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Abstract: Model predictive controllers are often designed with integral action to impart
robustness. For this, disturbance models are usually employed. It is customary to append
integrated white-noises to either the input or output channels. However, neither by themselves
may be adequate representations in the presence of switching disturbance patterns that are
typically witnessed in process industries. In order to handle such scenarios, we first propose a
differenced state-space formulation that can incorporate both input and output disturbances
while retaining detectability. Then, we couple it with Hidden Markov Model (HMM) to express
the switching characteristics of the disturbances. This bypasses the need to add artificial noises
into state variables to consider both the input and output disturbances, as previously suggested.
Simulation examples are provided to highlight closed-loop performance improvement as a result
of the proposed formulation.
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1. INTRODUCTION

Supported by constraint-handling capabilities and a rela-
tively well-established body of theory, linear Model Pre-
dictive Control (MPC) is de facto the advanced process
control method employed in process industries. Historical
accounts and surveys on industrial MPC applications are
given by Lee and Cooley (1997), Morari and Lee (1999),
and Qin and Badgwell (2003) and the references therein.

MPC algorithms usually adhere to the following steps
(Muske and Rawlings, 1993b), (Muske and Rawlings,
1993a). At each sample time k, steady-state targets for the
states and inputs are determined. Then, a finite-horizon,
open-loop optimization problem is solved yielding a finite
sequence of actions. The first action is implemented, one
unit-sample of time elapses, and the process repeats in
a receding-horizon manner. Direct state feedback is usu-
ally absent in practice, and therefore an observer (e.g., a
Kalman filter) is used to construct state estimates. These
are also supplied to the optimizer. The objective function
reflects the trade-off between predicted deviations of states
and inputs from their respective steady-state targets. Zero
deviations correspond to the system operating at the de-
sired setpoint.

An important feature of MPC is integral action, which
gives offset-free control despite plant-model mismatch and
step disturbances. This is normally achieved by using an
appropriate disturbance model, typically step, or equiv-
alently, integrated white noise signals into input or out-
put channels (see Section 1.1). Although zero tracking
error is guaranteed asymptotically irrespective of which

disturbance model is used (assuming enough of them
are added), transient closed-loop performance is affected
by how closely the model employed matches the reality.
Recently, Wong and Lee (2007) suggested using Hidden
Markov Models to extend the disturbance identification to
more realistic patterns observed in the process industries.

Given that the design of disturbance models is a promising
area for academic research (Qin and Badgwell, 2003), this
work provides a formal framework for more realistic dis-
turbance modeling (i.e., switching dynamics are accounted
for) that meets the requirement of integral action. Further-
more, we explore the flexibility of the proposed model in
providing acceptable tracking performance, as compared
to existing methods, in the case where there exists signif-
icant differences between the disturbance model and the
actual noise dynamics.

As an illustration of time-varying disturbance charac-
teristics that may occur in process industries, consider
that depicted in Fig. 1, a time-series plot of disturbances
entering the input and output channels of an arbitrary
dynamical system. Specifically, Fig. 1 indicates four regime
permutations where input and/or output disturbances
are dominant. For example, ‘low:low’(regime 1) indicates
that both input and output disturbances enter as white-
noises. ‘Low:high’ (regime 2) suggests that significant non-
stationary, random-walk type disturbances are entering
the output channel whereas input disturbances are com-
paratively quiescent, and so on. For the purpose of mod-
eling, it is postulated that these regimes switch among
themselves in a probabilistic manner. This hypothesized
scenario can be considered to be an approximation of
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Fig. 1. Cross-correlated input and output disturbances,
each exhibiting intermittent drifts

the case where there exists significant intermittent non-
stationary disturbance patterns in each channel. Never-
theless, such time-varying behavior is oftentimes neglected
during system identification, disturbance modeling and
controller design, due to the lack of a suitable framework.
This is usually to the detriment of the resulting closed loop
performance, as will be shown in a later example.

