
Parametric Approximation of Piecewise

Quadratic Value Functions for the Control

of Complex Systems

Hussam Nosair ∗ Jong Min Lee ∗,1

∗ Chemical and Materials Engineering, University of Alberta,
Edmonton, AB, Canada T6G 2G6.

Abstract: We present a new technique for approximate dynamic programming that is suitable
for control of large-scale systems with complex dynamics. The approach improves closed-
loop performances from a starting control policy by incrementally updating a value function
on-line based on the Bellman’s optimality equation. The value function is approximated as
a map between the state and the associated cost-to-go value to circumvent the “curse-of-
dimensionality.” The approximation method uses piecewise quadratic representations of the
value function, and can considerably reduce the computational requirement compared to the
instance-based methods, which store all the historical data and retrieve them for calculating
optimal control actions. Hybrid and nonlinear examples are included to demonstrate the
applicability of the approach.

1. INTRODUCTION

With complex systems increasingly being introduced in the
process industries, system complexity is currently a major
challenge for process control. Among them are nonlinear
systems, multi-scale systems, and hybrid systems that
include both continuous and discrete states.

Model predictive control (MPC) has become the most
popular control technique for multivariable systems with
constraints since its arrival in the 1970s. It uses a dynamic
model to predict the future output behavior and compute
a sequence of control moves that minimize the output devi-
ation from a set-point trajectory. Feedback is incorporated
by observing the system’s response, and the optimization
is successively repeated at each sample time.

Despite its growing number of novel applications in nontra-
ditional areas such as aeronautics, the automotive industry
and medicine [Morris, 2003], there are several major con-
cerns in applying MPC to complex systems. First, it is dif-
ficult to build an accurate dynamic model. Second, MPC
requires the solution of a nonlinear or a mixed-integer
program where the number of optimization variables, i.e.,
control moves, increases with the size of control horizon.
Third, the open-loop optimization scheme of MPC cannot
take into account the future interplay between uncertainty
and estimation in the optimal control calculation. Modified
MPCs with different worst case formulations still lead
to overly conservative feedback control law for uncertain
systems [Lee and Yu, 1997].

To address the inherent MPC’s limitations, Lee and
coworkers [Lee and Lee, 2005, Lee et al., 2006] proposed an
approximate dynamic programming (ADP)-based strategy
suited for process control problems. It takes advantage of
the dynamic programming (DP)’s closed-loop optimiza-

1 Corresponding author. (Tel: +1-780-492-8092; e-mail: jongmin.lee
@ualberta.ca)

tion and potential reduction of on-line computational bur-
den while circumventing Bellman’s “curse of dimensional-
ity,” the exponential increase in computational and storage
requirements associated with addition of extra dimensions
to the state space.

The proposed ADP strategy solves the Bellman’s optimal-
ity equation off-line for the state points sampled from
closed-loop simulations or experiments to estimate the
optimal value function, a map between a state and min-
imum achievable total cost starting from the state. Since
typical control problems involve a continuous state space,
a function approximator is used to estimate the “cost-to-
go” value for a given state. The ADP approach uses an
instance-based learning scheme, e.g., k-nearest neighbour
averaging, because it guarantees monotonic convergence of
the off-line iteration step [Gordon, 1995, Lee et al., 2006].

The instance-based approximator stores all the state-value
data in the memory and retrieves them to evaluate the
cost-to-go value for a state point when necessary. Two
critical issues in using such an approximator are the pro-
hibitive storage requirement and the computational bur-
den in searching the neighbours and averaging the associ-
ated values. In addition, the local averaging scheme makes
the optimization non-convex. Parametric approximation
can be an alternative approach, because it does not store
and retrieve the data in the optimization. Fitting a global
nonlinear function like a neural network, however, has been
shown to suffer from the instability of learning and non-
convexity of optimization [Gordon, 1995, Lee et al., 2006].

