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Abstract: This paper considers a computational approach to obtain a reduced order model
for polynomial nonlinear systems. The approach is based on balancing generalized gramians of
polynomial systems and truncating the systems based on the balanced generalized gramians.
The approach utilizes sum of squares programming for its computational purposes.

1. INTRODUCTION

Model reduction by balanced truncation for linear systems
was introduced by Moore [1981]. This method is system-
atic on its construction of reduced model and very popular
among other reduction schemes for linear systems due
to its simplicity. On the other hand, there is no similar
systematic procedure of balanced truncation like in linear
systems which can be implemented for nonlinear systems
as the problem in nonlinear systems becomes more difficult
to understand and solve and it is still subject to further
research. However there exist several approaches in the
literature dealing with nonlinear systems. In particular,
a mechanism for balancing nonlinear systems is given by
Scherpen [1993] and an empirical approach for truncating
nonlinear systems is given by Lall et al. [2002].

One of the main advantage of the empirical approach intro-
duced in Lall et al. [2002] is that its computational scheme
to construct a reduced order model is not expensive as it
only requires linear matrix computations. Its limitation is
on the resulting reduced order model. The reduced model
is expected to work well within a working region of state
space as the method relies heavily on the snapshots of data.
In this case the quality of its reduced model depends on the
collection of data obtained through generating trajectories
of the original system.

On the other hand the approach in Scherpen [1993] does
not depend on the snapshots of data. The method first
computes a controllability function and an observability
function from Hamilton-Jacobi equations. In general those
functions are not entirely balanced. By seeking a coordi-
nate transformation the original system is made balance
to some extent of definition. A reduced order model is ob-
tained by truncating the balanced system. The drawback
of this method is on the computation of the controllability
and observability functions which in most cases are very
difficult.

One way to avoid this problem is introduced in Prajna
& Sandberg [2005] where the authors consider general-
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ized controllability and observability functions which are
obtained through Hamilton-Jacobi inequalities instead of
Hamilton-Jacobi equalities. Despite the fact that the trun-
cation scheme based on these generalized functions will not
guarantee to give a stable reduced order model for a stable
original system, the advantage of this approach is that it
exploits the use of sum of squares programming (Parrilo
[2003]) to compute the generalized functions and thus is
amenable to computer solution in case the original system
to be reduced has polynomial vector fields. This approach
shows promising direction in developing computational
scheme for model reduction of polynomial systems. How-
ever, this approach still leaves an open problem on how to
balance the generalised functions which are non-quadratic.

This paper introduces an approach of balancing the
non-quadratic generalised functions which are obtained
through the same procedure in Prajna & Sandberg [2005].
In this case, we use another quadratic functions which
can be viewed as conservative version of non-quadratic
generalised functions. Instead of balancing the generalised
functions, we focus on the conservative quadratic functions
as the basis of performing truncation for polynomial non-
linear systems.

The following notation will be used throughout the paper.
The set of real numbers is denoted by R. The collection of
all real matrices of size n×m is denoted by R

n×m. The set
of polynomial in x with real coefficient is denoted by R [x] .
The superscript ′ stands for matrix transposition. A scalar
function w (x) is said to be positive definite if w (0) = 0
and w (x) > 0 for all x 6= 0. The notation ‖·‖ means the
Euclidean norm of the vector involved.

2. GENERALIZED FUNCTIONS

We consider polynomial nonlinear system in the form

ẋ= f(x) +B (x)u, (1a)

y= h (x) , (1b)

where x = [x1, . . . , xn]
T
∈ Dx ⊂ R

n is the state vector of
the system, u ∈ R

nu is the input to the system and y ∈ R
ny

is the output of the system. The functions f : Dx → R
n,
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g : Dx → R
n×nu and h : Dx → R

ny are polynomials in
x and therefore smooth. We assume that the origin of the
unforced system ẋ = f(x) is asymptotically stable on Dx.

We define two functions which characterize the minimum
energy of the input to reach particular state and the
minimum energy of the output generated by a particular
initial condition.

Definition 1. A positive definite function Wo (x) with
Wo (0) = 0 is an observability function to the system (1)
if it satisfies

∂Wo (x)

∂x
f (x) +

1

2
h′ (x) h (x) = 0 (2)

for all x ∈ Dx.

Definition 2. A positive definite function Wc (x) with
Wc (0) = 0 is a reachability function to the system (1)
if it satisfies

∂Wc (x)

∂x
f (x) +

1

2

∂Wc (x)

∂x
g (x) g (x)

′ ∂Wc (x)

∂x
= 0. (3)

for all x ∈ Dx.

