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Abstract: This note deals with a new observer synthesis method for a class of nonlinear discrete-
time systems. Thanks to the use of the Differential Mean Value Theorem (DMVT), we have
obtained easily an extension of the work established in Zemouche et al. (2006) and Fan and Arcak
(2003) to the discrete-time case. Based on the Lyapunov stability, a new sufficient synthesis
condition is proposed. This condition is expressed in term of Linear Matrix Inequality (LMI)
and then it is easily tractable using standard convex optimization algorithms. An extension to
observer-based control is also presented. The design of the observer-controller gains is given
in two manners. Firstly, the gains are computed by solving a LMI condition under an equality
constraint. Since this latter induce a conservatism for the approach, then a systematic algorithm,
that avoids the equality constraint, is proposed to solve the problem of observer-based control
in two steps.

Keywords: Nonlinear discrete-time systems, Observer design, Observer-based control, LMI
approach, Lyapunov stability, the Differential Mean Value Theorem (DMVT), Linear
Parameter Varying (LPV) systems.

1. INTRODUCTION

In the past, observer design problem for nonlinear contin-
uous time systems has been widely investigated, and sev-
eral state observer design techniques are proposed Keller
(1987), Krener and Respondek (1985), Rajamani (1998),
Raghavan and Hedrick (1994), Gauthier et al. (1992),
Gauthier and Kupka (1994), Hou and Pugh (1999). Little
attention has been paid toward discrete-time case. The
only approach used in the past for the discrete time case
is the famous Extended Kalman Filter (EKF) Boutayeb
and Aubry (1999), Reif et al. (1999). However, it has
suffered from the lack of guaranteed stability. Only local
convergence is ensured with an additional drawback that
is great sensitivity to initializations.
On the other hand, research in the state observation field
was recently directed towards nonlinear discrete time sys-
tems. Many alternative observer design methods to the
EKF are established in the recent literature, see Ibrir
(2007a), Ibrir et al. (2005), Ibrir (2007b), Yaz et al. (2007),
Sundarapandian (2004) and Sundarapandian (2006) just
to mention some recent works.
In this paper, we present a new state observer design
method for a class of nonlinear discrete time systems.
The asymptotic convergence of the proposed observer is
guaranteed globally and without any approximation of the
parameters of the system. Thanks to the use of the DMVT,
we have established easily an extension, to discrete time
systems, of the result of Zemouche et al. (2006), which
is also an improvement of works proposed in Fan and

Arcak (2003) and Arcak and Kokotovic (2001). Based
on the Lyapunov stability theory, a new design method
is proposed. Using a new reformulation of the Lipschitz
property for differentiable functions, a new sufficient syn-
thesis condition is established. This condition, expressed
in term of LMI, overcome the conservatism related to the
approaches based directly on the classical Lipschitz con-
dition, as shown in Zemouche et al. (2006) and Zemouche
et al. (2007) for the continuous time case.
The proposed approach is also applied to solve the problem
of observer-based control. Two methods are proposed to
solve the problem. In the first one, the observer-controller
gains are computed by solving a LMI condition under
an equality constraint. Since this equality constraint is
difficult or impossible to be solved for certain nonlinear
systems with single input as shown in Ibrir et al. (2005),
then a second alternative method is presented. This latter
can be summarized in a systematic algorithm that solve
the problem of observer-based control in two steps. The
main advantage of this algorithm is that the equality
constraint, that induce a conservatism for the approach,
is eliminated. This algorithm consists to compute firstly
the controller gain by solving a certain set of Linear Ma-
trix Inequalities (LMIs). Using the resulting value of the
controller gain, we determine the observer gains by solving
a new LMI.
It should be noticed that the two approaches used to syn-
thesize the observer-controller gains are different. Indeed,
in the first step of the algorithm, it is required to proceed
as in Zemouche et al. (2007) in order to lead to a LMI
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condition that provides easily the controller gain. In fact,
the idea consists to use the DMVT in order to transform
the stabilization problem of a Lipschitz nonlinear system
to the stability of a certain LPV system.

The rest of this paper is organized as follows. In section 2,
we introduce the problem formulation. the observer syn-
thesis method is given in section 3. An extension of the
proposed method to solve the problem of observer-based
control is presented in section 4. Finally, we end this note
by some conclusions in section 5.

Notations : Throughout this paper, we use the following
notations :

• (⋆) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this

matrix is positive definite (negative definite);

• es(i) =
(

0, ...,0,

i th
︷︸︸︷

1 , 0, ...,0
︸ ︷︷ ︸

s components

)T
∈ R

s, s ≥ 1 is a vector of

the canonical basis of R
s;

• The set Co(x, y) is the convex hull of the set {x, y},
i.e.