In this paper we present a novel approach for approxi-
mating the state and cost-to-go value map and utilizing
the approximate value function in a more computationally
amenable manner. We approximate the value function as
piecewise quadratic functions of the state. The rationale is
that complex dynamics can be well approximated as a set
of piecewise affine functions. With a linear dynamics and

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 3252 10.3182/20080706-5-KR-1001.3676

a quadratic stage-wise cost, the value function becomes
a quadratic function of the state. The optimization in
this formulation is convex, and only a small number of
parameters are required to encode the cost-to-go as a
function of the state.

In the proposed approach, we start with collecting closed-
loop data using existing suboptimal controllers. The data
points are clustered into subsets to each of which a
quadratic value function is fitted. The parameters of each
approximate value function is then “incrementally” up-
dated at each sample time while the control actions calcu-
lated from the approximate value function is implemented.
This can bring a significant improvement of control per-
formance even in the absence of a process model.

2. BACKGROUND

2.1 Dynamic programming and value function-based control

Consider a discrete-time dynamic system in the form of

x(k + 1) = f(x(k), u(k), e(k)) (1)

where x(k) is a state vector, u(k) is a manipulated input

vector, e(k) is some random disturbance at the kth sample
time, and f is a state transition function. We define the
cost function for an infinite horizon problem given an
initial state x(0) and control policy µ as follows:

Jµ(x)
△

= Eµ

[

∞
∑

k=0

αkφ(x(k), u(k)) |x(0) = x

]

∀x ∈ X

(2)
where α ∈ (0, 1) is a discount factor, φ is a single-stage
cost function, X is the set of all possible states, and Eµ is
the conditional expectation taken under the control policy
µ, which maps a state to a control action. The α-optimal
“value function” J∗ is then defined as

J∗(x)
△

= min
µ={u(0), u(1), ··· }

Jµ(x) ∀x ∈ X (3)

, which represents the minimum expected discounted cost
when starting from a state x and always following an
optimal control policy.

The optimal value function is unique and satisfies the
following Bellman equation [Bellman, 1957].

J∗(x) = min
u∈U

E [φ(x, u) + αJ∗(f(x, u, e))] ∀x ∈ X (4)

where the set of all possible actions is represented by U .
With the optimal value function, J∗(x), obtained from
the off-line calculation, one can solve on-line the following
single-stage optimal control problem, which is equivalent
to the infinite-horizon problem:

µ∗(x) = u∗ = arg min
u∈U

E [φ(x, u) + αJ∗(f(x, u, e))] (5)

Except for a few special cases (e.g., linear quadratic
optimal control), a closed-form solution of the Bellman
equation is not available. Hence, numerical approaches
like “value iteration” or “policy iteration” algorithms
should be used with exhaustive sampling or discretization
of the state space [Bertsekas, 2000]. Unfortunately, the
computational burden of both conventional approaches
quickly becomes prohibitive as the dimensions of state and
control action increase.

2.2 Model-free learning of the value function

The value function-based controller can be designed even
in the absence of a process model, f , by mapping a state
and control action pair to the value function, referred to
as the Q-function [Watkins and Dayan, 1992]. The optimal
Q function is defined as

Q∗(x(k), u(k))
△

= min
u(k+1), u(k+2),···

E [φ(x(k), u(k))

+ αφ(x(k + 1), u(k + 1)) + · · ·]
(6)

, and it satisfies

Q∗(x(k), u(k)) = φ(x(k), u(k))
+ α min

u(k+1)∈U
Q∗(x(k + 1), u(k + 1)) (7)

where U is a set of all possible control actions. Eq. (7) is
equivalent to

Q∗(x(k), u(k)) = φ(x(k), u(k)) + αJ∗(x(k + 1)) (8)

Eqs. (7) and (8) imply that the optimal Q value is the
sum of all the single-stage costs over the infinite horizon
starting with a given state and action pair assuming the
optimal control policy is enforced from the next time step
on. This can be particularly useful when the identification
of a given process is difficult.

