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Abstract: Neighboring Extremal Optimal approach is effective in solving optimal control
problems through approximation. Under certain conditions, a matrix involved in the calculation
of optimal control approximation can become singular, leading to a technical difficulty in the
application of the approach. These situations may include the cases when a constraint depends
only on the states but not the inputs, or the cases when the inequality constraints outnumber the
inputs. In this paper, we propose a solution that can circumvent this technical difficulty. First,
by back-propagating the state constraints, we show that input-independent constraints can be
recast as the state-input constraints to avoid the matrix singularity. The back-propagation,
however, might lead to another problem of “degeneracy,” where a back-propagated constraint
is imposed on the initial state, so that no feasible neighboring extremal solution exists for
the problem. In the latter case, a linear programming approach is proposed to deal with this
degeneracy. A ship maneuvering control problem is used in the paper to illustrate the singularity
and degeneracy issues, and to elucidate the mechanics of the proposed scheme.

1. INTRODUCTION

Optimization-based control refers to a control design in
which control decisions are made by solving optimiza-
tion problems on-line. One prominent example of the
optimization-based control is the model predictive con-
trol (MPC), which has enjoyed widespread success in the
process industry (Binder et.al (2001), Qin and Badgwill,
(1997)). The flexible and intuitive formulation, together
with the capability of incorporating state and input con-
straints, has made the approach very attractive to a broad
class of applications, such as those in aerospace, automo-
tive and marine industry. For systems whose dynamics are
fast and/or whose computational resources are limited,
however, the practicality of the optimization-based con-
trol is often challenged. The challenges arise for several
reasons: First, the optimization has to be repeated at each
sampling instant when the control needs to be updated.
Second, for nonlinear systems with constraints, or even
for linear systems with constraints, analytical solutions
to the optimization problems are often unattainable. Re-
search efforts in making MPC or other optimization-based
control feasible for applications with fast dynamics and
limited computational resources have been successful and
recent advances included explicit MPC (Johansen (2002),

⋆ This work is supported in part by NSF ECS-0501284 and ONR
N00014-05-1-0537.

Bemporad (2002)) and model reduction (Dufour (2003)),
among the others.

Another venue for making MPC or other optimization-
based control appealing in applications is to improve
the efficiency of numerical optimization algorithms while
exploiting special features of underlying problem. For a
given application, by noting that a similar constrained
optimization problem is to be solved repeatedly as the
states and inputs evolve, one can leverage the neighboring
extremal approach to compute the solution at the next
sampling instant starting from the solution at the current
time instant. This idea has been explored in (Ghaemi et.
al. (2007a)). In (Ghaemi et. al. (2007b)) this perturbation
analysis based approach is integrated with the sequential
quadratic programming (SQP) to deal with cases when
large state variations are involved.

For the neighboring extremal solution described in (Ghaemi
et. al. (2007b)), several cases are identified where the
proposed algorithm cannot be applied due to the singu-
larity of a matrix involved in the neighboring extremal
control calculation. These cases include those when some
constraints depend only on the states but not on the
inputs, or those when the active linearized constraints
outnumber the inputs.
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In this paper, we propose an algorithm that circumvents
this technical difficulty. The mitigating strategy has sev-
eral key ingredients: one involves the back-propagation of
the constraints to avoid singularity issues, and the other
relies on a linear programming algorithm to avoid the de-
generacy issue. For the purpose of clear exposition, the is-
sues and concepts behind the algorithm will be elucidated
using ship maneuvering control as a numerical example.

