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Abstract:
A key goal in the control of a magnetic fusion reactor is to maintain current profiles that are compatible
with a high fraction of self-generated non-inductive current as well as with magnetohydrodynamic
(MHD) stability at high plasma pressure. This enables high fusion gain and noninductive sustainment of
plasma current for steady-state operation. The approach taken toward establishing such plasma current
profiles at the DIII-D tokamak is to create the desired profile during the plasma current ramp-up and early
flattop phases. The evolution in time of the current profile is related to the evolution of the poloidal flux,
which is modeled in normalized cylindrical coordinates using a nonlinear partial differential equation
(PDE) usually referred to as the magnetic diffusion equation. We propose, and test in simulations, an
extremum-seeking-based, receding-horizon, diffusivity-interior-boundary control scheme designed to
match as close as possible a desired current profile within a prespecified time interval.

1. INTRODUCTION

Fusion energy, the power source of the sun, represents a virtu-
ally unlimited source of energy for humanity. In a fusion reac-
tion, two light atoms such as hydrogen fuse to form a heavier
atom and release energy. Since nuclei carry positive charges,
they normally repel one another when trying to fuse. To over-
come the Coulomb barrier, the kinetic energy of the nuclei must
be increased by heating. The fusion process requires extremely
high temperatures (50 to 200 million Kelvin), at which the
hydrogen gas ionizes and becomes a plasma, which conducts
electricity and interacts with magnetic fields.

One of the most promising approaches to fusion is the magnetic
confinement concept. Strong magnetic fields act like a magnetic
bottle to hold the ionized (charged) nuclei together and away
from the vessel wall as they are heated to fusion temperatures.
A Russian design in the shape of a torus, called tokamak, has
proved particularly well suited for containing a fusion plasma.
A more in-depth introduction to fusion can be found in Pironti
and Walker [2005], Walker et al. [2006], Schuster and Ariola
[2006], in which considerable effort was made to describe the
problems of tokamak plasma control at a level that is accessible
to engineers, mathematicians, and non-plasma physicists.

In a tokamak, the magnetic field lines twist their way around
the torus to form a helical structure. It is possible to use the
poloidal component of the helicoidal magnetic lines to define
nested toroidal surfaces corresponding to constant values of
the poloidal magnetic flux. As it is illustrated in Fig. 1, the
poloidal flux ψ at a point P in the (r,z) cross section of the
plasma (i.e., poloidal cross section) is the total flux through the
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surface S bounded by the toroidal ring passing through P, i.e.,
ψ =

∫

BpoldS. The dynamics of the poloidal flux ψ is governed
by a nonlinear parabolic PDE.

Setting up a suitable current profile, or equivalently, a suit-
able poloidal flux profile, has been demonstrated to be a
key condition for improved confinement and possible steady-
state operation (Murakami et al. [2006]). Recent experiments
at different devices around the world (DIII-D: Ferron et al.
[2006], JET: Moreau et al. [2003], Laborde et al. [2005], JT-
60U: Suzuki et al. [2005], Tore Supra: Wijnands et al. [1997])
have demonstrated significant progress in achieving profile
control. Experiments at DIII-D focus on creating the desired
current profile during the plasma current ramp-up and early
flattop phases with the aim of maintaining this target profile
during the subsequent phases of the discharge. Since the ac-
tuators are constrained, a perfect matching of the desirable
target profile may not be physically possible for all arbitrary
initial conditions. In practice, the objective is to achieve the
best possible approximate matching in a short time window
[T1,T2] during the early flattop phase of the total plasma current
pulse, as shown in Fig. 2. Thus, such a matching problem can
be treated as an optimal control problem for a nonlinear PDE
system. In this paper, a closed-loop, extremum-seeking-based,
receding-horizon, optimal controller is proposed as solution to
this problem.

The paper is organized as follows. In Section 2, an infinite-
dimensional dynamic model for the poloidal flux ψ is intro-
duced. Section 3 describes the control objectives during the
different phases of the tokamak discharge, and states the con-
trol problem. In Section 4, a closed-loop, extremum-seeking-
based, receding-horizon controller that makes use of diffusiv-
ity, interior, and boundary actuation is proposed. A simulation
study showing the effectiveness of the proposed closed-loop
controller is presented in Section 5. Finally, conclusions and
identified future work are stated in Section 6.
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Fig. 1. Poloidal flux in a tokamak.
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Fig. 2. Plasma current evolution.