A conventional way of solving for the optimal Q function
is to iterate on (7) by performing a large number of on-
line experiments to allow for multiple visits to a same
state with different control actions [Watkins and Dayan,
1992]. However, this is not well suited for process control
problems due to the continuous nature of state and control
action spaces. States collected from transient trajectories
will tend to be distinct and multiple visits to the same state
are unlikely even with a large number of experiments.

3. PIECEWISE QUADRATIC APPROXIMATION OF
VALUE FUNCTIONS

A proper approximation scheme is needed for handling the
computational issues arising from either large or continu-
ous state and action spaces in solving an optimal control
problem. It was shown that constructing a global approx-
imate value function using a nonlinear mapping such as
neural networks can amplify approximation errors in an
unpredictable manner, whereas averaging local values in-
creases the computational burden and storage requirement
in learning and using the value function [Lee et al., 2006,
Lee and Lee, 2005]. The approach proposed in this work
is to construct an approximate value function as piece-
wise quadratic functions. The advantage of the proposed
technique is the reduction of computational complexity
and storage requirement due to its local convexity and
parametric representation.

3.1 Proposed approach

We start with closed-loop simulations (or operations)
with available suboptimal control policies, e.g., a manual
control strategy, a PID controller, MPC, etc., under all
representative operating conditions. After this,

(1) calculate the initial values for the collected state
points x(k) using

J0(x(k)) =

∞
∑

t=0

αtφ(x(k + t), u(k + t)) (9)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3253

(2) cluster the data points (x, J0(x)) (or ([x, u], Q0(x, u))
in the model-free learning) to find the valid regions
for each quadratic value function.

(3) fit a local quadratic value function to each clustered
data set.

(4) select control actions according to the current value
function estimate.

(5) update the value function according to the experience
at each sample time.

(6) the steps (4) and (5) are iterated.

3.2 Clustering the value data and fitting to quadratic
functions

With the usual quadratic term for the stage-wise cost φ, a
cost-to-go map for a complex system can be approximated
locally as quadratic. We first classify the data generated
from initial control policies to assign each data point to the
local quadratic value function that more likely generated
it. Thus, small subsets of x(k) that are close to each
other are likely to belong to the same region. Conventional
classification procedures find the optimal location of each
centroid by minimizing the sum of distances from the
centroid to the data points belonging to the cluster.
Performing a classification directly in the state space
(or state-action space), however, may lead to irrelevant
clustering results for approximating the value function; it
yields most of the centroids populated in the regions where
data density is high, e.g., the region near an equilibrium
point in a regulation problem [Hastie et al., 2001]. Ferrari-
Trecate et al. [2003] suggested a method that classifies
the data in the parameter space for identifying piece-wise
affine submodels. However, this method may yield very
similar parameter vectors for different local data sets in
different regions. This results in indistinctive clusters at
classification, which causes difficulties in learning value
functions.

To address the difficulties, we classify the data according
to a feature vector that concatenates state (or state and
action for model-free learning) and parameter vectors. The
procedure is as follows:

(1) Build local data sets (LDs) from the original data:
For each data point (x(k), J0(x(k)) (or ([x(k), u(k)],
Q0(x(k), u(k))) in the model-free case), we build a
local data set Ck collecting (x(k), J0(x(k)) and the
c − 1 distinct data points (x̄, J̄) that satisfy

‖x(k) − x̄‖
2
≤ ‖x(k) − x̂‖

2
, ∀(x̂, Ĵ0) ∈ Ψ \Ck (10)

where ‖ · ‖ is the Euclidean norm, k = 1, · · · , N
with N the number of data points in the set Ψ. c is a
user-given parameter.