2. NEIGHBORING EXTREMAL CONTROL

In this section we discuss the neighboring extremal control
approach for discrete-time systems with joint input and
state inequality constraints, proposed by (Ghaemi et.
al. (2007a)). Consider the problem of minimizing a cost
function,

J [u] =
N−1
∑

k=0

L(x(k), u(k)) + Φ(x(N)), (1)

over all feasible control sequences u : [0, N − 1] → R
m and

all state vectors x : [0, N ] → R
n subject to the following

constraints:

x(k + 1) = f(x(k), u(k)); f : R
n+m → R

n (2)

x(0) = x0; x0 ∈ R
n (3)

C(x(k), u(k)) ≤ 0, C : R
n+m → R

l. (4)

The neighboring extremal solution to the problem when
the initial state is perturbed from x(0) + δx(0) is derived
in (Ghaemi et. al. (2007b)) and it is described as follows:

Let xo(k), uo(k), referred to as the nominal solution, be the
state and control trajectories corresponding to the optimal
solution in the problem of minimizing (1) subject to (2)-
(4) with the initial condition x(0). Let Ca(k) be a vector
consisting of the constraints that are active at the time
instant k 1 , µ(k) be the corresponding Lagrange variable,
and λ(·) be the sequence of co-states associated with the
dynamics of the system. The Hamiltonian function can be
defined as follows:

H(k) = L(x(k), u(k)) + λ(k + 1)T f(x(k), u(k))

+ µ(k)T Ca(x(k), u(k)).
(5)

As shown in (Ghaemi et. al. (2007b)), if a perturbation
δx(0) in the initial state x(0) does not change the activity
status of the constraints, then the corresponding optimal
solution to the problem defined by the cost function (1)
and constraints (2), (4) and initial state x(0) = x0 +
δx(0) can be approximated as xo(k) + δx(k) and uo(k) +
δu(k), k ∈ [0, N ], provided

Zuu(k) ≻ 0 for k ∈ [0, N ] (6)

for the nominal solution, where 2

Zuu(k) = Huu(k) + fT
u (k)S(k + 1)fu(k),

Zux(k) = Zxu(k)T = Hux(k) + fT
u (k)S(k + 1)fx(k),

Zxx(k) = Hxx(k) + fT
x (k)S(k + 1)fx(k),

(7)

1 Note that the dimension of Ca(k) can vary for different k. It is an
empty vector (considered to be full rank) if no constraint is active
at the time instant k.
2 Subsequently, Huu, Hux, Hxx, Φxx, etc., denote the partial
derivatives with respect to x and/or u, with the exception for Zuu,
Zux, Zxx, which are defined by (7).

and S(k) in equation (7) is given by:

S(k)=Zxx(k) − [Zxu(k) CT
x (k)]K0(k)

[

Zux(k)
Cx(k)

]

,

S(N) = Φxx(N),
(8)

K0(k) =

[

Zuu(k) Ca
u

T (k)
Ca

u(k) 0

]

−1

. (9)

Moreover, the following explicit relation between state and
input variations is satisfied for the perturbed solution:

δu(k) = K∗(k)δx(k), (10)

K∗(k) = −[I 0]K0(k)

[

Zux(k)
Ca

x(k)

]

. (11)

Remark 1. Note that in order to calculate the neighboring
extremal solution, one also needs to calculate nominal
trajectories of µ(k) and λ(k).

Given that the matrix Zuu(·) is positive definite over the
entire horizon, according to assumption (6), one can easily
verify that the matrix Ko(k) in (9) is well defined as long
as Ca

u(k) is full rank for k = 0, · · · , N − 1. If Ca
u(k) is not

full rank at some time instant k, then

G(k) :=

[

Zuu(k) Ca
u

T (k)
Ca

u(k) 0

]

becomes singular and the proposed algorithm fails because
the inverse in (9) is not defined. The singularity happens
if the matrix Cu is not row independent. Two special cases
of such situation are when Cu = 0, or when the number of
active inequality constraints at time k is greater than the
number of inputs, i.e, Ca

u has more rows than columns.

In the next section, the ship steering problem will be
introduced as an illustrating example, where both cases
highlighted above will be illuminated.