1.1 Typical Offset-free Control Approaches

In MPC applications, offset-free control is usually achieved
by augmenting the process model with integrators (these
represent step input/ state (dk ∈ R

ndk ) and output (pk ∈
R

npk ) disturbances) (Muske and Badgwell, 2002):

(
xk+1

dk+1

pk+1

)

=

(
A Gd 0
0 I 0
0 0 I

)(
xk

dk

pk

)

+

(
B
0
0

)

uk

yk = ( C 0 Gp )

(
xk

dk

pk

)

(1)

The effect of this augmentation is to shift the steady-
state targets to compensate for plant-model mismatch
or step disturbances. Here, xk ∈ R

nx represents the
system state at time k, yk ∈ R

ny , the controlled (and
presumably measured) outputs and uk ∈ R

nu , the inputs.
Furthermore, the augmentation is such that ndk

+ npk
≤

ny and other constraints on Gd and Gp are obeyed,
to obey the requirement of detectability. This means
that whilst the (A, B, C)-tuple represents the process
model used for the regulator calculation, (1) is the model
actually employed for calculating steady-state targets and

obtaining state estimates x̂k|k, d̂k|k, p̂k|k.

It is noted that this practice of adding fictitious states
has little bearing to disturbance identification. In response
to this, researchers have developed techniques to esti-
mate in an on-line fashion, noise parameters required by
the Kalman filter. Nevertheless, this ‘design’ approach
(Pannocchia and Rawlings, 2003) implicitly assumes that
step disturbances enter either in the input or output
channels (Gd = B, Gp = I is a typical choice) and as
such may be limiting in the face of a wrong assumption
or more complicated dynamics, as suggested in this work.
Moreover, as pointed out by Shinskey (1994), the popular
choice of Gp = Iny

, Gd = 0 in earlier versions of MPC (e.g.,
Dynamic Matrix Control (Cutler and Ramaker, 1979))
can lead to sluggish behaviour when the system dynamics

contains “slow” poles. In principle, one can add state
noises to compensate for this, but this can result in a large
number of parameters to learn online for the case of high-
dimensional systems (Odelson and Rawlings, 2003; Odel-
son et al., 2006).

The proposed formulation is achieved by extending the
detectable velocity form used by Prett and Garcia (1988)
for integral action, to the scenario where there exists the
additional complexity of switching noise dynamics.

2. A DETECTABLE FORMULATION FOR MPC VIA
A HIDDEN MARKOV FRAMEWORK

The example above reveals a need for addressing abruptly
switching dynamics. Hidden Markov Models (HMMs) is a
potential mathematical framework for this. A finite-state
Markov chain whose realization at time k, denoted by
rk ∈ J , {1, 2, . . . , J}, J ∈ Z

+, is assumed to govern
the dynamics of noise regime changes. In the example
above, J corresponds to the numeric set {1, 2, 3, 4}, with
‘1’ denoting ‘low:low’, ‘2’, ‘low:high’, and so on. The term
‘Hidden’ indicates that rk is not known with probability
one and must be inferred from available measurements,
which are viewed as realizations of the corresponding
underlying distribution.

The parameters of this Markov chain defines the proba-
bilistic nature of the regime transitions. Specifically, the
Markovian jumps are dictated by a transition matrix Π =
(

pr(rk = j|rk−1 = i) , pij

)

, such that the each row of Π

sums to one. An implicit assumption is that the transitions
depends only on the immediate past. All Markov chains
under consideration are ergodic. For simplicity, the Markov
chain is assumed to be at steady state, satisfying π = Π′π,
where π is a column vector containing the unconditional
probabilities of each regime. In other words, π gives the
initial probability distribution of r.