(2) Identify a parameter vector based on each LD by
fitting to a quadratic function in the form of

J̃k(x) = xT Πx + b (11)

or

Q̃k(x, u) =
[

xT uT
]

Θ

[

x
u

]

+ b (12)

where b is a bias term and k = 1, · · · , N .
(3) Classify the feature vectors composed of states (or

state and action pairs) and parameters, and assign
a cluster to each original data based on a bijective
map between the data points and LDs. The optimal

number of clusters, s, is determined by looking at the
separation of the regions as well as the fitting per-

formance,
∑N

k=1

(

J(x(k)) − J̃i(x(k))
)2

, i ∈ 1, · · · , s.

We use support vector machine (SVM) Vapnik [1998]
for classification in this work.

3.3 Calculating control actions

Once we have an initial estimate of the value function from
existing control policies, we can use the approximate value
function to select a greedy control action at each time t by

u(t) = arg min
u(t)

E
[

φ(x(t), u(t)) + αJ̃0(x(t + 1))
]

(13)

or
u(t) = arg min

u(t)
Q̃0(x(t), u(t)) (14)

where J̃0 =
{

J̃0
1 , · · · , J̃0

s

}

and Q̃0 is defined in the same
manner.

3.4 Updating the value function

Since the initial cost-to-go values are based on a subopti-
mal control policy or the combination of starting policies,
one can still improve the value function through iterating
on the Bellman’s equation. In this work, we incrementally
update the value function on-line based on “temporal-
difference (TD)” [Sutton and Barto, 1998]. The advantages
are that a value function can be improved at each time step
in an on-line fashion rather than waiting until a simulation
or operation episode ends as in classical DP approaches
[Bertsekas, 2000] or in the previous ADP approaches [Lee
and Lee, 2005]. In addition, the incremental update rule
does not require a process model.

We define the one-step TD error after experiencing the
stage-wise cost at time t as

δ(t)
△

= (φ(x(t), u(t)) + αJ̃t(x(t + 1))) − J̃t(x(t)) (15)

The function approximators are defined as

J̃(x) = θT · Φ (16)

where θ is the parameter vector for a quadratic value
function and Φ is a regressor vector composed of quadratic
and linear terms of x and u.

Then the one-step TD update rule for the parameter vector
is given by

θ(t + 1) = θ(t) + γδ(t)∇θ(t)J̃t(x(t)) (17)

where γ is learning rate and t is the time index in a single
episode (or a sample trajectory). Note that the learning

rate γ is positive and δ(t)∇θ(t)J̃t(x(t)) is the vector with

a descent direction of J̃ .

Whereas the one-step TD update rule, referred to as TD(0)
update, is based on the current difference δ(t) only, a more
general version called TD(λ) updates the cost-to-go values
by including the temporal differences of the later states
visited in a trajectory with exponentially decaying weights
[Sutton and Barto, 1998]. A corresponding on-line update
rule is given by

θ(t + 1) = θ(t) + γδ(t)∇θ(t)J̃t(x(t))et(Φ(x(t))) (18)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3254

where et(Φ(xt)) is referred to as “eligibility”. All eligibil-
ities start out with zeros and are updated at each time t
as follows:

et(Φ(x)) =

{

αλet−1(Φ(x)) if Φ(x) 6= Φ(xt)
αλet−1(Φ(x)) + Φ(x) if Φ(x) = Φ(xt)

(19)
Note that the temporal difference term, δ(t) of (18) ap-
pears only if the feature vector Φ(x(t)) has already been
observed in a previous time of the episode. The eligibility
thereby puts more emphasis on the temporal difference
term in recent past.

The update rule for the model-free case can also be derived
in a similar manner, and it will be briefly described with
the illustrative examples.

4. NUMERICAL EXAMPLES

4.1 Hybrid System

We consider a hybrid system with two modes described
by linear discrete-time state space systems. The control
objective is to regulate the system at the equilibrium point
(x = 0, u = 0). In this example, we discuss the model-free
learning scheme since it is a more challenging problem for
controller design.