Co(x, y) =
{

λx + (1 − λ)y, λ ∈ [0, 1]
}

.

2. PROBLEM FORMULATION

Consider the class of nonlinear discrete-time systems de-
scribed by the following equations :

xk+1 = Axxk + Auuk + Bf(xk) (1a)

yk = Cxk (1b)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector and y ∈ R

p is the output vector. Ax, Au, B
and C are constant matrices of adequate dimensions. The
function f : R

n 7→ R
q is differentiable with respect to x

and without loss of generality, we assume that f(0) = 0.
We know that there exists always a matrix Hi ∈ R

si×n for
all i ∈ {1, ..., q} so that :

f(x) =








f1(H1x)
.
.
.

fq(Hqx)








. (2)

Assumption 1. Assume that the function f satisfies the
following condition :

aij ≤
∂fi

∂ζi
j

(ζ) ≤ bij , ∀ ζi ∈ R
si (3)

The condition (3) implies that the differentiable function
f is γ-Lipschitz where

γ =

√
√
√
√

i=q
∑

i=1

j=si∑

j=1

max
(

|aij |2, |bij |2
)

.

The reformulation of the Lipschitz condition for differen-
tiable functions as in (3) plays an important role on the
feasibility of the synthesis conditions and avoids high gain
as shown in Zemouche et al. (2007). In addition, it is shown

in Alessandri (2004) that the use of the classical Lipschitz
property leads to restrictive synthesis conditions. Some
new results to cope with this restriction are detailed in Ze-
mouche and Boutayeb (2006) for discrete-time systems but
remain conservative.

Remark 2. Without loss of generality we assume that the
nonlinear function f satisfies (3) with aij = 0 for all
i = 1, ..., q and j = 1, ..., s, where s = max

1≤i≤q
(si). Indeed,

if there exist subsets S1 ⊂ {1, ..., q} and S2 ⊂ {1, ..., s}
such that aij 6= 0 for all (i, j) ∈ S1 × S2, we can consider
a new function

f̃(xk) = f(xk) −
( ∑

(i,j)∈S1×S2

aijHijHi

)

xk

where
Hij = eq(i)e

T
si

(j).

Therefore, f̃ satisfies (3) with ãij = 0 and b̃ij = bij − aij ,
and then we rewrite (1a) as

xk+1 = Ãxk + Auuk + Bf̃(xk)

with
Ã = Ax + B

∑

(i,j)∈S1×S2

aijHijHi.

Now, we consider the following state observer, which is a
generalization of that of Fan and Arcak (2003) to discrete-
time systems :

x̂k+1 = Axx̂k + Auuk + Bf̂(x̂k) + L
(

yk − Cx̂k

)

(4a)

f̂i(x̂k) = fi

(

Hix̂k + Ki

(

yk − Cx̂k

))

(4b)

where f̂i is the ith component of f̂ .
Then, the aim is to find the gains L ∈ R

n×p and Ki ∈
R

si×p for i = 1, ..., q, such that the estimation error

εk = xk − x̂k (5)

converges exponentially towards zero.
The dynamics of the estimation error is given by :

εk+1 =
(

Ax − LC
)

εk + B
(

f(xk) − f̂(x̂k)
)

. (6)

Using the DMVT given firstly in Zemouche et al. (2007),
there exist zi ∈ Co(vi, wi) for all i = 1, ..., q such that :

f(xk) − f̂(x̂k) =

i=q
∑

i=1

j=si∑

j=1

hij(k)Hijχi (7)

where

χi =
(

Hi − KiC
)

εk (8)

hij(k) =
∂fi

∂vi
j

(

zi(k)
)

(9)

vi = Hixk, wi = Hix̂k + Ki

(

yk − Cx̂k

)

. (10)

Then, the estimation error dynamics (6) becomes :

εk+1 =
(

Ax − LC
)

εk +

i=q
∑

i=1

j=si∑

j=1

hij(k)BHijχi (11)

3. OBSERVER SYNTHESIS METHOD

In this section, we introduce the main result of this paper,
which consists in a new observer synthesis method for
a class of nonlinear discrete-time systems. We give a
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new sufficient stability condition ensuring the exponential
convergence of the estimation error towards zero. This
condition is expressed in term of LMI easily tractable.