With this, it is postulated that the dynamical system of
concern evolves according to the following:

xk+1 = Axk + Bdk+1 + Buk

dk+1 = dk + ωd
rk+1

pk+1 = pk + ωp
rk+1

yk = Cxk + pk + vk (2)

where as before, dk and pk are the augmented input and
output disturbances respectively. In turn, these integrators
are driven by zero-mean, uncorrelated, white Gaussian
signals ωd

r ∼ N (0, Qd
r), and ωp

r ∼ N (0, Qp
r), whose

covariances at each k are associated with rk, as is suggested
by the notation employed. vk ∼ N (0, R) is normally-
distributed measurement noise.

Having established this, and provided that the original
system of concern is detectable, a detectable differenced
formulation (3) that will be used by the receding-horizon
regulator as well as the state-estimator is proposed next.

2.1 A Detectable Formulation for the Regulator and
State-Estimator

By differencing (2), we get
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(
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)

+

(
0
I

)
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rk+1

= Ãηk + B̃∆uk + B̃ωd
rk+1

+

(
0
I

)

ωp
rk+1

︸ ︷︷ ︸

ξrk+1

yk = (0 I )
︸ ︷︷ ︸

C̃

(
∆xk

zk

)

+ y∗ + vk (3)

Here, zk , (yk − vk − y∗), with y∗ denoting the desired
output setpoint. Also, ∆ represents a time-differencing
operator such that, ∆uk , uk − uk−1 and so on. ξrk+1

,
the covariance of which depends on the regime r, rep-
resents the effective state noise of (3). ωd

rk+1
, and ωp

rk+1

refer to zero-mean white Gaussian signals that drive the
input and output integrators, respectively. The subscript
rk+1 emphasizes the fact that the realizations of ωd and
ωp depend (through their respective covariances) on the
Markov state. Since it is assumed that ωd

rk+1
, and ωp

rk+1

are uncorrelated, then we have (4)

E(ξrk+1
) = B̃E(ωd

rk+1
)(ωd

rk+1
)′B̃′ +

(
0 0
0 E(ωp

rk+1
)(ωp

rk+1
)′

)

(4)

The benefits of using such a formulation is that detectabil-
ity is ensured under rather mild conditions. This is fa-
vorable as compared to approaches based on (1), where
certain choices of Gd, Gp (Muske and Badgwell, 2002) do
not guarantee offset-free control. In this formulation, it is
clear that the steady-state targets are zero for both ∆x
and z.

Due to the dependence of noise statistics on rk, (3) is a
special case of a ‘Markov Jump Linear System’ (MJLS)
(Costa et al., 2004). For such systems, the optimal filter
involves exponentially growing number of linear filters and
hence the computation becomes intractable. A popular
sub-optimal filtering technique, the n-th order Generalized
Pseudo-Bayesian (GPBn) algorithm (Bar-Shalom and Li,
1993) is briefly introduced since any model predictive
algorithm requires an estimator to work in tandem with
the regulator.

2.2 GPB2: Obtaining State Estimates η̂

The main idea is to have trajectories whose last n terms
differ be merged (via moment-matching) into a single

Gaussian, parameterized by {η̂k|k, Pk|k , E(ηk − η̂k|k)(·)′}.

Let Rk
k−n+1

, (rk−n+1, . . . , rk) be a sequence of the

n most recent Markov-state realizations and Y k
0 , the

measurement sequence (y0, . . . , yk). Let η̂k|k(Rk
k−n+1)

denote the estimate of ηk that accounts for the n
most recent Markov-state realizations. Similarly, we let

the corresponding estimation error be represented as
Pk|k(Rk

k−n+1
) , E(ηk − η̂k|k(Rk

k−n+1
))(·)′.

Computing η̂k|k(Rk
k−n+1

) is achieved by employing a time-
varying Kalman filter initialized with
η̂k−n+1|k−n+1(rk−n+1) and Pk−n+1|k−n+1(rk−n+1), which
can be obtained from the following recursive equations
for computing the filtered state-estimates η̂k|k(rk) (5) and
error covariance, Pk|k(rk)(6).