The reachability function satisfies

Wc (x0) =
1

2

∫ 0

−∞

‖umin (t)‖
2
dt

where umin ∈ L2 (−∞, 0] , is the input with minimum
energy required for the system (1) with x (−∞) = 0 such
that x (0) = x0. The observability function satisfies

Wo (x0) =
1

2

∫ ∞

0

‖y (t)‖
2
dt

where y is the output of the system (1) with x (0) = x0
and u (t) = 0 for t ∈ [0,∞).

For more details on the existence of solution of Wo(x) and
Wc(x) the reader can consult Scherpen [1993]. As we move
to practicality we will encounter difficulty in computing
the observability and reachability functions as there is no
tractable computational scheme serving the purpose yet.
Instead of computing both functions for the purpose of
model reduction through balanced truncation, we consider
an approach where we use generalized observability and
rechability functions as introduced in Prajna & Sandberg
[2005].

Definition 3. A positive definite polynomial function Lo (x)
with Lo (0) = 0 is a generalized observability function to
the system (1) if it satisfies

∂Lo (x)

∂x
f (x) +

1

2
h′ (x) h (x) ≤ 0 (4)

for all x ∈ Dx.

Definition 4. A positive definite polynomial function Lc (x)
with Lc (0) = 0 is a generalized reachability function to the
system (1) if it satisfies

∂Lc (x)

∂x
f (x) +

∂Lc (x)

∂x
g (x)u−

1

2
u′u ≤ 0 (5)

for all x ∈ Dx and u ∈ R
nu .

The degree of polynomial generalized functions Lo (x) and
Lc (x) should not be less than two to guarantee positive
definiteness and being vanished at the origin.

Some properties pertaining to the generalized functions
are summarized as follows.

• A generalized observability function Lo (x) to the
system (1) satisfies

Lo (x) ≥ Wo (x)

for all x ∈ Dx.
• A generalized reachability function Lc (x) to the sys-
tem (1) satisfies

Lc (x) ≤ Wc (x)

for all x ∈ Dx.

It is important to note that there are many choices of
generalized functions which satisfy (4-5). A means to
classify a closer representation of the functions Lo (x)
and Lc (x) with the functions Wo (x) and Wc (x) is by
introducing

γopt = sup
06=x∈Dx

Wo (x)

Wc (x)
.

Then the generalized functions Lo (x) and Lc (x) which
satisfy (4-5) are computed such that

Lo (x) ≤ γLc (x) (6)

for all x ∈ Dx where γ > 0. Hence γ is an upper bound
for the gain γopt. In this case we minimize the constant γ
so that the upper bound is as tight as possible.

3. BALANCED TRUNCATION BASED ON
APPROXIMATE GENERALIZED FUNCTIONS

The generalized functions characterize the states, in the
domain of interest, which are weakly observable and reach-
able in the following ways. The states which have small
value of Lo (x) are considered to be less observable. The
states which have larger value of Lc (x) are considered to
be less reachable.

Now let us consider the class of input with
∫ T

0

‖u (t) ‖2dt ≤ Ku,

u (t) = 0 ∀t > T,

for all T ∈ [0,∞) . Suppose that we generate the trajec-
tories from the origin with this class of input then for
t ∈ [0, T ] all the trajectories of the system will be inside of
the set

Ro =

{

x ∈ R
n |Lc (x) ≤

1

2
Ku

}

.

It is easy to see that the trajectories will also remain in
Ro for t ≥ T because Ro is a positively invariant set
for zero input. Hence for the given class of input with
initial condition at the origin all the trajectories of the
system will be inside of Ro. Then for any x ∈ Ro we have
Lo (x) ≤

1
2γKu.

For the reachability set

Rc =

{

x ∈ R
n| Lc (x) ≤

1

2
Ku

}

which is compact a smaller value of Lc (x) means that the
state x is easier to reach for the given admissible input.
For the observability set

Ro =

{

x ∈ R
n| Lo (x) ≤

1

2
γKu

}

which is compact a larger value of Lo (x) means that the
state x is easier to observe from the output. In this paper,
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instead of dealing with the sets Rc and Ro to analyse the
most/least important part of the system which is reachable
and observable, we will consider another sets Ωc and Ωo as
the estimate of the reachability set Rc and observability
set Ro, respectively, in a way that Rc ⊆ Ωc and Ro ⊆ Ωo

where the sets Ωc and Ωo are to be as close as possible to
the sets Rc and Ro, respectively. The sets Ωc and Ωo will
be characterised by quadratic functions L̂o (x) and L̂c (x)
such that

Ωc =

{

x ∈ R
n| L̂c (x) =

1

2
x′Y −1x ≤ 1

}

,

Ωo =

{

x ∈ R
n| L̂o (x) =

1

2
x′Xx ≤ 1

}

where X, Y ≻ 0 are symmetric matrices.