2. CURRENT PROFILE EVOLUTION MODEL

We let ρ be an arbitrary coordinate indexing the surfaces of
constant magnetic flux. Any quantity constant on each magnetic
surface could be chosen as the variable ρ . We choose the
mean geometric radius of the magnetic surface as the variable
ρ , i.e., πBφ ,oρ2 = Φ, where Φ is the toroidal magnetic flux.
The evolution of the poloidal flux in normalized cylindrical
coordinates is given by the magnetic diffusion equation (Hinton
and Hazeltine [1976]),

∂ψ

∂ t
=

η(Te)

µoρ2
b F̂2ρ̂

∂

∂ ρ̂

(

ρ̂F̂ĜĤ
∂ψ

∂ρ̂

)

−RoĤη(Te)
< j̄NI · B̄>

Bφ ,o
, (1)

where all the parameters are defined in Table 1.

The model (1) is based on the following assumptions: a) The
vacuum toroidal field is constant in time (usually true in prac-
tice), b) The map of ρ̂ in real space is constant in time (true if
plasma boundary control regulates to a constant reference). The
boundary conditions of (1) are given by
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Ĥ

∣

∣

ρ̂=1

I(t), (2)

where I(t) denotes the total plasma current.

The current density that flows toroidally around the tokamak,
< j̄ · B̄/Bφ ,o >, and whose profile must be controlled, is related
to spatial derivative of the poloidal magnetic flux,

< j̄ · B̄ >

Bφ ,o
=

1

µoρ2
b F̂2Ĥρ̂

∂

∂ ρ̂

(

ρ̂F̂ĜĤ
1

R0

∂ψ

∂ρ̂

)

. (3)

During “Phase I” (see Fig. 2), mainly governed by the plasma
current ramp-up phase, the plasma current is mostly driven by
induction. In this case, it is possible to decouple the equa-
tion for the evolution of the poloidal flux from the evolution

equations for the temperature Te(ρ̂ ,t) and the density ne(ρ̂ ,t).
Highly simplified models for the density, temperature, and non-
inductive toroidal current density are chosen for this phase (Ou
et al. [2006]). The profiles are assumed to remain fixed. The
responses to the actuators are simply scalar multiples of the
reference profiles. These reference profiles are taken from a
DIII-D tokamak discharge.

The density n is independently controlled and written as

n(ρ̂, t) = npro f ile(ρ̂)un(t), (4)

where npro f ile is given in Fig. 4. The average density is defined

as n̄(t) =
∫ 1

0 n(ρ̂ ,t)dρ̂ .

The temperature Te is proportional to
I(t)

√
Ptot

n̄(t) and written as

Te(ρ̂, t) = kTeT pro f ile
e (ρ̂)

I(t)
√

Ptot

n̄(t)
, (5)

where kTe = 1.7295 ·1010 (m−3A−1W−1/2), T
pro f ile

e is given in
Fig. 4, and Ptot is the total power deposited by the non-inductive
current sources (Electron Cyclotron Heating (ECH), Neutral
Beam Heating (NBH), etc.).

The non-inductive toroidal current density
< j̄NI ·B̄>

Bφ ,o
is written as

< j̄NI · B̄ >

Bφ ,o
=kNI par j

pro f ile
NI par (ρ̂)

I(t)1/2Ptot(t)
5/4

n̄(t)3/2
, (6)

where j
pro f ile
NI par is given in Fig. 4, and kNI par = 1.2139 · 1018

(m−9/2A−1/2W−5/4).

The resistivity η scales with the temperature Te as

η(ρ̂ ,t) =
ke f f Ze f f

T
3/2

e (ρ̂ ,t)
, (7)

where Ze f f = 1.5, and ke f f = 4.2702 ·10−8 (Ωm(kev)3/2).

We consider n̄(t), I(t), and Ptot(t) as the physical actuators of
the system. Therefore, we can modify the poloidal flux profile

dynamics via the non-inductive toroidal current density
< j̄NI ·B̄>

Bφ ,o

(interior control), the total plasma current I(t) (boundary con-
trol), and the plasma resistivity η (diffusivity control).