3. A NUMERICAL EXAMPLE

In a ship maneuvering problem, the objective is to steer
a ship to a desired location while avoiding an obstacle,
which could be an oil rig or another ship. The following
ship model, taken out from Casado et. al, (2001), is used
for numerical simulation:

ẋ1 = x5cos(x3) − (r1x4 + r3x
3
4)sin(x3),

ẋ2 = x5sin(x3) + (r1x4 + r3x
3
4)cos(x3),

ẋ3 = x4,

ẋ4 = −ax4 − bx3
4 + cur,

ẋ5 = −fx5 − Wx2
4 + ut,

(12)

where x1 and x2 are the ship’s position (in nautical miles
(nm)) in the X1 − X2 plane, x3 is the heading angle (in
radians (rad)), x4 is the yaw rate (rad/min), and x5 is the
forward velocity (nm/min). The two control inputs are:
ur, the rudder angle (rad), and ut, the propeller’s thrust

(nm/min
2
).

The ship has a maximum speed of .25 nm/min = 15 knots

for a maximum thrust of 0.215 nm/min
2
. For the maximal

rudder angle of 35o, the stationary rate of turn is 1o/sec.
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The control objective is to steer the ship from any initial
condition to a neighborhood around the origin (described
by a circle with a radius r0 = 0.1(nm)) while minimizing
energy consumption. Moreover, there is an obstacle desig-
nated by a circle centered at (x1, x2) = (1.5, 0) with radius
r̄ = 2.5(nm) so that the following inequality constraint,
which depends only on the state needs to be enforced,

(x1 − 1.5)2 + x2
2 ≥ (0.25)2. (13)

The objective of energy consumption minimization, cou-
pled with the need to satisfy hard constraints due to
actuator saturation and the presence of an obstacle, nat-
urally suggests the model predictive control (MPC) as
a strategy. At each time instant, the calculation of the
control signal in MPC involves solving an optimization
problem of minimizing the cost

min
u(·),x(·)

N−1
∑

i=0

(0.1ur(k)2+10ut(k)3/2)+2000(x1(k)2+x2(k)2)

(14)
subject to constraints

C1(k) = ur(k)2 ≤ 0.612

C2(k) = (ut(k) − 0.125)2 ≤ 0.1252

C̄(k) = (x1(k) − 1.5)2 + x2(k)2 ≥ (0.25)2

x(0) = observed state

x(k + 1) = f(x(k), u(k)) u = [ur ut]
T ,

(15)

where the first two inequalities are the control limits,
and the discrete-time model of the system is derived
by discretizing equation (12), using Euler approximation.
According to the MPC strategy, the first element in the
optimized control sequence u∗(·) will be applied as control
signal. Note that optimization problem (14)-(15) has to be
solved repeatedly for each updated observed state. Once a
solution for (14)-(15) is obtained for the state x(i) observed
at t = iT and assumed as an initial state in (14)-(15), then
for the next sample time t = (i + 1)T with observed state
x(i + 1), one can use the neighboring extremal method to
approximate the new solution by assuming δx(0) = x(i +
1) − x(i); thereby reducing the impact of the computing
delay.

Remark 2. The neighboring extremal method described in
Section 2 assumes that the constraint activity status at
each time k does not change after the initial condition
perturbation. This problem is resolved in (Ghaemi et.
al. (2007a)), where an algorithm is proposed to handle
perturbations that are large enough to cause activity
status changes for some constraints. Figure 1 shows the
trajectory of the ship maneuvering problem when the
neighboring extremal method in (Ghaemi et. al. (2007a))
is applied, where the problems with the singular matrix
G(k) are resolved using the algorithm proposed in this
paper, as elaborated in the subsequent sections.

