fig. 7. Power angle, HOSM v.s. FOSM

sec. 

Mechanical 
perturbations 

Short circuit 
(0.15 sec). 

p.u. 

..35.0 upTm =  ..5.0 upTm =  

u  

Fig. 8. Control input u under mechanical perturbation and
short circuit, (FOSM).

sec. 

Mechanical 
perturbations 

Short circuit 
(0.15 sec). 

p.u. 

..35.0 upTm =  ..5.0 upTm =  

u  

Fig. 9. Control input u under mechanical perturbation and
short circuit, (HOSM).

The second set of simulation, Figures 7-9 show the perfor-
mance of the HOSM controller (solid line) compared with
FOSM one (gray line). The events are the same as in the
first set simulations. The performance comparison of two
controllers exhibits the clear advantage of the proposed
HOSM controller since the implementation of the HOSM
control in the discrete time gives the precision (O(h3))
while the first order SM will gives us just precision (O(h)).

4. CONCLUSIONS

A new control scheme, based on the combination of Block
Control and HOSM control techniques is proposed for a
class of nonlinear minimum face SISO perturbed systems.
This approach enables to ensures a) robustness of the
closed-loop system with respect to matched and as well
some kind of unmatched perturbations; b) chattering-
reduced stability in the presence of an actuator additional
dynamics, and reduce complicity of the control algorithm
for the plants with high relative degree. The effectiveness
of the proposed control scheme was checked by an appli-
cation to control an electric power system in the presence
of exciter unmodeled dynamics.

This method can be easy extended for a class of MIMO
nonlinear perturbed systems.
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