Though the sets Ωc and Ωo are more conservative they
are easier to analyse because the sets are in the form of
hyperellipsoid. It is easy to see from the principal axes
of the hyperellipsoid Ωc that a longer axis represent a
more reachable part of the state. On the other hand,
from the principal axes of the hyperellipsoid Ωo, we can
see that a shorter axis represent a more observable part
of the state. Equivalently, we can analyse the length of
the axes from the eigenvalues of matrices Y −1 and X .
The associated eigenvector of a smaller eigenvalues of
matrix Y −1 represents the direction of a longer axis of
hyperellipsoidal set Ωc. (Or equivalently, the associated
eigenvector of a larger eigenvalues of matrix Y represents
the direction of a longer axis of hyperellipsoidal set Ωc.)
Similarly, the associated eigenvector of a larger eigenvalues
of matrix X represents the direction of a shorter axis of
hyperellipsoidal set Ωo. Thus, the associated eigenvector
of a larger eigenvalues of matrices Y and X represent the
direction of the states which are more strongly reachable
and observable, respectively.

To satisfy the containment Rc ⊆ Ωc and Ro ⊆ Ωo we
use the following sufficient conditions which are easy to
implement numerically.

Proposition 5. Let L (x) be a positive definite polynomial
function with L (0) = 0. Let

R = {x ∈ Dx| L (x) ≤ ǫ} ,

Ω =

{

x ∈ Dx|
1

2
x′Φx ≤ 1

}

,

for positive constant ǫ ∈ R and positive definite matrix
Φ = Φ′ ∈ R

n×n. If there exists a positive definite
polynomial s (x) such that

1−
1

2
x′Φx+ s (x) (L (x)− ǫ) ≥ 0 (7)

for all x ∈ Dx then R ⊆ Ω.

Proof. For any x ∈ R we have L (x) − ǫ ≤ 0. It follows
that 0 ≤ 1 − 1

2x
′Φx + s (x) (L (x)− ǫ) ≤ 1 − 1

2x
′Φx or

x ∈ Ω. 2

To reduce conservatism of the set Ω we require that the
set R should be contained in as small Ω as possible.

We now consider a change of basis x = Γz where Γ is given
by

Γ = Y
1

2 US−
1

2

where matrices U and S are obtained from the singular
value decomposition of

Y
1

2 XY
1

2 = US2U ′.

It is easy to see that

Γ′XΓ =
(

S−
1

2 U ′Y
1

2

)

X
(

Y
1

2 US−
1

2

)

= S−
1

2 U ′US2U ′US−
1

2 = S

and

Γ−1Y
(

Γ−1
)′
=

(

S
1

2 U ′Y −
1

2

)

Y
(

Y −
1

2 US
1

2

)

= S.

With respect to the change of basis the system (1) can be
transformed into

ż = f̂(z) + B̂ (z)u, (8a)

y = ĥ (z) , (8b)

where

f̂(z) = Γ−1f(Γz), ĝ (z) = Γ−1g (Γz) , ĥ (z) = h (Γz) .

The generalized functions for the system (8) are given as
follows.

Proposition 6. For a coordinate transformation x = Γz,

which brings the system (1) into (8) we define L̂o (z) =

Lo (Γz) and L̂c (z) = Lc (Γz) . Then L̂o (z) and L̂c (z)
are generalized observability and reachability functions,
respectively for (8).

Proof. For reachability

φc (x) =
∂L̂c (z)

∂z

(

f̂(z) + ĝ (z)u
)

−
1

2
u′u

=

(

∂Lc (ν)

∂ν

∂ν

∂z

(

Γ−1f (Γz) + Γ−1g (Γz)u
)

)

ν=Γz

−
1

2
u′u

=
∂Lc (ν)

∂ν
f (ν) +

∂Lc (ν)

∂ν
g (ν) u−

1

2
u′u ≤ 0.