η̂k|k(Rk
k−n+2) =

∑

rk−n+1∈J

η̂k|k(Rk
k−n+1)pr(rk−n+1|R

k
k−n+2, Y

k
0 ) (5)

Pk|k(Rk
k−n+2) =

∑

rk−n+1∈J

[
{
η̂k|k(Rk

k−n+2) − η̂k|k(Rk
k−n+1)

}
{·}′

+Pk|k(Rk
k−n+1)] · pr(rk−n+1|R

k
k−n+2, Y

k
0 )

(6)

Obtaining the pair (η̂k|k, Pk|k) is done by combining

{η̂k|k(rk), Pk|k(rk)} via pr(rk|Y k
0 ) (8). The merging prob-

abilities in (6), and (5) are obtained recursively (Bar-
Shalom and Li, 1993) via Bayes rule. The computations
for n = 2, which is used in this work, are shown:

pr(rk−1|rk, Y k
0 ) =

pr(yk|rk, rk−1, Y
k−1

0 )pr(rk|rk−1)pr(rk−1|Y
k−1

0 )
∑

rk−1∈J

pr(yk|rk, rk−1, Y
k−1

0 )pr(rk|rk−1)pr(rk−1|Y
k−1

0 )

(7)

pr(rk|Y
k
0 ) =

∑

rk−1∈J

pr(yk|rk, rk−1, Y
k−1

0 )pr(rk|rk−1)pr(rk−1|Y
k−1

0 )

∑

rk

∑

rk−1

pr(yk|rk, rk−1, Y
k−1

0 )pr(rk|rk−1)pr(rk−1|Y
k−1

0 )

(8)

2.3 Remarks on System Identification of Markov Jump
Linear Systems (MJLS)

Identification of linear jump systems, an area of interest
in its own right, is not the focus of this paper. Readers
are referred to (Murphy, 1998), (Pavlovic et al., 1999),
(Juloski et al., 2005) for approaches that are established
in the literature and (Wong and Lee, 2007) for a recent
application to the specific problem of disturbance identi-
fication. For the purpose of this paper, it is assumed that
the system and Markov parameters are available, either
through identification or based on process insights, for
estimator/ controller design.

We now give a summary of the MPC algorithm to be
employed.
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2.4 The MPC Algorithm

At each time k, the GPB2 estimator yields η̂k|k. This
quantity is then fed into the following finite-horizon op-
timization problem. N denotes a user-specified control-
horizon and Sη ≥ 0, SN

η ≥ 0, Su > 0 are weighting
matrices reflecting a trade-off between aggressive setpoint
tracking and the amount of actuator movement.

{∆ν∗
j }

N−1

j=0
,

argmin



η̃′
NSN

η η̃N +

N−1∑

j=0

(
η̃′

jSη η̃j + ∆ν′
jSu∆νj

)





Sη ,

(
0 0
0 Sy

)

SN
η ,

(
0 0
0 SN

y

)

(9)

subject to:

η̃0 = η̂k|k

η̃j+1 = Ãη̃j + B̃∆νj , j = 0, 1, . . . , N − 1

∆νj ∈ X , j = 0, 1, . . . , N − 1

η̃j ∈ U , j = 0, 1, . . . , N − 1 (10)

Then, one implements uk := ∆ν0 + uk−1, and the whole
process repeats. X and U are polyhedrons defining the
feasible regions satisfying the constraints. It is noted that
the above formulation subsumes well-known cases such as
unconstrained Linear Quadratic Regulation (LQR).

We now show the flexibility of the proposed formulation
in the face of several simulated disturbance scenarios.