Theorem 3. The estimation error (5) converges asymptot-
ically towards zero if there exist matrices P = PT > 0,
R, Ki, i = 1, ..., q of adequate dimensions such that the
following LMI is feasible :





−P M(K1, ..., Kq) AT
x P − CT R

(⋆) −Υ ΣP
(⋆) (⋆) −P



 < 0 (12)

M(K1, ..., Kq) =
[

M1(K1) · · ·Mq(Kq)
]

, (13)

Mi(Ki) =
[

(Hi − KiC)T ...(Hi − KiC)T

︸ ︷︷ ︸

si times

]

(14)

Σ =
(

B
[

H11 · · ·H1s1
H21 · · ·Hqsq

])T

, (15)

Υ = diag
(

β11Is1
, ..., β1s1

Is1
, β21Is2

, ..., βqsq
Isq

)

, (16)

βij =
2

bij

(17)

Then, the gain L is given by L = P−1RT and the matrices
Ki are free solutions of the LMI (12).

Proof. Choose the Lyapunov function candidate as fol-
lows :

Vk = εT
k Pεk

Considering the difference ∆V = Vk+1 − Vk along the
system (1), we have

∆V = εT

[(

Ax − LC
)T

P
(

Ax − LC
)

− P

]

ε

+ 2εT
(

Ax − LC
)T

P





i=q
∑

i=1

j=si∑

j=1

BHijζij





+





i=q
∑

i=1

j=si∑

j=1

BHijζij





T

P





i=q
∑

i=1

j=si∑

j=1

BHijζij





(18)

where

ζij = hij(k)χi. (19)

By exploiting the inequalities (3) in assumption 1, we
deduce that

i=q
∑

i=1

j=si∑

j=1

ζT
ij

(
1

hij

−
1

bij

)

ζij ≥ 0 (20)

Using (8) and (19), the inequality (20) becomes

i=q
∑

i=1

j=si∑

j=1

εT
(

Hi − KiC
)T

ζij −

i=q
∑

i=1

j=si∑

j=1

1

bij

ζT
ijζij ≥ 0 (21)

Therefore,

∆V ≤ εT

[(

Ax − LC
)T

P
(

Ax − LC
)

− P

]

ε

+ 2εT
(

Ax − LC
)T

P





i=q
∑

i=1

j=si∑

j=1

BHijζij





+





i=q
∑

i=1

j=si∑

j=1

BHijζij





T

P





i=q
∑

i=1

j=si∑

j=1

BHijζij





+ 2εT

i=q
∑

i=1

j=si∑

j=1

(

Hi − KiC
)T

ζij −

i=q
∑

i=1

j=si∑

j=1

2

bij

ζT
ijζij

(22)

The inequality (22) can be rewritten in the following
simple form :

∆V ≤

[
ε
ζ

]T [
Γ11 Γ12

ΓT
12 ΣT PΣ − Υ

] [
ε
ζ

]

(23)

where

Γ11 =
(

Ax − LC
)T

P
(

Ax − LC
)

− P (24)

Γ12 = M
T (K1, ..., Kq) +

(

Ax − LC
)T

PΣ (25)

ζ = [ζT
11, ..., ζ

T
1s1

, ζT
21, ..., ζ

T
qsq

]T (26)

and M(K1, ..., Kq), Σ, Υ are defined in (13), (15) and (16)
respectively.
Using the Schur Lemma and the notation R = LT P , the
inequality (12) is equivalent to

[
Γ11 Γ12

ΓT
12 ΣT PΣ − Υ

]

< 0. (27)

Consequently, we deduce that under the condition (12),
the estimation error converges asymptotically towards
zero. This ends the proof of theorem 3.

4. OBSERVER-BASED CONTROL

In this section, we present an extension of the previous
result to observer-based control. The aim is to investigate
the stabilization problem of the class of nonlinear systems
defined in (1)-(2)-(3). We shall design an observer of the
form (4) so that the system (1) under the linear feedback

uk = −F x̂k

is globally asymptotically stable. We have






xk+1 =
(

Ax − AuF
)

xk + AuFεk + Bf(xk)

εk+1 =
(

Ax − LC
)

εk + B
(

f(xk) − f̂(x̂k)
) (28)

We can write (28) as follows :

[
xk+1

εk+1

]

=





(

Ax − AuF
)

AuF

0
(

Ax − LC
)





[
xk

εk

]

+

[
B 0
0 B

] [
f(xk)

(

f(xk) − f̂(x̂k)
)

] (29)

From (7), we have

f(xk) − f̂(x̂k) =

i=q
∑

i=1

j=si∑

j=1

hij(k)Hij

(

Hi − KiC
)

εk.
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Also, from the DMVT, there exist z̄i(k) ∈ Co(0, xk) such
that

f(xk) =

i=q
∑

i=1

j=si∑

j=1

h̄ij(k)HijHixk (30)

where

h̄ij(k) =
∂fi

∂vi
j

(

z̄i(k)
)

Therefore, (29) becomes







[
xk+1

εk+1

]

=





(

Ax − AuF
)

AuF

0
(

Ax − LC
)





[
xk

εk

]

+

i=q
∑

i=1

j=si∑

j=1

[
B 0
0 B

] [
Hij 0
0 Hij

]

ηij

ηij =

[

h̄ij 0
0 hij

][
Hi 0

0
(

Hi − KiC
)

] [
xk

εk

]

.

