
Improving Operator Skills with Productivity

Model Feedback ⋆

Kalevi Tervo
∗

Lauri Palmroth
∗∗

Vesa Hölttä
∗∗∗

Aki Putkonen
∗∗∗∗

∗ Control Engineering Research Group, Helsinki University of
Technology, Espoo, P.O. Box 5500 Finland (Tel: +358 9 451 5214;

e-mail: kalevi.tervo@tkk.fi).
∗∗ Department of Automation science and Engineering, Tampere

University of Technology, Tampere, Finland (e-mail:
lauri.palmroth@tut.fi.

∗∗∗ Control Engineering Research Group, Helsinki University of
Technology, Espoo, P.O. Box 5500 Finland (e-mail:

vesa.holtta@tkk.fi).
∗∗∗∗ John Deere Forestry, Tampere, P.O. Box 5500 Finland (e-mail:

PutkonenAkiJ@johndeere.com).

Abstract: The performance of a mobile working machine is subject to operating conditions,
operator’s actions, and technical condition of the machine. The ability of the operator has proven
to be a significant factor when considering productivity or fuel efficiency. If the machine is in
good technical condition with controller parameters tuned properly, the only way to increase
performance, that is, productivity and fuel efficiency, is to improve the operator’s skills.
The goal of this paper is to research the operator evaluation problem in the case of forest
harvesters. The productivity variations of the machine between work shifts are modeled using
variables that describe operating conditions and the performance of the operator in different
work tasks. An adaptive-network-based fuzzy inference system (ANFIS) is proposed to model
the productivity. The model is trained and validated using data from several operators measured
in normal work environment during several months. An algorithm based on the gradient descent
rule is proposed to give feedback about the most significant areas of improvement potential. The
use of the gradient-based technique in offline analysis of the operator’s performance and work
style is described. The variation of the performance between the operators is analyzed and the
results are discussed.
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1. INTRODUCTION

The rapid development of sensor technology, communica-
tion networks, processing units, and data mining methods
during the last decades has enabled the utilization of
advanced methods in performance evaluation of industrial
processes. There are countless succesful examples of utiliz-
ing fault detection and diagnosis, as well as performance
monitoring methods by using only the readily available
measurement data. (Chiang et al. [2001]) However, beyond
mere technical performance, there exists also the possibil-
ity to consider human factors. That is, in most industrial
processes where the human operator plays a key role in
controlling the process, it is possible to evaluate the oper-
ator’s actions. Furthermore, if the operator’s actions can
be succesfully evaluated, it is possible to suggest actions
in order to enhance the operator’s skills.

In mechanized timber harvesting, the variance of per-
formance between operators has been studied in several

⋆ This work was supported by the Finninsh Funding Agency for
Technology and Innovation (Tekes).

spesifically arranged field tests. There are research results
reporting that there was over 40 % difference between the
most and least productive operator working with similar
machines and in similar operating conditions. In addition
to the productivity, the quality of the work has been re-
ported to vary between operators. (Sirén [1998], Ryynänen
and Rönkkö [2001] cited in Väätäinen et al. [2005]) Based
on these results it is obvious that in order to utilize the
whole capability of forestry machines one needs to consider
to optimize not only the technical performance, but also
the skills of the operators.

The productivity of forest harvesters has been researched
by Väätäinen et al. [2005] in specifically organized field
tests with manual recording of the operators’ working
styles. However, there are no reported attempts to model
productivity using the measurements available during nor-
mal work. Therefore, this research is focused on modeling
the productivity of forest harvesters using the measure-
ments readily available in the database recorded during
normal work. An adaptive-network-based fuzzy inference
system (ANFIS) is utilized to model the productivity
variations based on operating conditions and performance
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metrics recorded during normal work. The model is trained
and validated by data gathered from several machines
and several operators. Based on the productivity model, a
gradient-based feedback algorithm is proposed to provide
educative feedback about the operator’s actions. Thus the
performance of the machine and skills of the operator could
be increased by recognizing the non-value-adding actions
and by giving feedback to the operator how to avoid them.