3. EXAMPLE

For simplicity, consider the triple (A = 0.9, B = 1, C = 1.5)
parameterizing a nominal Single-Input-Single-Output (SISO)
system

3.1 Plant Simulation

Generally speaking, it is not certain in advance if input
or output disturbances will dominate. Furthermore, there
may exist probabilistic switches between regimes, as pos-
tulated in this work. To evaluate the performance of the
proposed controller under these possible situations, four
simulation scenarios are considered. As special instances
of (2), these (and their simulation parameters) correspond
to

• I. Levels of input noise << levels of output noise. This

can be thought of the case where dk = 0, ∀k. E(ωdωd′)
corresponds to the ‘low:high’ regime as reported in
Table (1). Note that in this scenario, the subscript r
is dropped from ωd since no switching occurs.

• II. Levels of input noise >> levels of output noise.
Similarly, in this case, pk = 0, ∀k and E(ωpωp′)
corresponds to the ‘high:low’ regime.

0 200 400
1

2

3

4

Fig. 2. Time series plot of regime: a typical realization for
scenario IV.

• III. Levels of input noise are comparable to levels of
output noise. Here, the noise parameters are the same
as those in ‘high:high’ regime of Table (1).

• IV. Relative levels of input and output noise switch
in a probabilistic manner (see Fig. 1). The transition
probability matrix Π, used in the simulated studies,
is given in (11) and reflects the situation where
either input or output (but not both) disturbances
dominate. In accordance with intuition, it can also be
seen that relative to regimes 2 and 3, the system tends
to spend less time, on average, in the ‘high-high’ and
‘low-low’ regimes. For instance, the expected duration
the system spends in regime 1 or 4 is 1

1−0.8
= 5

time units whereas that spent in regime 2 or 3 is
1

1−0.97
≈ 33 units. Furthermore, drastic ‘low-low’ to

‘high-high’ transitions (and vice versa) are forbidden.
The noise parameters used for simulation can be
found in Table (1). These effects are captured in Fig.
3.1.

Π =






0.800 0.100 0.100 0.000
0.010 0.970 0.010 0.010
0.010 0.010 0.970 0.010
0.000 0.100 0.100 0.800




 (11)

Table 1. Noise Parameters used in Simulation
Studies

Regime Qd
r Q

p
r

Input Noise: Output Noise r ∈ 1, 2, 3, 4

‘Low:Low’ r = 1 10−10 10−10

‘Low:High’ r = 2 10−10 50
‘High:Low’ r = 3 10 10−10

‘High:High’ r = 4 10 50

For simplicity, all simulations were run with negligible
measurement noise, that is R ≈ 0.

3.2 Parameters Used by the Estimator & Control Objective

In order to investigate the effect of disturbance model
vs. plant simulation mismatch, four model-predictive con-
trollers were constructed, all based on the proposed veloc-
ity form (3). These differ only in the estimators employed.
Namely, these estimator/ controllers assume:

• I. Output disturbance only. In this case, E(ξξ′) can
be computed using data from Table (1) corresponding
to r = 2, and (4). As noted by Muske and Rawlings
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(1993b), the resulting steady-state Kalman gain is
[ 0 I ] parameterizing an open-loop observer for ∆x
and a deadbeat observer for z. Again, the subscript r
is dropped for the same reasons as before.

• II. Input disturbance only. Similarly one uses r = 3
data from Table (1), for computing E(ξξ′). A dead-
beat observer is obtained in this case.

• III.Output and input disturbances. Here, one uses
r = 4 data from Table (1), for computing E(ξξ′).

• IV. Switching behavior, i.e., a GPB2 estimator, with
Π given in (11) is employed.

Although the velocity form is employed, estimator/ con-
trollers I, II and III can be regarded as special cases of (1),
and as such are considered as standard MPC formulations
for imparting integral action.