3. CONTROL PROBLEM DESCRIPTION

The control objective, as well as the dynamic models for
current profile evolution, depend on the phases of the discharge
(Fig. 2). During “Phase I” the control goal is to drive the current
profile from any arbitrary initial condition to a prescribed
target or desirable profile at some time T ∈ (T1,T2) (here T1 =
1.2s and T2 = 2.4s) in the flat-top phase of the total current
I(t) evolution. However, since the available actuators during
“Phase I” differ from those used during “Phase II,” and are
constrained, the prescribed target profile is not an equilibrium
profile during “Phase I”. During “Phase II” the control goal is
to regulate the current profile using as little control effort as
possible because the actuators are not only limited in power but
also in energy. For this reason, the goal during “Phase I” is to
set up an initial profile for “Phase II” as close as possible to its
desirable profile.

In this paper, we focus on “Phase I.” An optimal control
problem must be solved, where control laws I(t), Ptot(t), and
n̄(t) are sought to minimize the cost functional
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Table 1. Description of parameters

Parameters Description

ψ poloidal flux

η(Te) plasma resistivity

Te electron temperature

n plasma density

µo = 4π ×10−7 ( H
m

) vacuum permeability

ρb = 0.79 (m) radius of last closed flux surface

Φb toroidal flux for the last closed flux surface

Bφ ,o = 1.85 T reference magnetic field at Ro

Ro = 1.668 (m) reference point for Bφ ,o

(e.g., geometric center of plasma Rgeo)

ρ̂ ρ/ρb

F̂,Ĝ,Ĥ Geometric factors (functions of ρ̂ (Fig. 3))

j̄NI non-inductive source of current density

(neutral beam, electron cyclotron, etc.)

<> flux-surface average

j current density

E electric field

σ(T ) = 1/η(T ) plasma conductivity

I total plasma current

Ptot total power of non-inductive current drives

n̄ spatially averaged density
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J =

√

1

M
min(J∗(t j)), (8)

where t j are discrete points in time equally spaced within the
interval [T1,T2], e.g., t( j) = 1.2s,1.3s,1.4s, . . . ,2.4s for j =

1,2,3, . . . ,13, and J∗(t j) is given by

J∗(t j) =
M

∑
i=1

(ι(ρ̂i, t j)− ιdes(ρ̂i))
2, (9)

where M is the number of discrete points in space within the
interval [0,1] for the normalized radius. Here ι is the rotational
transform, the inverse of the safety factor q and a measure of
the helicity of the magnetic field lines. This figure of merit is
proportional to the current density and is defined as

ι(ρ ,t) =
2π

q(ρ ,t)
=

∂ψ(ρ , t)

∂Φ
=

∂ψ

∂ρ̂

1

Bφ ,oρ2
b ρ̂

, (10)

where Bφ ,o and ρb are defined in Table 1.

“Phase I” can be roughly divided into two phases, the ramp-up
phase and the flattop phase. During the ramp-up phase, the three
actuators I(t), n̄(t) and Ptot(t) are available, whereas during the
flattop phase we can only vary Ptot(t) keeping I(t) and n̄(t)
fixed at some predetermined values. In addition to these specific
constraints during the flattop phase, the absolute values, and
sometimes the derivatives in time, of the control variables must
be within some specific limits during the whole “Phase I”. The
physical ranges for I(t), n̄(t) and Ptot(t) are given by

0 ≤ I(t) ≤ Imax,

∣

∣

∣

∣

dI(t)

dt

∣

∣

∣

∣

≤ dImax, (11)

I(MA) ≤ n̄(t)

1019
≤ 5I(MA), (12)

0 ≤ Ptot(t) ≤ Pmax. (13)

To accurately reproduce experimental discharges, we must add
constraints for I(t) and n̄(t) at the initial time of “Phase I”,
i.e., I(t = 0s) = I0, n̄(t = 0s) = n̄0. In addition, a value of
the total current I(t) is prescribed for the flattop phase, i.e.,
I(t ≥ T1) = Itarget , where T1 marks the end of the ramp-up phase
and the start of the flattop phase (Fig. 2).