Operator supporting feedback systems are often referred
as intellingent tutoring systems (ITS). There are successful
examples of utilizing ITS in various applications, like web-
based training of different school subjects such as physics
or mathematics reported by Ozdemir and Alpaslan [2000],
or operation of an industrial process reported by Hiroshi
et al. [1996]. Nevertheless, the developed systems are
usually based on training students by a designed stepwise
training program in a virtual learning environment. These
systems typically assume that the student’s intial and
current knowledge states are known. Given the initial and
current states of expertises one can give feedback about
the areas of improvement for the student. However, if such
tutoring, or coaching systems are applied in online use for
tutoring the operators of an industrial process, it is not
feasible to assume that there is knowledge available about
neither the initial knowledge state nor the experience
gained since. Therefore, a solution which is able to give
feedback about the sources of improvement potential to
the student, regardless about the prior knowledge of the
student’s level of expertise is needed.

This paper approaches the problem from a control engi-
neer’s point of view. The human operator is regarded as
the central part of the man-machine system. To optimize
the overall performance of the system, the goal in the im-
provement of operator skills should be the full utilization
of the machine performance. The approach involves the
following steps:

i. Modeling productivity regarding the task perfor-
mance metrics available

ii. Determination of the most significant improvement
potential sources based on the current productivity
and the task performance metrics

iii. Presenting the feedback to the operator
iv. Assessment of the efficiency of the feedback

This paper proposes a solution for the first step and gives
a guideline of how the second step could be approached on
the basis of the gradient of the productivity model. More-
over, the use of the corrective feedback recommendation
for comparing the operators’ work styles is described. The
third and fourth steps are left for future work.

This paper is organized as follows. First, the cut-to-length
forest harvester is introduced and the operator work is
described in order to give an idea about the challenges in
operating the machine. The reseach problem of this paper
is introduced in Section 2. The solution proposals to the
problems are given in Section 3. The experimental results
are presented in Section 4. The conclusions are presented
at the end of the paper.

2. PROBLEM STATEMENT

Mechanized timber harvesting can be divided into two
main categories by means of how the stems are processed
in the forest, namely full-tree and cut-to-length methods.
In Scandinavia, the most common is the cut-to-length
method where trees are felled, delimbed and bucked 1 at
the logging site with a forest harvester. The value of the
stem is maximized by an optimization system which assists
in bucking by suggesting the optimal cutting points. The
value of the log depends on its grade, that is, the intended
use of the log as end product. For example, the stock logs
can end up to be sawn to planks in sawmills and the pulp
logs are processed to pulp in pulp mills. The grade of the
log depends e.g. on its dimensions. A forwarder carries
the logs to the roadside for further transportation. It also
sorts the logs into distinct piles by their grades in order
to enhance the effectiveness of the whole logistic chain. A
cut-to-length forest harvester is shown in Fig. 1.

Fig. 1. A cut-to-length forest harvester. (Anon [2007]
)

Operating with the forest harvester requires good motor-
sensory, decision making and problem solving skills. The
operator needs to be familiar with the control system, be
able to make fast decisions, and plan the work such that it
is accomplished with minimal amount of non-value-adding
motions and actions. The varying operating conditions
such as tree sizes, weather and terrain conditions make the
operator’s work even more challenging. Because the work
is very complex, the working styles between two operators
may differ considerably. Each of the styles has pros and
cons. One style can lead to better productivity but the
cost can be the loss of fuel efficiency, for example.

Currently professional operators do not get any other feed-
back about their work than the resulting overall produc-
tivity of their work. They can get the information about
their relative productivity level compared to statistical
reference levels, but not the information about their work
style or the work areas that their performance might be
low. The operator’s performance can be measured online
in task level. The objective of this paper is to find a de-
pendency between performance variables measured online
and the productivity of the machine in different operating
conditions. Based on the productivity model, it is pos-
sible to give instructions to the operator where to focus

1 Bucking is cutting the trees to logs with desired lengths.
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when trying to achieve better productivity. In addition,
the instructions can be used to analyze the operator’s
performance and work style.