For all the (simulation scenario, controller) pairs consid-
ered, the objective function, with y∗ = 0 is as follows (12):

min
1

N

N∑

k=0

[

η′
k

(
0 0
0 1

)

ηk

]

N→∞

(12)

Constraints have been removed for clarity of exposition
and this objective function results in a deadbeat controller
(13):

∆uk = − ( 0.90 0.67 ) η̂k|k (13)

3.3 Results & Discussion

For each (simulation scenario, controller) combination,
S = 500 realizations, each of duration K = 500, were
run. Furthermore, for each realization s, of each simulation
scenario, a controller coupled with a time-varying Kalman
filter with knowledge of the true simulation dynamics.
Although this assumption is impractical, such a controller
was employed for benchmarking purposes. For example, in
scenario IV corresponding to switching disturbances, such
a time-varying Kalman filter would have had access to the
actual Markov regime. As mentioned in Section (2.1), such
ideality is in contrast to the GPB2 estimator which relies
on moment matching to bound computational costs. The
performance index P 1 is the average ratio of squared-
tracking error for each controller to that corresponding to
the ideal estimator/ controller. The results are reported in
Table (2).

Figs. 3, 4, 5 6 are time-series plots of typical realizations
of y corresponding to the four simulation scenarios.

As can be seen from Table 2 and Figs. 3, 4, 5 6, the
proposed model predictive controller yields the best per-
formance amongst all the estimator/ controllers other than
that which coincides with the actual simulation scenario.

1 P , 1

S

S∑

s=1

( ∑K

k=1
y2

k
∑K

k=1
(yb)

2

k

)

; yb refers to the output correspond-

ing to the benchmarking estimator/ controller

Table 2. Mean of Relative-Squared Error over
500 Realizations

Estimator

Scenario Output Input Output&Input GPB2

Output 1.00 1.62 1.21 1.03

Input 5.15 1.00 1.33 1.02

Output&Input 1.84 1.24 1.00 1.05

Switching 3.21 1.52 1.22 1.08

1 2 3 4 5 6 7

0

setpoint

Output disturbance controller

Input disturbance controller

Output & Input disturbance controller

Switching disturbance controller

Fig. 3. Output disturbance: y vs. time

1 2 3 4 5 6 7

0

setpoint

Output disturbance controller

Input disturbance controller

Output & Input disturbance controller

Switching disturbance controller

Fig. 4. Input disturbance: y vs. time

1 2 3 4 5 6 7

0

setpoint

Output disturbance controller

Input disturbance controller

Output & Input disturbance controller

Switching disturbance controller

Fig. 5. Output and Input disturbances: y vs. time
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1 2 3 4 5 6 7

0

setpoint

Output disturbance controller

Input disturbance controller

Output & Input disturbance controller

Switching disturbance controller

Fig. 6. Switching disturbance: y vs. time

This suggests that the proposed formulation is gener-
ally more robust than the standard controllers employed.
Due to the relatively large time constant of the system
(A = 0.9), the output estimator/ regulator expectedly
(Shinskey, 1994) gave the poorest performance for the
scenarios it was not designed for.

Furthermore, using a formulation with includes both input
and output disturbances often means using an observer
gain that ‘averages’ the input and output disturbance
effects. How this translates to final closed-loop perfor-
mance is not clear. Using the time-varying GPB2 estimator
results in a dynamic observer gain that is a function of
current measurements. Despite the mismatch in terms of
Π, the control performance is still acceptable.

4. CONCLUSION & FUTURE WORK

The contributions of this work are three-fold. First, a
formulation that remains detectable regardless of number
of step disturbances is proposed. Second, the proposed
formulation is capable of accommodating switching be-
havior in the disturbance patterns. Such an approach
can be viewed as a first step towards describing abruptly
switching, or more generally, non-stationary disturbances
common in process industries. Compared to the previ-
ously proposed approach for accommodating both input
and output disturbances, the proposed approach is more
straightforward, circumventing the need to add artificial
state noise, which can be computationally demanding for
high-dimensional state space systems.

4.1 Future Work

As a special type of hybrid system, Markov Jump Linear
Systems represent a descriptive class of models that can
capture a wide-range of dynamics (Costa et al., 2004).
It is clear that advances in system identification and
disturbance modeling are to proceed together so as to
achieve more realistic modeling and eventually better
control performance. As such, this is an ongoing research
project.
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