In summary, the optimal control problem (8) must be solved
taking into account that (i) during the ramp-up phase (0 ≤
t ≤ T1) we can manipulate the three actuators by obeying the
physical constraints (11)–(13) and their initial conditions, (ii)
during the flattop phase I(t) must be equal to Itarget and n̄(t)
must be equal to n̄(T1). We seek I(t), n̄(t) and Ptot(t) for t ∈
[0,T ] that makes ι(ρ̂ ,T ) as close as possible to the prescribed

target profile ιdes(ρ̂) at some time T ∈ [T1,T2].

4. CLOSED LOOP OPTIMAL CONTROL

In this section, we present a closed-loop, receding-horizon,
optimal controller based on an extremum-seeking optimization
framework.

4.1 Receding Horizon Control

A controller belonging to the Receding Horizon Control family
solves an optimization problem at each sampling time t i. In this
particular case, given ψ(ρ̂ , ti), the PDE model (1)-(2) is used
to predict the the output ψ(ρ̂,t), for t ≥ ti, which can be in
turn employed to compute ι(ρ̂ ,T ) using (10). By minimizing
the cost function (8), the future trajectories for the control
input u(t), for t ≥ ti, are obtained. When the optimization is
completed, the calculated control input u(t), for t i+1 ≤ t ≤ ti+2,
is implemented on the actual system, while the rest of the
computed control inputs are discarded. This is because the
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output ψ(ρ̂ , ti+1) is measured at the sampling instant ti+1, and
used as the initial poloidal flux profile in a new optimization
problem that provides the control input for for t i+2 ≤ t ≤ ti+3.
Initially, approximate actuator trajectories u(t), for t ≥ t0 = 0,
are calculated off-line using the extremum seeking algorithm
and considering an initial poloidal flux profile that may be
different from the measured poloidal flux profile at t 0 = 0.
However, only u(t), for t0 = 0 ≤ t ≤ t1, will be implemented in
the system without feedback correction. As illustrated in Fig. 5,
the measure of the poloidal flux profile ψ at each sampling
time ti as the response to previous control inputs u(t), for t < t i,
represents a closed-loop strategy.

4.2 Extremum Seeking Optimization

An extremum seeking algorithm has been implemented for the
solution of the optimal control problem (8) at each sampling
time ti, for i = 0, . . . ,N − 1. Extremum seeking (Ariyur and
Krstic [2003]) is applicable in situations where there is a
nonlinearity in the control problem, and the nonlinearity has
a local minimum or a maximum. The parameter space can be
multidimensional. Here, we use extremum seeking for iterative
optimization of the parameters θ (shown in Fig. 6) to make the
quadratic error between ι(ρ̂ ,T ) and the prescribed target profile

ιdes(ρ̂) as small as possible at some time T ∈ [T1,T2], i.e., to
minimize J in (8).

We change parameters θ after each plasma “discharge.” Thus,
we employ the discrete time variant of extremum seeking
(J. Choi and Lee [2002]). The implementation is depicted in
Fig. 6, where q denotes the variable of the Z-transform. The
high-pass filter is designed as 0 < h < 1, and the modulation
frequency ω is selected such that ω = απ , 0 < |α| < 1, and
α is rational. The static nonlinear block J(θ ) corresponds to
one “discharge” of the system. The objective is to minimize
J. If J has a global minimum, its value is denoted by J ∗

and its argument by θ ∗. Given the simulated profile ι(ρ̂ ,t)
for t ∈ [ti,T2] at iteration k, the output of the nonlinear static
map, J(k) = J(θ (k)), is obtained by evaluating (8) and used to
compute θ (k+1) according to the extremum seeking procedure
in the Fig. 6, or written equivalently as

J f (k) =−hJ f (k−1)+ J(k)− J(k−1), (14)

ξ (k) = J f (k)bcos(ωk−φ), (15)

θ̂(k + 1) = θ̂ (k)− γξ (k), (16)

θ (k + 1) = θ̂ (k + 1)+ acos(ω(k + 1)), . (17)

Fig. 6. Extremum seeking control scheme.