4. AVOIDING SINGULARITY IN THE
NEIGHBORING EXTREMAL SOLUTION

In this section, we propose an approach which permits
the neighboring extremal solution to be applied without
requiring Ca

u(k) to be full rank. Note that in the spirit of
the neighboring extremal solution, the linear constraints

Ca
u(k)δu(k) + Ca

x(k)δx(k) = 0 (16)

should be satisfied, where Ca(k) denotes all active con-
straints at the time k. When Ca

u(k) has dependent rows,
it can be transformed into the following form

[

C̃u(k)
0

]

for some C̃u(k) with independent rows. Therefore, equa-
tion (16) can be decomposed into

C̃u(k)δu(k) + C̃x(k)δx(k) = 0, (17)

Ĉx(k)δx(k) = 0, (18)

for appropriately defined C̃x(k) and Ĉx(k). Using the
linearized version of (2), namely

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) (19)

for k > 0, (18) can be rewritten as

Ĉx(k) (fx(k − 1)δx(k − 1) + fu(k − 1)δu(k − 1)) = 0.
(20)

Therefore, we can effectively replace the constraints (16)
by (17), and the remaining constraints (18) are back-
propagated to the time instant k − 1, so that constraints
are now imposed on δx(k − 1) and δu(k − 1). Now we can
redefine the matrix K0(k) as

K0(k) =

[

Zuu(k) C̃T
u (k)

C̃u(k) 0

]−1

, (21)

to avoid singularity in (9). This technique, which mitigates
the singularity by redefining the constraints at time k
and shifting other state-only constraints to time k − 1,
is referred to as constraint back-propagation in this paper.
Since the back-propagated constraints (20) have to be
enforced along with other active constraints, at time k−1,
the resulting active constraints may outnumber control
inputs at the time k − 1. If this does indeed happen, then
the same technique has to be repeated until at some point
k− j the back-propagated constraints can be absorbed by
the matrix Ca(k − j) without causing any singularity in
G(k − j).

To illustrate the concept of constraint back-propagation,
we consider the ship steering problem discussed in Section
3, where the problem (14)-(15) is solved at each time
instant. The ship trajectory is shown in Figure 1. At
i = 69, which is highlighted by point A on the figure,
the state constraint (13) becomes active at k = 10 (i.e.,
10-steps ahead for the predicted trajectory).
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Fig. 1. Ship trajectory and the singularity points.
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At k = 10, the constraint C̄(10) ≤ 0 being active leads to
the following constraint on the state variation δx(10) (see
also Table I):

[−0.09 −0.26 0 0 0] δx(10) = 0. (22)

This constraint can be back-propagated to k = 9 as

[−0.09 −0.26 0.0072 −0.001 0.01] δx(9) = 0 (23)

using the state equation. Note that the system has relative
degree equal to 2, therefore δu(9) does not appear in (23)
and the singularity remains to be the problem. Now using
(20) for k = 9, (23) can be back-propagated to k = 8 as:

[

−0.0003
0.0010

]T

δu(8) +











−0.0962
−0.2630
0.0145
−0.0012
0.0184











T

δx(8) = 0, (24)

which, when combined with the original constraint at
k = 8

[

0.61 0
0 0.1

]

δu(8) = 0, (25)

leads to the singularity of matrix K0(8).

Note that for k = 8, we can combine (24) and (25) as
[

0.61 0
0 0.1

−0.003 0.001

]

δu(8) +

[

Ca
x(8)
v8

]

δx(8) = 0, (26)

where Ca
x(8) = 02×5 and

v8 = [−0.0962 −0.2630 0.0145 −0.0012 0.0184]

is the coefficient vector corresponding to δx(8) in (24).
The equation (26), through matrix row operation, can be
expressed as

[

0.61 0
0 0.1

]

δu(8) = 0 and v8δx(8) = 0. (27)

Now continuing with constraint back-propagation for the
second equation in (27), we have Table I which gives all
the constraints recast after each step of back-propagation.
It can be seen that after 5 steps of back-propagation, at
k = 6, the singularity problem can be avoided and the
neighboring extremal solution can be defined and applied.

