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Abstract: Positive invariance is a common analysis and control design tool for systems affected
by constraints and disturbances. The present paper revisits the construction of ǫ-approximations
of minimal robust positive invariant sets proposing contractive procedures in the cases of
switching between different sets of disturbances and the inclusion of a predefined region of
the state space. The results are used in multisensor control schemes which have to deal with
specific problems originated by the switching between different estimators and by the presence
of faults. Within this framework, global stability of the switching strategies can be assured if
the invariant sets topology allows the exclusive selection of estimates obtained from healthy
sensors.

1. INTRODUCTION

Multisensor schemes have originated substantial research
on the aggregation of the information available from the
plant in order to improve reliability and robustness. Sen-
sor fusion has been one of the techniques traditionally
employed in multisensor schemes where the construction
of improved estimators is the main concern (Dasarathy,
1997; Luo et al., 2002; Sun and Deng, 2004). As is usually
the case with low cost diversification and miniaturisation,
components are predisposed to failures. For multisensor
schemes, the presence of faults is manifested by the alter-
ation of the estimations of the features of interest. The
control strategy has to be equipped with fault detection
capabilities in order to avoid the construction of the con-
trol action based upon erroneous feedback information.

Recently, multisensor switching feedback control strategies
have provided interesting solutions with fault tolerance
guarantees (Seron et al., 2008). The design procedure
uses a switching strategy motivated by receding horizon
optimal control principles. At each sampling time, the
switching strategy implements the control action by se-
lecting the sensor-estimator pair that provides the best
predicted closed-loop performance according to a prede-
fined criterion.

The present paper revisits the conditions for closed-loop
stability for such multisensor switching control schemes
and reduces the conservatism of the assumptions by re-
fining the invariant sets for healthy and for faulty func-
tioning. Indeed, positive invariance is a common anal-
ysis and control design tool for systems affected by
constraints and/or disturbances. The switching between
sensor-estimator pairs introduced by these schemes implies
switching between systems affected by different sets of
disturbances. In addition, the presence of failures implies
structural modifications which have to consider the func-
tioning regime previous to the fault. It will be shown

how these issues can be embedded in the invariant sets
definition and constructive solutions will be provided.

Ideally, the use of minimal robust positive invariant
(mRPI) sets would provide the exact information about
the closed-loop behavior under different operating condi-
tions needed to perform (explicit or implicit) fault detec-
tion. From a practical point of view, exact mRPI sets can
be obtained only for restricted classes of systems and, in
general, ǫ-approximations have to be employed instead.
Existing results on ǫ-approximations of robust positive
invariant sets in Raković et al. (2005) are extended in the
present paper along the following lines:

• The set confining the disturbance does not have to
contain the origin;
• The iterative procedure constructs the approxima-

tions in a contractive manner;
• The result is extended to the construction of invariant

sets containing a given region of the state space.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the multisensor control structure. Sec-
tion 3 details the invariant set computation and several
refinements are provided. Section 4 describes the fault
tolerant switching control scheme and discusses conditions
for global stability. In Section 5 an application is presented
and Section 6 draws some conclusions. Due to space lim-
itations, we have not included the proofs of the theorems
in this final version of the paper.

2. MULTISENSOR CONTROL SCHEME

2.1 System structure with multiple sensors and estimators

The multisensor control scheme assumes the existence of
a linear discrete-time state space model Σ, for the plant
considered. The state vector of the system, x ∈ R

n, is
not directly available. Instead, combinations of the states,
given by CΣx, can be measured via N sensors. The output
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signal of each sensor, yi ∈ R
pi , i = 1, . . . , N , carries useful

information for control purposes and its treatment has to
take into account the internal dynamics of each sensor,
described by the evolution of the internal state ξi ∈ R

ni .
The first column of Table 1 contains the linear models for
the plant and the sensors, as well as the dynamics of the
estimators. A block description of the control scheme is
depicted in Figure 1.