3. PROPOSED SOLUTION

Assume that there are N variables which describe the
performance of the human operator in various tasks. Let
those variables be denoted by xi, where 1 ≤ i ≤ N ,
which can be collected into vector x = (x1, x2, . . . , xN ).
Furthermore, it is assumed that there are M variables de-
scribing the prevailing operational conditions. Let them be
denoted by vector ξ = (ξ1, ξ2, . . . , ξM ). If the productivity
is denoted by y a mapping f from performance metrics
and operational conditions can be constructed as

y = f(x; ξ), (1)

which is assumed to be differentiable. A semicolon “ ;” is
used to emphasize the difference between the input perfor-
mance values x and input parameters ξ. The parameters
might include, for example, a separate model f for each
distinct operating point.

By using the performance variables x and the operational
conditions ξ an expert operator can be defined. The expert
operator represents the “optimal” performance in the given
operational conditions. If the productivity of the system
can be modeled by (1), the values of the task performance
metrics to achieve the optimal productivity are found by
an inverse mapping f−1. However, if the mapping is not
linear, the inverse can be hard to define analytically. In
addition, since there are more inputs than outputs several
combinations of inputs can lead to the same output.
Therefore, it is not important to give exact target values
for the input. It is enough that the performance is at
desirable level. Formally, the productivity of the expert
operator in operating conditions ξ is found by

yexpert = max
x

f(x; ξ) (2)

In this paper the productivity of the expert operator is 90
percentile productivity limit as a function of ξ computed
over the whole database.

3.1 ANFIS model for productivity

The first challenge is to solve the mapping (1), which
gives the relation between the operational conditions,
task performance metrics, and the productivity. In this
paper, an ANFIS type fuzzy model is used to model
productivity. A fuzzy model was chosen because it can
deal with nonlinearity and the interpretation of the model
is easier than, for example, conventional neural networks.
An additional advantage is the availablity of powerful tools
to build the fuzzy models. The structure of an ANFIS
system is shown in Fig. 2. The inputs xi are fuzzified based
on the fuzzy sets Aik. The rule premises are evaluated
with the product operator giving weights wi. The weights
are normalized to sum up to unity in the N layer. The
final ouput of the system is the weighted sum of the
linear output layer activation functions of inputs xi. (Jang
[1993])

The fuzzy model is initialized by using the subtractive clus-
tering method described in Section 3.2. After obtaining the
initial rulebase and membership functions, the parameters
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Fig. 2. Structure of an ANFIS fuzzy system with two
inputs. (Adapted from Jang [1993])

of the fuzzy model are trained by using the hybrid training
algorithm. The algorithm is described in Jang [1993].

ŷ(x; ξ) =

∑K

k=1 wk(x; ξ)fk(x; ξ)
∑K

k=1 wk(x; ξ)

=

K
∑

k=1

w̄k(x; ξ)fk(x; ξ), (3)

where wk(x; ξ) =
∏N

i=1 µAik
(xi). Thus, the output value

is the weighted sum of the (linear) functions fi and the
weights are obtained by evaluating the inputs over the
rulebase.

In order to decide what are the most significant potential
areas of improvement the gradient of the estimator is
needed to be defined. The input membership functions are
differentiable and the output membership functions are
linear. Hence, the gradient becomes

∇xŷ(t) =

(

∂ŷ

∂x1

,
∂ŷ

∂x2

, ...,
∂ŷ

∂xN

)

, (4)

where ∇x describes the gradient of the estimator with
respect to the performance variables x. The operating
conditions are assumed to remain constant. The partial
derivatives are obtained using the chain rule for each layer
of the ANFIS network similarly with the derivation of the
training rule in Jang [1993].