Mode 1:

x(k + 1) =

[

0.5207 0.7432
0.8088 −0.1453

]

x(k) +

[

0.4298
0.4013

]

u(k)

y(k) = [0 1] x(k)

if x ∈ X1

Mode 2:

x(k + 1) =

[

0.4734 0.6756
0.7353 −0.1321

]

x(k) +

[

0.4776
0.4459

]

u(k)

y(k) = [0 1] x(k)

if x /∈ X1

where X1 = {(x1, x2)| − 1.5 ≤ x1 ≤ 1.5 or − 1.5 ≤ x2 ≤
1.5}.

Closed-loop simulations with PI controllers First, closed-
loop simulations were performed with suboptimal control
policies consisting of four discrete-time PI controllers.
The controller parameters were computed from the step
responses of the hybrid system, and they were (Kc, τI) ∈
({1, 10}, {1, 15}, {1.5, 10}, {1.5, 15}, {2, 10}) where
Kc is the controller gain and τI is the integral time.
Initial state points were sampled uniformly from the batch
B = {(x1i, x2i)|(x1i, x2i) ∈ {0.5, 1.5, 2.5, 3.5, 4.5}}, and a
PI controller was also selected uniformly among the five
controllers. Using a discount factor (α) of 0.99, initial cost-
to-go values were calculated by

QPID(x(k), u(k)) =

∞
∑

t=0

αtφ(x(k + t), u(k + t)) (20)

where
φ(x(k), u(k)) = y2(k + 1) + u2(k) (21)

We collected 413 data points from the simulations.

Table 1. Learned parameters (θ) for Q̃ after 50
batches (1250 episodes)

Cluster x2

1
x2

2
u2 x1x2 x1u

1 3.0 22 12.0 1.4 7.1
2 3.8 9.9 10.9 10.4 12.5
3 5.6 6.2 5.2 3.1 7.2

Cluster x2u x1 x2 u 1

1 22.1 1.9 2.3 1.8 1.7
2 16.4 -0.66 -1.1 3.6 7.8
3 6.7 0.0 0.0 0.0 0.0

Clustering and locally fitting to quadratic functions The
next step is locally fitting quadratic value functions to the
closed-loop data. The local Q function takes the form of

Q(x, u) = θT Φ(x, u) (22)

where Φ(x, u) is the regressor vector of

[x2
1, x2

2, u2, x1x2, x1u, x2u, x1, x2, u, 1]T (23)

The cluster containing equilibrium point (origin) is fitted
using only the first 6 terms of the above vector. This
ensures that the minimum value is zero at equilibrium
point regardless of fitting error. The local data sets for
identifying clusters in the state-action-parameter space
were constructed using 49 neighboring points. The state
vector was multiplied by 50 for better scaling. It was found
that three clusters yielded the most distinctive clusters for
the fitting.

Improving the initial policy We improve the initial value
function obtained from PID controllers by selecting a
greedy control action at each time as in (7). The observed
value associated with a greedy control action is then used
to update the value function.

(1) Choose (α, γ, λ) = (0.99, 10−3, 1)
(2) Select the initial state point from a batch.
(3) Repeat the following steps within each episode

(a) Given x(t) = [x1(t) x2(t)]
T at time t, determine

the range of u to optimize over. The range of u is
the same as that of fitted data. This avoids undue
extrapolation in the absence of a process model.
SVM is used to determine clusters corresponding
to x(t), u pairs.

(b) The greedy action is then calculated by

u(t) = arg min
u(t)

Q̃t(x(t), u(t)) (24)

(c) Observe stage-wise cost φ and the successor state
x(t + 1), and calculate the one-step TD error

δ(t) = φ(x(t), u(t)) + α min
u(t+1)

Q̃t(x(t + 1),

u(t + 1)) − Q̃t(x(t), u(t))
(25)

(d) Update the θ according to

θ(t + 1) = θ(t) + γδ(t)∇θQtet (26)

(4) γ(i + 1) = γ(i) × 0.9i where i is the batch number.