It is assumed that the sensor matrices Asi
have all their

eigenvalues strictly inside the unit circle and that the
estimators are designed in order to exhibit a good dynamic

behavior for the extended state estimate
[

x̂i ξ̂i

]T

. This

is achieved by adequate choice of matrices Li, Lsi
such

that the resulting matrices ALi
, i = 1, . . . , N have all their

eigenvalues strictly inside the unit circle.

2.2 Control objective and exogenous signals

The control objective is to ensure that the state of the
system tracks a reference signal xref which, in turn, follows
the dynamics given in Table 1 for the reference model. The
reference tracking of the global system requires a reference
signal for each sensor state. The tracking errors are given
by the difference between the state and the respective
reference signal, as can be seen in the last column of
Table 1.

In order to derive a control strategy, a description of
the exogenous signals uref , w, ηi, is needed. The present
study is dedicated to the case of bounded signals, with
no other assumption on their properties. The disturbance
and measurement noises are assumed to be contained in
polyhedral sets w ∈ W and ηi ∈ Ni. In addition, bounds
on the input reference signal uref induce bounds on the
state of the reference model:

xref ∈ Xref (1)

with Xref a closed (polyhedral) set.

2.3 Sensor failure model

The faults considered in this paper are of the type of
total sensor outage. Namely, it is assumed that during
sensor failure the output of the sensor ceases to carry
information about the sensor state (even though the sensor
state continues to evolve with the same dynamics). The
failure is thus equivalent to the following switching on the
observation equation:

yi = Csi
ξi + ηi

FAULT
−−−−−→ yi = 0 · ξi + ηF

i (2)

yi = Csi
ξi + ηi

RECOV ERY
←−−−−−−−−− yi = ηF

i (3)

The noise level during the fault, ηF
i , may in general be

different from the noise during healthy operation, ηi. The
bounds on the noise during the fault are denoted ηF

i ∈ NF
i .

2.4 The missing link

The presence of faults implies, through the structural
changes (2), a change in the input of the dynamic equation
of the corresponding estimator. Indeed, a fault-recovery
cycle will bring the system back to the operational frame-
work (Table 1) but the reinitialisation of the estimator’s

state has to be carefully considered. The evolution of
the estimation error, under healthy sensor operation, will
verify:
[

x̃+

i

ξ̃+
i

]

=

[
x+

ξ+

i

]

−

[
x̂+

i

ξ̂+
i

]

= ALi

[
x̃i

ξ̃i

]

+

[
EΣ

0

]

w−

[
Li

Lsi

]

ηi

(4)

We assume that the pairs

([
AΣ 0

Bsi
CΣ Asi

]

, [0 Csi ]

)

are

detectable for i = 1, . . . , N , and that the gains Li, Lsi

are such that matrices ALi
have all their eigenvalues

strictly inside the unit circle (this is always possible by
the detectability assumption).

The estimation error might be seen as the “missing link”
(due to the fact that it is not directly measurable) between
the estimator tracking error and the tracking error:

[
ẑi

ζ̂i

]

︸ ︷︷ ︸

Estimator
tracking error

=

[
z
ζi

]

︸ ︷︷ ︸

Tracking
error

−

[
x̃i

ξ̃i

]

︸ ︷︷ ︸

Estimation
error

(5)

3. INVARIANT SETS CONSTRUCTION

3.1 A contractive procedure

Consider a general discrete-time linear time-invariant sys-
tems subject to disturbance:

x+ = Ax + Bδ (6)

with A strictly stable and δ ∈ ∆ a polytopic set. The
minimal robust positive invariant (mRPI) set, defined as
the RPI set contained in any closed RPI set is known to
be unique, compact and—in the case when ∆ contains the
origin—to contain the origin (Kolmanovsky and Gilbert,
1998). Its construction is dependent on the structure of
A, B and the topology of ∆ (the framework used to
describe the disturbance set ∆ will be the polytopic one).