3.2 Subtractive clustering

The description of the subtractive clustering algorithm
follows one presented by Chiu [1996] except for the no-
tation. Let xi describe the ith feature vector. Suppose
that there are N feature vectors in total to be clustered.
The data is assumed to be scaled such that each value
is inside a unit hypercube. At the beginning each feature
vector is considered as a cluster center. A measure for the
potentiality of the ith feature vector to serve as a cluster
center is defined as

Pi =

N
∑

j=1

e−α‖xi−xj‖
2

, (5)

where, α = 4
r2

α
and rα is a positive constant. Let κr denote

the reject ratio, that is, the ratio defining the minimum
potential fraction of the first cluster which is accepted as
new cluster center. Moreover, let κa denote the maximum
potential fraction of the first cluster below which a new
feature vector is accepted as a new cluster center. The kth
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cluster center is denoted by x
∗
k and its potential by P ∗

k .
The cluster potentials are revised by

Pi ⇐ Pi − P ∗
k e−β‖xi−x

∗
k‖

2

, (6)

where β = rβα.

Initialization: Set the first cluster center as
P ∗

1 = Parg max1≤i≤N Pi
and

x
∗
1 = xarg max1≤i≤N Pi

Do
For all cluster centers 1 ≤ k ≤ K

For all feature vectors 1 ≤ i ≤ N

Pi ⇐ Pi − P ∗
k e−β‖xi−x

∗
k‖

2

If Pi ≥ κaP ∗
1

K ⇐ K + 1
x
∗
K ⇐ xi

P ∗
K ⇐ Pi

While P ∗
K ≥ κrP

∗
1

The algorithm has converged once the potentials of all
feature vectors are within a certain fraction of the potential
of the first cluster. The advantage of the algorithm is that
it quite easy to implement and that it is not necessary to
know the number of cluster centers beforehand. Therefore,
it is suitable for providing the initial membership functions
and rulebase for a fuzzy system.

3.3 Corrective feedback algorithm

As the objective is to optimize the productivity of the
machine, a solution would be to find a sequence of correc-
tive actions to increase the productivity. If formulated as
such, a reasonable solution to find a route towards better
productivity is to use the gradient descent method. Letting
x(t) denote the measured value for performance vector at
t, the local objective value x

Objective can be obtained by
adjusting the performance variables to the direction of the
gradient of the estimated performance. That is,

x
Objective(t + 1) = x

Measured(t) + γ(t)∇xŷ(t), (7)

where γ(t) denotes the updating step size at t and ∇xŷ(t)
the gradient of the estimated performance with respect to
x.

Since the feedback algorithm is based on the gradient of
the estimated productivity, it is reasonable to ensure the
validity of the estimate before defining the feedback. Thus,
the updating step size is made to depend on the estimation
error e(t) = y(t)− ŷ(t). If e(t) is large, the estimate is not
reliable and no feedback is given.

(1) Evaluate the improvement potential, that is, the dif-
ference between current productivity y(t) and the ex-
pert eexpert(t) = min(yexpert−y(t), 0). If eexpert(t) > 0
then go to the second step. Otherwise go the the last
step.

(2) Estimate productivity using (3).
(3) Evaluate the gradient of the estimate using (4).
(4) Evaluate the estimation error e(t) = y(t) − ŷ(t). If

|e(t)| < emin set γ(t) = g(y(t), yexpert) otherwise
γ(t) = 0. 2

(5) Set the new objective values for the performance
variables according to (7).

(6) Set t = t + 1 and go to the first step.

2 0 ≤ g(·) ≤ 1 decreases as eexpert decreases.

The algorithm is applied such that the time instant t
describes a suitable period of time, for example, one work
shift. The mapping f needs to be smooth with respect to
the parameters x so that the gradient can be computed.
In addition, if there are local minima, the productivity
might be in non-acceptable level, but the feedback is not
given since the gradient is zero. This should be taken into
account in the implementation of the algorithm. However,
in this paper the challenge of local minima is not discussed.