In a simulation environment, we understand by “discharge” the
integration of the PDE equation (1)–(2) in the interval [t i,T2]. In
each iteration of the extremum seeking procedure, θ (k) is used
to compute the time evolution of the three physical actuators
I(t), n̄(t) and Ptot(t) in this time interval. At each sampling time
ti, the vector parameter θ has 10 components given by

θ = [I(t I1
i ), I(t I2

i ),Ptot(ti),Ptot (t
P1
i ),Ptot(t

P2
i ),

Ptot(T1), n̄(tn1
i ), n̄(tn2

i ), n̄(tn3
i ), n̄(T1)], (18)

where ti < tI1
i , tI2

i ,tP1
i ,tP2

i ,tn1
i ,tn2

i ,tn3
i < T1. By taking into ac-

count that I(ti) is fixed by the outcome of the optimiza-
tion at t = ti−1, or by the initial condition (I(0s) = I0), and
I(T1) = Itarget , and using polynomial curve fitting for the points

I(ti), I(t
I1
i ), I(t I2

i ), I(T1), we can reconstruct the profile for I(t)
for t ∈ [ti,T1]. In addition, we make I(t) = Itarget for t ∈ (T1,T2].
Following similar procedure, we can reconstruct the law for
Ptot(t). In this case we have the freedom to modify both Ptot(ti)
and Ptot(T1). By considering that n̄(ti) is fixed by the outcome of
the optimization at ti−1 or by the initial condition (n̄(0s) = n̄0),
and using polynomial curve fitting, we can define the law for
n̄(t) for t ∈ [ti,T2] (n̄(t) = n̄(T1) for t ∈ (T1,T2]). The recon-
structed control laws are in turn fed into the PDE system (1)–
(2). Given ψini, the PDE equation is integrated to obtain ψ(ρ̂ ,t),
and finally ι(ρ̂ ,t), which are necessary to evaluate the cost
function, J(k) = J(θ (k)), in (8).

4.3 Receding Horizon Extremum Seeking Algorithm

The combination of the receding horizon control framework
and the extremum seeking optimization technique can be sum-
marized in the following algorithm:

At each sampling time select the tolerance ε > 0 and the max-
imum number of iterations for the extremum seeking optimal
control algorithm, load the desirable ι des(ρ̂) profile data and
perform the following steps:

1) Define ti = t0. Consider an off-line actuator trajectories
u(t), for t ≥ ti = t0.

2) Implement the actuator trajectories u(t) on the actual
system for [ti,ti + ∆t], measure the output of the actual
system ψ(ρ̂ ,ti). Reset the iteration number k.

3) Using the measured poloidal flux at time t i and the ac-
tuator trajectories u(t) for t ≥ ti, compute the predicted
ι(ρ̂ ,t) from the output sequence ψ(ρ̂,t), for t ≥ ti, ob-
tained from the PDE model. Increment k.

4) Compute the cost function (8). If it is less than ε or the
maximum number of iterations is reached, go to step 6).

5) Adjust the parameters θ (k) (i.e, u(t)) using the extremum
seeking algorithm, and go to step 3).

6) Make ti = ti + ∆t, and go to step 2).
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5. SIMULATION RESULTS

We present three simulations cases. In the first case, the
extremum-seeking algorithm is used in open-loop to solve the
optimization problem (8) for a nominal initial profile. The lim-
itations of the open-loop controller to cope with disturbances
in the initial profile is manifested in the second case, where a
disturbed initial profile is considered. Finally, in the third case,
the performance of the closed-loop controller is analyzed when
the same disturbed initial profile is considered.

In these simulations, we consider the time interval [0,T2 =
2.4s]. The current I(t) is reconstructed in [0,T1 = 1.2s] using
polynomial interpolation to fit the discrete points I(t = 0) =
0.709229 MA, θ1, θ2, I(t = T1 = 1.2s) = 1.18774 MA. In
addition, I(t) = 1.18774 MA in [T1,T2]. The parameters Imax =
1.19141MA and dImax = 2MA/s are used in (11) to evaluate
the constraints for I(t).

The total power Ptot(t) is reconstructed using polynomial inter-
polation to fit the discrete points θ3, θ4, θ5, θ6 = Ptot(t = T1 =
1.2s). For t > T1 = 1.2s, Ptot(t) = Ptot(T1). The constraint for
Ptot(t) is evaluated from (13) using Pmax = 20MW.