The exact computation of the mRPI set is assured only un-
der restrictive assumptions of nilpotent system dynamics
for the subsystem affected by the disturbances (Mayne and
Schroeder, 1997). In Hirata and Ohta (2003) a recursive
procedure is proposed to find an ǫ-outer approximation
of the mRPI set. In Raković et al. (2005) an improved
algorithm provides the maximal number of iterations for
the obtention of the outer approximation for a given ǫ.

In the following we state the results in the general case
where (although not necessarily) it is allowed for 0 /∈ ∆. It
will be shown that a certified ǫ-outer approximation can
be obtained using a contractive procedure starting from
an initial RPI set. This initial set can be obtained upon
ultimate bounds, for example using the results provided
in the next theorem. In the sequel, inequalities between
vectors are to be interpreted componentwise.

Theorem 1. Consider the system (6), let A = V ΛV −1 be
the Jordan decomposition of A and consider a bounding
box for the set ∆. If this bounding box is described by the
vector δ̄ which satisfies |δ| ≤ δ̄, ∀δ ∈ ∆ then the set:

Φ0 =
{

x ∈ R
n :

∣
∣V −1 x

∣
∣ ≤ (I − |Λ|)−1

∣
∣V −1B

∣
∣ δ̄

}
, (7)

is robust positively invariant (RPI).
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Dynamics Reference Model Tracking Error

Plant

Σ
x+ = AΣx + BΣu + EΣw x

+

ref
= AΣxref + BΣuref

z
+

= x
+

− x
+

ref

= AΣz + BΣ(u − uref
︸ ︷︷ ︸

v

) + EΣw

Sensors

Si(i = 1, . . . , N)

ξ
+

i
= Asi

ξi + Bsi
CΣx,

yi = Csi
ξi + ηi

ξ
+

i,ref
= Asi

ξi,ref + Bsi
CΣxref

ζ
+

i
= ξ

+

i
− ξ

+

i,ref

= Asi
ζi + Bsi

CΣz

Estimators

Fi(i = 1, . . . , N)

[
x̂
+

i

ξ̂
+

i

]

=

[
AΣ −LiCsi

Bsi
CΣ Asi

− Lsi
Csi

]

︸ ︷︷ ︸

ALi

[
x̂i

ξ̂i

]

+

+

[
BΣ

0

]

u +

[
Li

Lsi

]

yi

[
x̂i,ref

ξ̂i,ref

]

=

[
xref

ξi,ref

] [
ẑi

ζ̂i

]

=

[
x̂i

ξ̂i

]

−

[
x̂i,ref

ξ̂i,ref

]

Table 1. Plant, sensor and estimator models. The tracking error in each case is given with respect
to the state of the corresponding reference model. (+ denotes the successor state)

S1

S2

SN

F1

F2

FN
+

+

+

+

+

+
[ ]ξ1

[ ]ξ2

[ ]ξN

S [x]

w

Cx

η1

η2

ηN

yN

y2

y1

u

u

u

u

[ ]ξ1

^

x1
^

[ ]ξ2

^

x2

^

[ ]ξN

^
xN

^
[ ]ξN, ref

xN, ref

[ ]ξ2, ref

x2, ref

[ ]ξ1, ref

x1, ref

[ ]ζ1

^

z1
^

[ ]ζ2

^

z2

^

[ ]ζN

^
zN

^

Switching
Control

{

E
s
ti
m

a
ti
o

n
s

uref

Plant

+

+

+

-

-

-

^

^

^

^

^

^

Fig. 1. Configuration of the multisensor scheme with the plant Σ, sensors Si (i = 1, . . . , N), estimators Fi (i = 1, . . . , N)
and the switching control block (fault tolerant selection of the sensor-estimator pairs).

In order to refine this invariant set, a sequence of sets
can be recursively built by considering the Minkowski
sum between the image of an RPI set through the linear
transformation A and the polyhedral set B∆:

Φk+1 = AΦk ⊕B∆ (8)

The definition (8) of the sequence Φk preserves the invari-
ance properties.

Theorem 2. Let Φ0 be as defined in Theorem 1. Then
the sequence Φk, ∀k ∈ N, satisfies Φk+1 ⊂ Φk, and Φk

is convex, compact and an RPI set with respect to (6).