3.4 Comparison of operator’s work styles

The gradient vectors given by the corrective feedback
algorithm can also be used to analyze the operators’ work
styles. The rationale for this is that if the algorithm
suggests similar actions to two operators then, regardless
of their productivity, they have same improvement areas
and therefore also similar work styles. A natural similarity
measure for two vectors with possibly different magnitudes
is the cosine measure. For two vectors v1 and v2 the cosine
similarity measure is defined by the cosine of the angle
between the vectors, that is

dc =
v1 · v2

‖v1‖2 ‖v2‖2

, (8)

where “ ·” denotes the inner product and ‖vi‖2 the eu-
clidean norm of the vector vi. The measure dc is one if the
vectors are parallel, zero if they are orthogonal and minus
one if they are opposite. Therefore, the cosine similarity
between the average gradient vectors of two operators
describe the similarity of their work styles.

4. EXPERIMENTAL RESULTS

4.1 Experimental data

Working with the forest harvester varies depending on the
market, that is, the geographical location of the workplace.
Therefore, for this experiment only data from Finnish and
Swedish stands were selected. In total, data from 13 oper-
ators were selected for this experiment. Several quantities
about the performance in various tasks, and productivity
in diferent operating conditions were calculated for each
work shift, i.e. each eight hour period of work.

4.2 Modeling the productivity

The data gathered from each operator were gathered into
vectors describing the productivity y, performance metrics
x and the operational conditions ξ. Half of the vectors
were selected randomly to form the training data set. The
remaining half of the data were split into validation and
checking sets. The number of vectors in the whole data set
was 3533 of which 1766 vectors were used for training, 883
vectors for checking, and 883 for validation.

The ANFIS model was initialized by using the subtractive
clustering algorithm with parameters rα = 0.5, rβ = 1.25,
κr = 0.15, and κa = 0.5. Two clusters were defined and
thus the resulting ANFIS model had two rules. The input
membership functions were Gaussian and the ouput mem-
bership functions linear. The model was trained using the
training data described above. In addition, the checking
data was used to determine the “early stopping” instant,
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Fig. 3. Measured against estimated productivity for the
validation data.

i.e. the iteration round which gives minimum value for the
estimation error of the independent data set.

The model was validated by using a separate validation
data set containing 1652 vectors. In Fig. 3, the true
productivity and the estimated productivity given by the
trained model are plotted against each other. The model
seems to give good approximation for the productivity for
the independent validation data set.

4.3 Operator analysis

The gradient based corrective action recommendation al-
gorithm can also be used in offline analysis. One simply
runs the algorithm for each work shift data vector and
stores the respective recommendation values γ(t)∇xŷ(t)
of (7). Then by studying the distributions of the recom-
mendation values the main improvement potential areas
for the operator can be recognized.

Among thirteen operators, three were chosen for the im-
provement potential analysis. The improvement recom-
mendations were computed for all work shift vectors of
each operator. The results of the operator analysis are
shown in Table 1. The relative productivity (RP) describes
the ratio between the operator’s average producrivity and
the average productivity of all operators. So the greater
RP the better the operator’s productivity is in comparison
with an average operator. The best operator is OP1. The
algorithm does not suggest significant actions to improve
the productivity, since it is already in a high level. OP1
should try to decrease the values of the variables x3 . . . x7

of which particularly x5 should be focused on. Similarly
for OP2, the algorithm suggests to decrease the values of
x3 . . . x7 but especially x3 and x5 should be decreased.
For the operator with the worst productivity, OP3, the
algorithm suggest significant actions. He/she should pay
attention to to increase the values of x1 . . . x3. In addi-
tion, the values of x4, x6 and x7 should be significantly
decreased to improve the productivity.

In addition to the improvement potential analysis, also the
work styles of the three operators were compared against
each other. The average gradient vectors were computed
for each operator, which were used to obtain the cosine

Table 1. The relative productivities and the
improvement recommendations for the opera-
tors performance variables given by the gradi-
ent algorithm. The number of plus/minus signs
describes the level the value of the performance
metric should be increased/decreased. Nothing

needs to be done if the cell is empty.

OP1 OP2 OP3

RP 1.729 1.113 0.666

x1 +++
x2 +++
x3 - - - +++
x4 - - - - -
x5 - - - - - -
x6 - - - - -
x7 - - - - -

Table 2. Operator work style analysis with
the cosine similarity between the operators’

average gradient vectors.