For observability

φo (x) =
∂L̂o (z)

∂z
f̂(z) +

1

2
ĥ (z)

′
ĥ (z)

=

(

∂Lo (ν)

∂ν

∂ν

∂z
Γ−1f (Γz)

)

ν=Γz

+
1

2
h (Γz)′ h (Γz)

=
∂Lo (ν)

∂ν
f (ν) +

1

2
h (ν)

′
h (ν) ≤ 0.

2

Furthermore it is easy to see that

0 ≤ 1−
1

2
x′Y −1x+ sc (x)

(

Lc (x)−
1

2
Ku

)

= 1−
1

2
zΓ′Y −1Γz + ŝc (z)

(

L̂c (z)−
1

2
Ku

)

= 1−
1

2
zS−1z + ŝc (z)

(

L̂c (z)−
1

2
Ku

)

where ŝc (z) = sc (Γz) are SOS in z and

0 ≤ 1−
1

2
x′Xx+ so (x)

(

Lo (x)−
1

2
γKu

)

= 1−
1

2
z′Γ′XΓz + ŝo (z)

(

L̂o (z)−
1

2
γKu

)

= 1−
1

2
z′Sz + ŝo (z)

(

L̂o (z)−
1

2
γKu

)
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where ŝo (z) = so (Γz) are SOS in z. Using the same
argument like in Proposition 5 it follows that

{

z ∈ R
n|L̂c (z) ≤

1

2
Ku

}

⊆

{

z ∈ R
n|
1

2
zS−1z ≤ 1

}

,

{

z ∈ R
n|L̂o (z) ≤

1

2
γKu

}

⊆

{

z ∈ R
n|
1

2
z′Sz ≤ 1

}

,

which indicate that the transformed system (8) have a
balanced representation in that the states which are more
strongly reachable and observable are more or less in the
same direction. In this case the associated eigenvector of
a larger eigenvalue of matrix S represent the direction
of the states which is both more strongly reachable and
observable.

Next, we partition the part of size n into two parts of size
nr and n− nr with nr < n based on the following

z =
[

z′[1] z′[2]
]′

,

Γ = [ Γ1 Γ2 ] ,

Γ−1 = [ Υ1 Υ2 ] .

By removing the weakly reachable and observable part z[2]
we have the dynamic of our new reduced model xr = z[1]
of dimension nr given by

ẋr = fr (xr) +Br (xr)u, (9a)

yr = hr (xr) , (9b)

where

fr (xr) = Υ1f (Γ1xr) , Br (xr) = Υ1B (Γ1xr) ,

hr (xr) = h (Γ1xr) .

To sum up, we have obtained a reduced order model (9)
for the system (1) where the least reachable and observable
parts in (1) are removed while the most influential parts
are preserved in (9).

4. SUM OF SQUARES FORMULATION

We define a polynomial in the form

p(x) = Σ
i
p2i (x)

as a sum of squares (SOS) polynomial when pi(x) are
polynomials. It is obvious that any polynomial which
can be expressed as an SOS of other polynomials is
nonnegative everywhere. One way to express an SOS
equivalently is by

p(x) = z′(x)Mz(x)

where M is a positive semidefinite symmetric matrix
and z (x) is monomial of degree less than or equal to
half of the degree of p(x). For the same monomial z (x)
it might be possible to have similar representation with
different M with M being not positive semidefinite. Thus
if the intersection of {M ∈ Sn|p(x) = z′(x)Mz(x)} with
{M ∈ Sn|M � 0} is not empty then p(x) = z′(x)Mz(x)
is an SOS. Within this direction, in Parrilo [2003] the
author showed that determining whether a polynomial
can be expressed as an SOS is an LMI problem. Hence,
the problem of testing whether a polynomial is sum of
squares becomes relatively easy as it can be computed
using semidefinite programming. In view of the fact that
verifying nonnegativity of a polynomial is very difficult,
throughout the paper, we will relax most polynomial in-
equalities by replacing nonnegativity with SOS condition.

Since we are concerned with polynomial systems, compu-
tation of the generalized functions Lo (x) and Lc (x) can be
done efficiently by relaxing the left hand side of inequalities
(4-5) being SOS. For the case Dx = R

n, computational
scheme forthe generalized functions can be summarized as
follows.