Remark 3. The initial set Φ0 in the set recursion (8) can
be in fact any RPI set for the dynamics (6). Theorem 1
provides a simple and direct way of obtaining the initial
condition using ultimate bounds (7), in view of an algo-
rithmic implementation.

Our next theorem shows that the limiting sequence ob-
tained from (8) will lead to an approximation of the mRPI.
Indeed, let Ω be the mRPI set, defined as the limit of all the
possible trajectories of (6). Equivalently (see Raković et al.
(2005)) the mRPI set can be described as Ω = lim

k→∞
Ωk

with

Ωk =

k⊕

i=0

AiB∆ (9)

Theorem 4. Φk → Ω for k →∞.

The following theorem uses the set recursion (8) to obtain
outer ǫ-approximations of the mRPI set Ω

Theorem 5. For all ǫ > 0 there exists an s ∈ N
+ such that

the following RPI outer ǫ-approximation exists:

Ω ⊂ Φs+1 ⊂ Ω⊕ B
n
p (ǫ) (10)

The previous theorems show that iterating the set con-
struction in (8) a contractive refinement of the invariant
set obtained using ultimate bounds, Φ0, can be found.
Moreover, the theorems show that the set sequence ob-
tained with (8) converges to the minimal positive invariant
set Ω and that the maximal number of iterations needed
to find an ǫ-approximation can be computed a priori, thus
providing an effective stopping criterion.

Remark 6. Observing that the intersection of RPI sets is
an RPI set, an improved ǫ-approximation can be obtained
by working in parallel with a contractive and an expansive
algorithm. For the case 0 ∈ int(∆) the presented technique
and the one in Raković et al. (2005) can be used to provide,
in a fix number of steps, a better ǫ-approximation.

The construction of the approximation of the mRPI set is
summarised in the following algorithm.

Algorithm 1: Approximation of the mRPI set
Input arguments: The pair (A, B), the disturbance set ∆
and the scalar ǫ > 0.
Output: The RPI ǫ-approximation of the mRPI set.

1) Compute the Jordan decomposition of A;
2) Build the initial RPI set Φ0 using ultimate bounds (7);
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3) Find s, such that As+1Φ0 ⊂ B
n
p (ǫ/2);

4) For k = 1 to k = s + 1

compute the set Φk using (8).

3.2 Switching between sets of disturbances

In the framework of the multisensor fault tolerant control
systems that will be explained below, in Section 4, the
case of arbitrary switches between N different sets of
disturbances has to be considered, namely:

x+ = Ax + Blδl

δl ∈ ∆l, l ∈ {1, . . . , N}
(11)

The mRPI set is, in this case, in general nonconvex. In
order to obtain a convex RPI approximation, a certain
degree of conservativeness has to be introduced by con-
sidering the convex hull of the sets of disturbances. This
leads to a linear model similar to (6), that is:

x+ = Ax + ν, ν ∈ ∆
∆ = Conv.Hull{B1∆1, . . . , BN∆N}

(12)

The construction of a refined RPI set can follow the lines
presented in the previous subsection.

3.3 mRPI with inclusion preserving

Consider again the discrete-time LTI systems subject to
disturbance:

x+ = Ax + Bδ (13)

with A strictly stable and δ ∈ ∆ a polytopic set. Also
consider a given bounded set P ⊂ IRn which can be
interpreted as the region where the state evolution is
initiated. Following the ideas of the previous subsections,
the construction of an RPI approximation for the minimal
RPI set which assures the inclusion of P will be sketched.

In order to use a recursive procedure, an initial RPI set
Ψ0 with the desired property Ψ0 ⊃ P has to be devised.
The set Φ0 constructed using (7) does not necessarily
satisfy the inclusion but it has the auxiliary property that
0 ∈ int(Φ0). Using this property and the scaling factor:

µ∗ = µ∗(Φ0, P ) = min
µ≥1

µ

P ⊂ µΦ0

(14)

the next result is available.