OP1 OP2 OP3

OP1 1.000 0.957 0.437
OP2 0.957 1.000 0.303
OP3 0.437 0.303 1.000

measures dc using (8). The values of dc between the aver-
age gradient vectors of the operators are shown in Table 2.
One can easily note that the operators OP1 and OP2 have
similar work styles, of which OP3 differs considerably. The
result feels reasonable since the productivity of OP3 is very
low. Therefore, it is likely that the skills of OP3 are not in
the same level as OP1 or OP2.

4.4 Simulation of the gradient descent algorithm

The performance optimization algorithm was simulated
based on the models (3) and (2). The expert operator’s
productivity was defined as the 90th percentile value of
productivity in each operational conditions. The updating
step size was defined as a sigmoid function whose value
decreased to zero as the obtained performance approached
expert’s performance.

The simulation proceeds as follows. A sample x with low
respective productivity y was chosen as initial value. The
productivity was estimated using (3). The gradient with
the performance variables was estimated using (4). The
gradient-based updating rule (7) was evaluated. However,
since it is not reaslistic to assume that the operator’s skills
would develop ideally, the operator’s performance was in-
creased with probability 0.1. If a uniform random number
obtained a value greater than 0.9, the new objective values
for the productivity were obtained. Because the simulation
does not include the model about operator’s behavior and
comprehension of the feedback, the new objective values
for the performance variables were set directly as the new
performance values. Thus, the simulation result presented
here is just simulation of the gradient-descent algorithm
which naturally converges towards the optimum. The re-
sult of an imaginary performance development in the sim-
ulation is shown in Fig. 4. At each time instant t a new
objective value was computed using (7). The simulation
was stopped when the performance is close enough to the
level determined by an expert operator model (2).
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Fig. 4. An illustrative simulation results for an imaginary
performance development of the operator and the
evolution of the task performance variables during the
simulation.

The evolution of the task performance variables during the
simulation is shown in the second plot of Fig. 4. The values
of the variables x1 and x2 increase throughout the simula-
tion whereas values of x4 . . . x7 decrease. In the beginning,
the value of x3 first slightly increases and then drops back
to zero. The simulation shows that the performance vari-
ables not only have impact on productivity but have also
mutual dependencies. The operating point was constant
during the simulation, but in practice this is not the case.
Tree sizes, weather conditions, and stand properties vary,
which makes every processing situation unique and causes
severe noise to the measurements. Therefore, in practice
the operator’s performance should be filtered so that only
the change in the average performance would change the
objective values.

5. CONCLUSIONS

An ANFIS model for the productivity of a forest harvester
was proposed. In addition, an algorithm which can give
feedback about the most significant areas of improvement
in the operator’s actions to improve the productivity of
the machine was developed. The productivity model was
trained and validated using real processing data gathered
from several machines with several operators. It was shown
how the operators’ performance and work style can be
analyzed offline by the gradient-based approach. The idea

of the feedback algorithm was shown by using a simple
simulation.

The inputs of the productivity model in this paper were
mostly time metrics describing the performance in differ-
ent work tasks. The gradient-based approach gives a de-
scription about the sources of improvement potential but
it does not provide direct guideline of how the operator can
achieve the expert level. On the other hand, the mere ex-
istance of objective values has encouraged some operators
to improve their performance. A motivated operator finds
a way to do it as long as there is a reference to compare to.
In addition, the utilization of the gradient-based feedback
algorithm needs further solutions for several challenges.
How to present the feedback to the operator? Does the
feedback increase performance? Nevertheless, the results
presented in this paper are encouraging and provide a basis
to tackle with the further challenges.

Yet another point which is needed to emphasize is that
mere productivity optimization is not feasible. One needs
to consider the overall efficiency of the process being opti-
mized. The overall efficiency is a tradeoff between produc-
tivity, fuel economy and quality of work. One could, for
example, attach the three quantities into a cost function
to minimize the total cost.
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