5. CONSTRAINT BACK-PROPAGATION
ALGORITHM

In this section we formalize and generalize the back-
propagation method which has been described conceptu-
ally in the previous section. Let us consider the optimiza-
tion problem of minimizing the cost (1) subject to the
following constraints:

x(k + 1) = f(x(k), u(k)); f : R
n+m → R

n, (28)

x(0) = x0; x0 ∈ R
n, (29)

C(x(k), u(k)) ≤ 0, C : R
n+m → R

l, (30)

C̄(x(k)) ≤ 0 C̄ : R
n → R

l̄, (31)

where C and C̄ denote the mixed state-input constraints
and state-only constraints, respectively. This set of con-
straints includes state only inequality constraint (31), in
contrast to (4).

In order to describe the neighboring extremal solution to
this problem, we first introduce the following notations.

Let x(k), u(k), k ∈ [0, N ] be referred to as the nominal
solution for the state and control corresponding to the
optimal solution in the problem of minimizing (1) subject
to the constraints (28)-(31). With λ(·) being defined as
in Section 2, the Hamiltonian function can be defined as
follows:

H(k) = L(x(k), u(k)) + λ(k + 1)T f(x(k), u(k))

+ µ(k)T Ca(x(k), u(k)) + µ̄(k)T C̄a(x(k)),
(32)

where µ(·) and µ̄(·) are Lagrange multipliers associated
with the active parts of constraints (30) and (31), respec-

tively. Now we define matrix sequences C̃u(·), C̃x(·) and
S(·) using the following backward recursive equations. Let

Ĉx(N) := C̄a
x(x(N)),

S(N) := Φxx(N) +
∂

∂x
(C̄T

x (x(N))µ̄(N)),
(33)

and at the time instant k we define

Caug(k) :=

[

Ca
u(k)

Ĉx(k + 1)fu(k)

]

,

r̃k := rank(Caug(k)).

(34)

At each time instant k, there is a matrix P (k) that
transforms matrix Caug(k) into the following form

P (k)

[

Cu(k)

Ĉx(k + 1)fu(k)

]

=

[

C̃u(k)
0

]

, (35)

with C̃u(k) ∈ R
r̃k×m having independent rows. If Caug(k)

is full row rank, then P (k) = I and C̃u(k) = Caug(k).

By defining

Γ(k) :=





P (k)

[

Ca
x(k)

Ĉx(k + 1)fx(k)

]

C̄a
x(k)



 ,

and assuming that γk is the number of rows of matrix Γ(k),
we can define

C̃x(k) := [Ir̃k×r̃k
0r̃k×(γk−r̃k)]Γ(k) ∈ R

r̃k×m,

Ĉx(k) := [0(γk−r̃k)×r̃k
I(γk−r̃k)×(γk−r̃k)]Γ(k) ∈ R

(γk−r̃k)×m.
(36)

Having Zuu(·), Zux(·) and Zxx(·) defined in (7), the matrix
S(k) can be defined as follows

S(k) = Zxx(k) − [Zxu(k) C̃T
x (k)]K0(k)

[

Zux(k)

C̃x(k)

]

, (37)

where

K0(k) =

[

Zuu(k) C̃u(k)T

C̃u(k) 0

]−1

.

Using equation (33) as an initial condition for a backward
run, we apply equations (35), (36) and (37) to calculate

matrix sequences Zuu(·), Zux(·), Zxx(·), C̃u(·), C̃x(·) and
P (·). Having the above matrix sequences calculated, we
introduce the following theorem which gives a sufficient
condition for existence of the neighboring extremal solu-
tion to the optimal control problem with perturbed initial
state. The theorem is followed by a corollary which gives
the neighboring extremal solution.