Proposition 7. Ψ0 = µ∗Φ0 is a robust positive invariant
set for (13) and P ⊂ Ψ0.

In order to refine recursively this RPI set while preserving
the inclusion, the following sequence is considered:

Ψk+1 = Conv.Hull {P, AΨk ⊕B∆} (15)

Theorem 8. Ψk+1 ⊂ Ψk and P ⊂ Ψk, ∀k ∈ N . If Φ0

is bounded then Ψk is convex, compact and an RPI set
for (13).

Denoting ΩP the minimal RPI set that preserves the
inclusion P ⊂ ΩP , and using the fact that the mRPI set
Ω is an attractor for the trajectories of (13), it follows
that ΩP can be described explicitly as the union of all the
trajectories starting inside P and leading to Ω:

ΩP = P

∞⋃

i=0






Ai+1P

i⊕

j=0

AjB∆






∪ Ω (16)

As it can be seen from (16), ΩP may in general be
nonconvex. Consider now the set:

Ω̄P = Conv.Hull






P

∞⋃

i=0






Ai+1P

i⊕

j=0

AjB∆






∪ Ω






,

(17)
then, it can be easily shown (from the robust pos-
itive invariance of ΩP and the convexity of Ω̄P =
Conv.Hull{ΩP}) that Ω̄P is an RPI set. In fact, Ω̄P is
the minimal convex RPI set that preserves the inclusion
P ⊂ Ω̄P .

Theorem 9. Ψk → Ω̄P for k →∞.

The following result proves that an ǫ-approximation for
Ω̄P can be found in a finite number of iterations.

Theorem 10. For all ǫ > 0 there exists an s ∈ N
+ such

that the following RPI outer ǫ-approximation exists:

Ω̄P ⊂ Ψs+1 ⊂ Ω̄P ⊕ B
n
p (ǫ) (18)

4. SWITCHING CONTROL STRATEGY

In this section we use the invariant sets constructed in the
preceding sections to define a switching control strategy
with fault-tolerance guarantees for the multisensor scheme
described in Section 2.

4.1 Invariant sets for estimation errors and sensor reference
signals

The polyhedral sets that describe the disturbances and
the measurement noises, W , Ni and NF

i , are assumed
to contain the origin in their interiors. These sets can be
confined inside symmetric bounding boxes:

|w| ≤ w̄; |ηi| ≤ η̄i; |η
F
i | ≤ η̄F

i ; (19)

where w̄, etc., are vectors of bounds with positive elements.

Recall from (4) that the estimation error dynamics during
healthy sensor operation satisfy:

[
x̃+

i

ξ̃+

i

]

= ALi

[
x̃i

ξ̃i

]

+

[
EΣ −Li

0 −Lsi

] [
w
ηi

]

(20)

with the matrices ALi
strictly stable and with input [w ηi]

′

bounded as in (19).

We begin by computing, using (7), the initial invariant set
that corresponds to the dynamics (20) and bounds (19).
Then, iterating (8) for system (20) and sets W, Ni accord-
ing to Algorithm 1, we can obtain, for a given ǫ > 0:

S̃i = RPI ǫ-approximation of the mRPI set for the i-th
estimation error under healthy sensor operation.

The sensor reference signals ξi,ref (see Table 1) satisfy:

ξ+

i,ref = Asi
ξi,ref + Bsi

CΣxref (21)

where, as explained in Section 2.2, the state of the refer-
ence model is contained in a set Xref ⊂ IRn determined
by the constraints on the reference input uref (notice that
it is possible that 0 /∈ Xref , and that this is allowed in
Algorithm 1). Confining Xref inside a symmetric box we
can write:

|xref | ≤ x̄ref (22)

The invariant set construction procedure can be initialized
using (7) for the dynamics (21) and bounds (22). Then,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1227



iterating (8) for system (21) and set Xref we obtain, using
Algorithm 1:

Si,ref = RPI ǫ-approximation of the mRPI set for the i-th
sensor reference signal.