Table 1 shows values of θ after 50 batches, and Figure 1
shows a plot of J̃(x) obtained by optimizing Q̃(x, u) over
u after 50 batches (1250 episodes).

On-line performance of a learned control policy Figure 2
shows an on-line simulation of the system under the
initial PI controllers and the improved value-function-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3255

0

1

2

3

4

5

00.511.522.533.544.55

0

10

20

30

40

50

60

70

80

90

100

x1

x2

J̃
(x

1
,x

2
)

Fig. 1. Plot of parameterized J̃(x) after 50 batches

5 10 15 20 25 30

0

1

2

3

x
1

ADP

PI controllers

5 10 15 20 25 30

0

1

2

3

x
2

5 10 15 20 25 30
−6

−4

−2

0

Time

u

Fig. 2. A sample result of on-line implementation under
initial and learned control policies

Table 2. Hybrid system example: Comparison
of on-line performances of control policies :
SSE is the average value taken over one batch

(25 trajectories).

Policy Sum of Squared Error (Batch)

(Kc, τI) = (1, 10) 760.0
(Kc, τI) = (1, 15) 759.6

(Kc, τI) = (1.5, 10) 1339.0
(Kc, τI) = (1.5, 15) 1341.5
(Kc, τI) = (2, 10) 3134.6

Q̃ 289.4

based controller. Regulation performance in terms of one-
batch SSE is shown in Table 2. It is evident that the
learned policy shows a significant improvement over the
initial policy even in the absence of a process model.

4.2 Nonlinear System

We consider a nonlinear bioreactor example in Bequette
[2003]. The bioreactor model is given by

dx1

dt
= (µ − D)x1

dx2

dt
= D(x2f − x2) −

µx1

Y
y = x1

(27)

Table 3. Bioreactor example: Tuning parame-
ters of the IMC controllers

PI Controller Kc τI λ

1 5.86 5.89 2.06
2 5.86 5.89 2.18
3 5.86 5.89 2.36
4 5.86 5.89 2.53
5 5.86 5.89 2.65

Table 4. Learned parameters of the value func-
tion for the bioreactor example. The upper bar
denotes deviation variables from the equilib-

rium point.

Cluster x̄2

1
x̄2

2
ū2 x̄1x̄2 x̄1ū

1 1.4802 -0.2642 -0.3835 0.8163 0.4366
2 1.0351 -0.0095 0.3461 -0.3721 -1.4061
3 1.4162 -0.2282 0.6141 0.0605 -2.0307
4 0.1318 -0.0756 -2.4243 -0.0676 2.6461
5 5.7797 0.2115 3.1445 0.0894 -6.3042

Cluster x̄2ū x̄1 x̄2 ū 1

1 -0.9177 -3.3870 1.1573 3.2273 -0.8141
2 0.2525 2.0951 0.2516 -0.1375 -0.6082
3 -0.1136 1.6646 1.0690 0.2731 -1.7157
4 -0.0376 -1.5490 0.3547 2.6718 -0.3381
5 0.3174 0.0000 0.0000 0.0000 0.0000

where x1 and x2 are the concentrations of biomass and
substrate, respectively. The dilution rate D is the manip-
ulated variable. x2f and µ are substrate feed concentration
and specific growth rate. The substrate inhibition model
is used to define the specific growth rate

µ =
µmaxx2

km + x2 + k1x2
2

(28)

where µmax = 0.53hr−1, km = 0.12g/L, k1 = 0.4545L/g,
and Y = 0.4.

The objective is to maintain the system at the unstable
equilibrium point of (x1, x2,D) = (0.995, 1.512, 0.3). First,
closed-loop simulations were performed with five different
discrete PI controllers with the sample time of 0.1 (See
Table 3). The tuning parameters were selected based on
the IMC tuning rule described in Bequette [2003]. We
randomly sampled initial state points from −5 ≤ x1, x2 ≤
5 and collected 896 data points to identify clusters and
approximate the value function.