Theorem 3. If rank(Ĉx(0)) = 0 then a sufficient condition
for the existence of the neighboring extremal control
subject to the inequality constraints and initial state
perturbation δx(0) is

Zuu(k) ≻ 0 for k ∈ [0, N − 1]. (38)
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Table I: The content of matrices Ca
u(·), C̄a

x(·) and Ĉx(·) for constraint (13).
k 0 1 2 3 4 5 6 7 8 9 10

Ca
u(·)

[

−0.61 0
0 0.1

]

[

0 0.1
] [

0 0.1
] [

0 0.1
] [

0 0.1
] [

0 0.1
] [

0 0.1
]

[

0.61 0
0 0.1

] [

0.61 0
0 0.1

]

[

0−0.1
]

C̄a
x(·) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅









−0.09
−0.26

0
0
0









Ĉx(·)T ∅ ∅ ∅ ∅ ∅ ∅ ∅









−0.09
−0.263
0.022

−0.0006
0.026

















−0.09
−0.26
0.01

−0.0012
0.018

















−0.09
−0.26
0.0072
−0.001
0.01

















−0.09
−0.26

0
0
0









Remark 4. Condition (38) guarantees the convexity of the
quadratic programming problem resulting from the second
order variational analysis, which is performed to calculate
the neighboring extremal solution.

Remark 5. The condition, rank(Ĉx(0)) = 0, implies that
the back-propagation will not result in a constraint on the
initial state variation δx(0), which is not an optimization
variable.

Corollary 6. If a perturbation δx(0) in the initial state
x(0) does not change the activity status of the constraints
and

Zuu(k) ≻ 0 for k ∈ [0, N − 1], (39)

then the corresponding optimal solution to the problem
defined by the cost function (1) and constraints (28)-(31)
and initial state x(0) = x0 + δx(0) can be approximated
as x(k) + δx(k) and u(k) + δu(k), k ∈ [0, N ] where

δu(k) = K∗(k)δx(k), (40)

K∗(k) = −[I 0]K0(k)

[

Zux(k)

C̃x(k)

]

.

If rank(Ĉx(0)) 6= 0, then either Ĉx(0)δx(0) ≡ 0, which
means that the linear equations resulted from linearizing
active constraints are redundant, or the variation δx(0)
for the initial state x(0) is infeasible. In both cases, further
modification will be needed in order to apply the proposed
algorithm, which will be addressed in the next section.

6. DEALING WITH DEGENERACY USING LINEAR
PROGRAMMING SOLUTION

Let us revisit the same ship control example. At the
time instant i = 74, see point B highlighted in Figure 1,
singularity arises again with the matrices Ca

u(·) and C̄a
x(·).

Applying the algorithm proposed in Section 5, the back-
propagation continues until k = 0. The resulting matrices
Ca

u, C̄a
x and Ĉx are given in Table II (to save space, the

matrices at k = 2, 3, 4, 5, 6 are omitted). Note that at
k = 0, we have

Ĉx(0) = [0.0427 0.1153 − 0.0137 − 0.0003 0.0787], (41)

which means that the following equation,

Ĉx(0)δx(0) = 0, (42)

has to be satisfied. This leads to a constraint on the initial
condition which is not a manipulated variable and this
leads to either degeneracy or infeasibility of the associated
Quadratic Programming problem.

In this case, the following two remarks provide more
insights into the causes and suggest possible mitigating
strategies.

Remark 7. For a given δx(0), if (42) is satisfied, it implies
that the linear constraints in the associated QP problem
are dependent. This is referred to as the “degeneracy” in
the optimization literature (Gill et. al, (1981)). In this case,
if these dependent constraints can be properly identified
and eliminated from the outset, then the algorithm de-
scribed in Section 5 can be applied and rank(Ĉx(0)) = 0
will be satisfied for the reformulated QP problem with
independent linear constraints.

Remark 8. If Ĉx(0)δx(0) 6= 0, this implies that the QP
problem with linear constraints is “infeasible”. However,
this does not necessarily means that the original optimiza-
tion problem (1) with constraints (2)-(4) is infeasible. The
infeasibility could be due to linearization or the threshold
used in determining the constraint violation.

In this section, we introduce a linear programming for-
mulation to deal with the degeneracy or infeasibility of
quadratic programming problem.

Instead of solving the original QP problem, we now shift
our attention to finding a feasible descent direction.