The sets S̃i and Si,ref defined above will be used in
the following subsection to compute refined invariant sets
for the tracking error dynamics under healthy and faulty
operation.

4.2 Optimal control upon healthy estimations

Let us now consider an optimal control problem for the
tracking error system (AΣ, BΣ) (see Table 1), with Q > 0
and R > 0 as the weighting parameters for the tracking
error states and control effort respectively. By solving the
associated Riccati equation one can obtain the optimal
linear gain K and cost function matrix P as follows:

K = (R + B′
ΣPBΣ)−1B′

ΣPAΣ (23)

P = A′
ΣPAΣ + Q−K ′(R + B′

ΣPBΣ)K (24)

Consider the control law:

u = uref −KẑUP
l (25)

where ẑUP
l is the estimation “update” for the l-th sensor,

supposed healthy:

ẑUP
l = x̂UP

l − xref = x̂l + Ml(yl − Csl
ξ̂l)− xref (26)

The update matrix Ml is obtained from:

[
AΣ 0

Bsl
C Asl

] [
Ml

Msl

]

=

[
Ll

Lsl

]

(27)

Assuming that the control law (25) can be based on
information from any sensor l ∈ {1, . . . , N} which has
been functioning without failure for sufficiently long time,
we have the following closed-loop dynamics for the plant
tracking error:

z+ = (AΣ −BΣK)
︸ ︷︷ ︸

Az

z+

+ [ EΣ BΣK −BΣKMlCsl
−BΣKMl ]

︸ ︷︷ ︸

Bz






w
x̃

ξ̃l

ηl






(28)

The above corresponds to a system of the type (12), which
switches between different sets of disturbances. Using the
arguments in Subsection 3.2 and adapting Algorithm 1, we
can construct, for the dynamics (28) and the sets W, Ni, S̃l

with l ∈ {1, . . . , N}, the set:

Sz = RPI ǫ-approximation of the mRPI set for the plant
tracking error.

Subsequently using the set Sz for each sensor dynamics as
described in Table 1:

ζ+

i = Asi
ζi + Bsi

Cz (29)

we obtain by direct application of Algorithm 1:

Sζi
= RPI ǫ-approximation of the mRPI set for the i-th

sensor tracking error.

For the estimated tracking error corresponding to healthy
sensors, and assuming that only healthy sensors are used
to implement the control law, the closed-loop dynamics
can be written explicitly as:

[
ẑ+

i

ζ̂+
i

]

= ALi

[
ẑi

ζ̂i

]

+ Bliνli (30)

with

Bli =

[
−BΣK BΣK −BΣKMlCsl

−BΣKMl LiCsi
Li

0 0 0 0 Lsi
Csi

Lsi

]

νli =
[

z′ x̃′
l ξ̃′l η′

l ζ′i η′
i

]′
(31)

Considering (30) and combining all the intermediate in-

variant sets Sz , S̃l, Nl, Sζi
, Ni we can obtain by means of

Algorithm 1 (using as input argument the convex hull of
the possible sets of disturbances):

Ŝ
i
= RPI ǫ-approximation of the mRPI set for the esti-
mated tracking error of the i-th healthy sensor.

In the case of a fault as described in (2), and assuming that
only healthy sensors are used to implement the control law,
the closed-loop dynamics of the estimated tracking error
for the j-th failed sensor can be shown to become:

[
ẑ+

j

ζ̂+

j

]

= ALj

[
ẑj

ζ̂j

]

+ Bljν
F
lj (32)

with

νF
lj =

[

z′ x̃′
l ξ̃′l η′

l −ξF
j,ref

′
ηF

j

′
]′

(33)

and Blj as in (30).

Proceeding as for the healthy sensors’ tracking error, by
replacing the sets Sζi

, Ni by −Sj,ref and NF
j , we can

construct the set:

ŜF
j

= RPI ǫ-approximation of the mRPI set for the esti-
mated tracking error of the j-th faulty sensor,

upon an algorithm which preserves the inclusion ŜF
j
⊃ Ŝj ,

as explained in Subection 3.3.