The average density n̄(t) is obtained by similar procedure,

given the discrete points n̄(t = 0) = 2× 1010m−3, θ7, θ8, θ9,
n̄(t = T1 = 1.2s) = θ10. For t > T1 = 1.2s, n̄(t) = n̄(T1). The
constraints for n̄(t) are given by (12).

The initial values for θ are arbitrarily chosen as

θini = [0.938721 MA,1.15723 MA,1.15723 MW,

0.860596 MW,1.09253 MW,1.09253×2 MW,

1×1019m−3,2×1019m−3,3×1019m−3,4×1019m−3],

with i = 0, t0 = 0s, t I1
0 = 0.4s, t I2

0 = 0.8s, tP1
0 = 0.4s, tP2

0 = 0.8s,

tn1
0 = 0.3s, tn2

0 = 0.6s, tn3
0 = 0.9s. Note that θ1, θ2, θ3, θ4, θ5,

θ7, θ8, θ9 are redefined at each sampling time t i (see (18)).

5.1 Open-loop control

The nominal initial poloidal flux ψ considered in this simu-
lation case is shown in Fig. 7(a). The target or desirable ι
profile is shown in Fig. 7(b). After less than 100 iterations,
a minimum is achieved. The corresponding normalized cost
function is J = 0.0285. Fig. 7(b) shows the ι profile achieved at
some T ∈ [T1,T2] that best matches the desirable ι profile. The
corresponding time evolutions for the three actuators are shown
in Fig. 8.

We now change the initial poloidal flux profile while keeping
the same open-loop controller shown in Fig. 8. Fig. 7(a) shows
the disturbed initial poloidal flux profile considered in this case,
and compares it with the nominal initial poloidal flux profile.
In this case, the cost function results J = 0.0404. Fig. 7(b)
shows the difference between the obtained ι profile and the
desirable ι profile. As expected, the matching is worsen due
to the disturbance in the initial poloidal flux profile.

5.2 Closed-loop control (disturbance rejection)

In the third simulation case, we implement the closed-loop,
receding-horizon control using the extremum seeking optimal
control algorithm. At each sampling time t i = i× 0.1s for i =
1, . . . ,11, the actuator trajectories are updated using the solution
to the stated optimal control problem provided by the extremum

seeking control algorithm. At t = t0 = 0, the “measured” ψ
profile is the disturbed initial poloidal flux profile, shown in
Fig. 7(a), and the open-loop actuator trajectories are used for
control during the first time interval. After ∆t = 0.1s, the
control input is updated with the extremum seeking optimal
result. The procedure is repeated until t = T1 = 1.2s. From that
instant the control input is kept unmodified until the end of
the considered time interval at T2 = 2.4. For each extremum
seeking optimization at ti = i × 0.1s for i = 0, . . . ,10, the ψ
profile is measured and incorporated into the control design
procedure.

For the closed-loop controller, the achieved matching shown
in Fig. 7(b) gives a cost function J = 0.02510. Fig. 9 shows the
closed-loop control actuator trajectories. Fig. 7(b) compares the
matching of the target ι for open-loop and closed-loop control.
The closed-loop approach provides a better matching as it is
illustrated by the results in Table 2.

Table 2. Comparison of open-loop and closed-loop
control results.

Cost function

off-line open-loop closed-loop

J 0.0285 0.0404 0.02510

6. CONCLUSIONS AND FUTURE WORK

A simplified dynamic model describing the evolution of the
poloidal flux, and therefore the ι profile, during the inductive
phase of the discharge has been introduced. Using this model,
a closed-loop, multi-parameter extremum-seeking, receding-
horizon, optimal controller has been proposed, and successfully
tested in simulations, to match a desired ι profile within a
predefined time window during the flattop phase of the tokamak
discharge. The extremum-seeking procedure has shown to be
effective in dealing with an optimal control problem defined
for a nonlinear PDE system subject to many constraints in its
actuators, and where not only interior and boundary control but
also diffusivity control are considered. The proposed controller
satisfactorily rejects disturbances in the initial poloidal flux
profile.

The computational effort required by the proposed method may
make real-time implementation challenging in short-discharge
tokamaks. In order to overcome this limitation and reduce the
computational burden, model reduction will be considered in
future work. In addition, other nonlinear programming opti-
mization techniques that may reduce the convergence time will
also be considered.
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