The stage-wise cost was defined as φ(x(k), u(k)) = y(k +
1)2 with the discount factor of 0.99, and piecewise affine
quadratic functions were fitted to the state-action pair and
their corresponding values based on the closed-loop data
under the five PI controllers. Five clusters were chosen
as in the hybrid system example with the multiplication
factor for the state being 100. The learned parameters are
shown in Table 4.

The gradient-based on-line updating was performed with
the initial learning parameter γ = 10−6. The learned value
function could improve the initial PI control policies by
combining their good features. Fig. 3 shows state and input
trajectories for the IMC controllers and the suggested
ADP approach. The performance comparison over one
batch in Table 5 shows that the ADP could improve the
control performance starting from PI controllers without
any process model.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3256

20 40 60 80 100 120 140

1

2

3

4

5

x
1

20 40 60 80 100 120 140

2

3

4

5

x
2

20 40 60 80 100 120 140

1

2

3

4

Time

u

ADP

IMC’s

Fig. 3. Bioreactor example: state and input trajectories

Table 5. Bioreactor example: Comparison of
on-line performances (SSE) of control policies

for one batch

IMC 1 IMC 2 IMC 3 IMC 4 IMC 5 ADP

239.6 249.8 267.7 288.6 350.4 222.5

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a novel ADP based controller
that is suitable for complex systems with continuous state
and control action spaces. A piecewise quadratic repre-
sentation is used to reduce the computational and data
storage requirements. The local convexity of the approxi-
mation also facilitates the optimization step. In construct-
ing local quadratic value functions, data clustering is per-
formed in the state-action-parameter space to locate the
centroids based on the local structure of value functions.
The optimal number of clusters was chosen by consider-
ing fitting performance and degree of distinction between
clusters. This is mainly affected by size of LDs and weights
given to parameters and states in the augmented state-
action-parameter vector. Quantitative selection of optimal
number of clusters is under investigation.

The convergence of the proposed algorithm is still an open
issue. We found that the convergence depends on the learn-
ing rate γ, the “degree of exploration,” and number and
location of clusters. However, using a relatively “cautious”
learning rate and limiting the range of control action could
provide stability with performance improvement.

ACKNOWLEDGEMENTS

We thank the University of Alberta and the Natural
Sciences and Engineering Research Council of Canada
(NSERC) for financial support.

REFERENCES

R. E. Bellman. Dynamic programming. Princeton Univer-
sity Press, 1957.

B. W. Bequette. Process Control: Modeling, Design, and
Simulation. Prentice Hall, 2003.

D. P. Bertsekas. Dynamic programming and optimal
control, volume I. Athena Scientific, 2nd edition, 2000.

G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari.
A clustering technique for the identification of piecewise
affine systems. Automatica, 39:205–217, 2003.

G. J. Gordon. Stable function approximation in dy-
namic programming. Technical Report CMU-CS-95-
103, School of Computer Science, Carnegie Mellon Uni-
versity, 1995.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer-Verlag, 2001.

J. H. Lee and Z. Yu. Worst-case formulations of model
predictive control for systems with bounded parameters.
Automatica, 33(5):763–781, 1997.

J. M. Lee and J. H. Lee. Approximate dynamic
programming-based approaches for input-output data-
driven control of nonlinear processes. Automatica, 41:
1281–1288, 2005.

J. M. Lee, N. S. Kaisare, and J. H. Lee. Choice of approxi-
mator and design of penalty function for an approximate
dynamic programming based control approach. Journal
of Process Control, 16:135–156, 2006.

J. Morris. New horizons for process control in chemical
and process engineering. Trans IChemE, 81(Part A):
199–200, February 2003.

R. S. Sutton and A. G. Barto. Reinforcement Learning:
an introduction. A Bradford book, 1998.

V. Vapnik. Statistical learning theory. Wiley, 1998.
C. J. C. H. Watkins and P. Dayan. Q-learning. Machine

Learning, 8:279–292, 1992.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3257