4.3 Switching strategy and fault tolerance

The optimal control law (25) was based on the assumption
that the estimation update is provided by a healthy sensor.
The way of switching among these estimation updates
corresponding to healthy sensors characterises the stability
and fault tolerance properties of the multisensor control
scheme. The following result establishes these properties.

Proposition 11. Suppose the following assumptions are
fulfilled:

(1) At any time instant, at least one of the following two
situations is true:
a) all sensors are healthy;
b) at least one sensor is healthy; in addition, all healthy

sensors have estimation errors inside the invariant set
S̃i and at least one healthy lth sensor has the states
of the corresponding estimated tracking error in the
invariant set Ŝl.

(2) (ẑUP
i )′P ẑUP

i < (ẑUP
j )′P ẑUP

j for all i, j = 1, . . . , N, i 6=
j and

ẑUP
i ∈ [ I −MiCsi ] Ŝi ⊕MiNi ⊕MiCsi

Sζi
(34)

ẑUP
j ∈ [ I −MiCsi ] ŜF

i ⊕MiN
F
i ⊕MiCsi

Sj,ref (35)
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where P is the cost function matrix defined in (24).

(3) ŜF
i ⊃ Ŝi for all i = 1, . . . , N .

Then the closed-loop system with:

u = uref −K arg min
zUP

l

(ẑUP
l )′P ẑUP

l (36)

is stable and fault tolerant.

5. EXAMPLE

Consider the longitudinal control problem for a car fol-
lowing scenario as described in Martinez and Canudas
de Wit (2004) and revisited in Seron et al. (2008). The
interdistance dynamics are represented by a discretised
double integrator model:

A =

[
1 0.1
0 1

]

; B =

[
0
1

]

; E =

[
0

0.1

]

; C = [ 0 1 ] (37)

We consider two sensors with dynamics given by the linear
models in Table 1 with

As1
= 0.6065, Bs1

= 0.5, Cs1
= 0.7869 (38)

As2
= 0.8187, Bs2

= 0.5, Cs2
= 0.3625 (39)

The disturbances and measurement noises are bounded as

|w| ≤ 0.02, |ηi| ≤ 0.1, |ηF
i | ≤ 0.1, i = 1, 2 (40)

In Seron et al. (2008) it was shown that a switching scheme
as described in Section 2 and based on an optimal control
law designed with weights

Q =

[
0.1007 0

0 6.3187

]

; R = 7.2598 (41)

in (23)–(24), can stabilise the system and provide fault
tolerance guarantees for reference signals elementwise
bounded as [

33
−10

]

≤ xref ≤

[
75

0.08

]

(42)

The fault tolerance conditions given in item (2) of Propo-
sition 11 can be interpreted geometrically as a separation
in the ẑUP

i space between the healthy and faulty invariant
sets SH

i and SF
j . Note, however, that when the range of

the reference signals is increased to:
[

24
−20

]

≤ xref ≤

[
100
5

]

(43)

the separation using the ultimate bound invariant sets does
not hold anymore, as it can be observed in Figure 2.

Fig. 2. Invariant sets based on ultimate bounds which
fail to assure separation between the healthy and the
faulty behaviour.

On the other hand, using the refined invariant set con-
struction presented in this paper, where arbitrarily precise

ǫ-approximations of the mRPI sets can be computed, it can
be shown that the stability under fault of the switching
scheme is preserved for the enlarged range of reference
signals (43). The separation using these sets is illustrated
in Figure 3.

Fig. 3. Refined invariant sets assuring the separation
between the healthy and the faulty behaviour.

6. CONCLUSIONS

This paper has explored a multisensor switching control
scheme, focusing on a deterministic construction of invari-
ant sets in order to obtain guarantees of fault tolerant func-
tioning. Unfortunately, the construction of the minimal
robust positive invariant sets is not finitely determined,
not even for linear systems with regular disturbance sets.
New contractive procedures for the construction of ǫ-
approximations of these sets were proposed here with
several adaptations for the multisensor control scheme.
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