In order to enforce the original nonlinear constraints, we
modify the linear equality constraints

Ca
x(k)δx(k) + Ca

u(k)δu(k) = −Ca(x(k), u(k)),

C̄a
x(k)δx(k) = −C̄a(x(k)),

into the following linear inequality constraints:

Ca
x(k)δx(k) + Ca

u(k)δu(k) ≤ −Ca(x(k), u(k)),

C̄a
x(k)δx(k) ≤ −C̄a(x(k)).

We now introduce the following linear programming (LP)
problem:

min
δu(·),δx(·)

N−1
∑

k=0

(Lx(k)δx(k) + Lu(k)δu(k)) + Φx(N)δx(N)

subject to:

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k),

δx(0) = δx0,

Cx(k)δx(k) + Cu(k)δu(k) ≤ −C(x(k), u(k)),

C̄x(k)δx(k) ≤ −C̄(x(k)).
(43)

to find the next feasible direction. In solving the LP
problem (43) we achieve: (i) the value of the active
constraints will not be increased, but can be decreased
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Table II: The content of matrices Ca
u(·), C̄a

x(·) and Ĉx(·) for the degeneracy case
k 0 1 · · · 8 9 10

C
a

u
(·)

[

0 0.1
] [

0 0.1
]

· · ·

[

−0.61 0

0 0.1

]

[

0−0.1
]

C̄
a

x
(·) ∅ ∅ · · ·





−0.0017

−0.2792

0

0

0









0.0246

−0.2775

0

0

0









0.0509

−0.2743

0

0

0





Ĉx(·)T





−0.0427

0.1153

−0.0137

−0.0003

0.0787









−0.0158−0.0393

−0.0856−0.2136

0.0120 0.0300

0.0007 0.0016

0.0043 0.0110



 · · ·





0.0509 0.0246 −0.0017

−0.2743−0.2775−0.2792

0.0147 0.0073 0

−0.0012−0.0010 0

−0.0042 0.0002 0









0.05 0.02

−0.27 −0.27

0.0074 0

−0.0010 0

−0.0019 0









0.05

−0.27

0

0

0





which will lead to a reduced number of active constraints
for the next iteration; (ii) the original cost function will be
decreased whenever possible.

Note that solving the LP problem (43) can be performed in
a time efficient manner so that it will not be a barrier for
fast optimization. In addition, the LP problem is solved
only when the QP problem is degenerate or infeasible,
identified by the condition rank(Ĉx(0)) 6= 0.

The LP problem is solved for ship maneuvering example
at i = 74. Note that Ca(x, u) and C̄(x) are defined in (15)
and

Ca(x, u) = 0

[C̄a(7) C̄a(8) C̄a(9) C̄a(10)] = [1.3 20 40 30] × 10−5

(44)

The LP problem (43) for the ship control problem can be
formulated using Ca

u and Ca
x from Table II and noting that

Ca
x = 0. The solution to the LP problem gives,

[

δur

δut

]

=





























−0.0844 0
−0.8439 0
−1.2167 0
−1.2197 0
−1.215 0
−1.2182 0
−0.371 0
0.0399 0
0.335 0

−0.0011 0.0131





























T

. (45)

Once this solution is applied, the activity status of con-
straint on ur and ut at k = 4 and k = 10, is respectively
changed from active to inactive. Therefore, for the next
iteration of neighboring extremal method, the degeneracy
does not occur because of the reduced number of active
constraints.

7. CONCLUSION

In this paper, a generalized neighboring extremal solution
method is proposed to deal with mixed state and input
constraints in optimal control of discrete-time systems.
Two novel approaches were developed: one relies on the
back-propagation of constraints to avoid singularity in
control calculation, another uses the linear programming
to address degeneracy and infeasibility of the associated
QP problem when the original optimization problem has
a feasible solution. The algorithm is elucidated through
the ship maneuvering example, which demonstrates that
the obstacle avoidance can be achieved using the proposed
algorithm.
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