• Minimize γ ≥ 0 and find positive definite polynomials
Lo (x) and Lc (x) with Lo (0) = 0 and Lc (0) = 0 such
that

−
∂Lo (x)

∂x
f (x)−

1

2
h (x)′ h (x) is SOS, (10)

−
∂Lc (x)

∂x
f (x)−

∂Lc (x)

∂x
g (x) u+

1

2
u′u ≤ 0 is SOS,

(11)

γLc (x)− Lo (x) is SOS. (12)

For containment in Proposition 5 where the set R should
be contained in as small Ω as possible we can maximize the
trace of matrix Φ so that the volume of Ω is minimized.
Hence, we can summarize our computational approach to
get the sets Ωc and Ωo as follows.

(1) Maximize trace Y −1 such that

1−
1

2
x′Y −1x+ sc (x)

(

Lc (x)−
1

2
Ku

)

is SOS

where sc (x) is a sum of squares.
(2) Maximize trace X such that

1−
1

2
x′Xx+ so (x)

(

Lo (x)−
1

2
γKu

)

is SOS

where so (x) is a sum of squares.

For the case where Dx is a semialgebraic set given by

Dx = {x ∈ R
n| pi (x) ≥ 0; i = 1, . . . , m}

where pi ∈ R [x] we can use the following relaxation which
is deduced from the Positivestellensatz in Stengle [1974].

Proposition 7. If there exists sum of squares si (x) for
i = 1, . . . , m such that

q (x)− p1 (x) s1 (x)− . . .− pm (x) sm (x) is sum of squares

then q (x) ≥ 0 ∀x ∈ Dx.

This proposition can be easily applied for feasibility test
of (4-5), (6) and (7) using sum of squares programming.

5. EXAMPLE

In this section, two numerical examples are given to
illustrate the applicability of the proposed approach.

5.1 Example 1

Consider the system from Siahaan et al. [2007]

ẋ1 = −x2 − x3 − x1(x
2
1 + x22 + x23 + 1),

ẋ2 = x1 − x3 − x2(x
2
1 + x22 + x23 + 1),

ẋ3 = x1 + x2 − x3(x
2
1 + x22 + x23 + 1) + u,

y = x1.

We want to compute a reduced model of order two for
the global case Dx = R

3. Feasibility tests are carried out
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Fig. 1. Response of the system in Example 1 to the input
u(t) = e−1.5tsin(5t)

Fig. 2. Response of the system in Example 2 to the
sinusoidal input u(t) = 2.5sin(0.25t)

using SOS programming tool Yalmip of Lofberg [2004].
The method gives transformation Γ

Γ =

[

0.3128 −0.2998 0.4152
0.8310 0.3536 −0.0721
−0.9193 1.1060 0.7230

]

and truncation of the transformed system gives

ẋr1 = −1.8505xr2 − xr1

(

1.6335x2r1 − 1.6334xr1xr2

+1.4382x2r2 + 0.0799
)

− 0.1602u,

ẋr2 = 1.4356xr1 − xr2

(

1.6335x2r1 − 1.6334xr1xr2

+1.4382x2r2 + 1.0699
)

+ 0.4703u,

yr = 0.3128xr1 − 0.2998xr2.

The response of the system and the reduced model to in-
puts u = e−1.5tsin(5t) can be seen in Fig. 1. Qualitatively,
our scheme outperforms the one in Siahaan et al. [2007].

5.2 Example 2

The following system is taken from Prajna & Sandberg
[2005]

ẋ1 = x2 − x1x2 − 3x2x3 − x1x4,

ẋ2 = x3 + 0.5x1x2 + 0.5x2x3 + x1x4,

ẋ3 = x4 + 0.5x1x2 + 0.5x2x3 − 0.25x1x4,

ẋ4 = −x1 − 3x2 − 5x3 − 7x4 − 3x1x2 + 0.1x2x3
+ 0.3x1x4 + u,

y = x1,

where Dx =
{

x ∈ R
4| 12− ‖x‖2 ≥ 0

}

. For this system we
can compute quadratic generalized functions but for higher

order of generalized functions we can get a lower value of γ
which is an upper bound for the Hankel norm. We compute
generalized functions of order six with bound γ = 1.2.
Choosing higher order than six will not give significant
improvement of bound γ. By applying the truncation
scheme we obtain a reduced model of order three whose
response to the sinusoidal input u(t) = 2.5sin(0.25t) can
be seen in Fig. 2.

6. CONCLUDING REMARKS

This paper introduces a novel approach to balancing a
polynomial nonlinear system and truncates the balanced
representation to obtain a reduced order model. The
method utilizes the power of sum of squares programming
which is efficient numerically. Future investigation should
focus on the structure preservation because it is not yet
clear what kind of property, in general, the reduced order
model preserves from the original system.
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