(31)

The objective consists to determine the matrices F, L and
Ki, i = 1, ..., q such that the system (31) is globally
asymptotically stable. Sufficient synthesis conditions are
given in the following theorem :

Theorem 4. If there exist matrices P1 = PT
1 > 0, P2 =

PT
2 > 0, a full rank matrix P̄1, matrices X, Y and Ki, i =

1, ..., q of adequate dimensions such that :

• the following LMI is feasible

Λ
(

P1, P2, X, Y, K1, ..., Kq

)

< 0 (32)

where Λ is defined in (34);
• the equality constraint holds

P1Au = AuP̄1 (33)

then, the system (31) is globally asymptotically stable un-
der the action of the observer-based linear static feedback

F = P̄−1
1 X

with

L = P−1
2 Y T

and matrices Ki, i = 1, ..., q free solutions of (32).

Proof. To prove this theorem, we use the Lyapunov
function candidate

Vk =

[
xk

εk

]T [
P1 0
0 P2

] [
xk

εk

]

Now, we calculate the difference ∆V = Vk+1 − Vk.

∆V =

[
xk

εk

]T
(



(

Ax − AuF
)

AuF

0
(

Ax − LC
)





T
[
P1 0
0 P2

]

×





(

Ax − AuF
)

AuF

0
(

Ax − LC
)



−

[
P1 0
0 P2

])[
xk

εk

]

+ 2

[
xk

εk

]T





(

Ax − AuF
)

AuF

0
(

Ax − LC
)





T
[
P1 0
0 P2

]

×





i=q
∑

i=1

j=si∑

j=1

[
B 0
0 B

] [
Hij 0
0 Hij

]

ηij





+





i=q
∑

i=1

j=si∑

j=1

[
B 0
0 B

] [
Hij 0
0 Hij

]

ηij





T
[
P1 0
0 P2

]

×





i=q
∑

i=1

j=si∑

j=1

[
B 0
0 B

] [
Hij 0
0 Hij

]

ηij



 .

(39)

Using inequalities (3), we deduce that

i=q
∑

i=1

j=si∑

j=1

ηT
ij






1

h̄ij

−
1

bij

0

0
1

hij

−
1

bij




 ηij ≥ 0

which is equivalent to

[
xk

εk

]T i=q
∑

i=1

j=si∑

j=1

[
Hi 0

0
(

Hi − KiC
)

]T

ηij

−

i=q
∑

i=1

j=si∑

j=1

ηT
ij






1

bij

0

0
1

bij




 ηij ≥ 0.

(40)

Consequently, using the notations (35), (36), (37) and (38),
we have

∆V ≤

[
xk

εk

ηk

]T

Π

[
xk

εk

ηk

]

(41)

where

ηk = [ηT
11, ..., η

T
1s1

, ηT
21, ..., η

T
qsq

]T

and Π is given in (42). Using the equality constraint (33)
and the notations Y = LT P2, X = P̄1F , the inequality
Π < 0 is equivalent to (32) by Schur lemma. This ends the
proof of theorem 4.

Note that the design of the gains L and F may be difficult
or impossible for some nonlinear systems because of the
required equality constraint (33). This is, for example,
the case of nonlinear systems with single input, where the
equality constraint P1Au = AuP̄1 is reduced to P1Au =
αAu with α ∈ R.
In order to eliminate the equality constraint (33) from the-
orem 4, we must choose a priori the controller gain F and
then we determine the observer gains L and Ki, i = 1, ..., q,
which ensure ∆V < 0, by proceeding as follows :
Let AF = Ax − AuF and Ā = AuF . Therefore, starting
from inequality (41), we have ∆V < 0 if Π < 0 or
equivalently
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Λ
(

P1, P2, X, Y, K1, ..., Kq

)

=
















−

[
P1 0
0 P2

]

∆(K1, ..., Kq)





AT
x P1 − XT AT

u 0

XT AT
u AT

x P2 − CT Y





(⋆) −Φ Ω

[
P1 0
0 P2

]

(⋆) (⋆) −

[
P1 0
0 P2

]
















(34)

∆(K1, ...,Kq) =

[

∆1(K1) · · ·∆q(Kq)

]

, (35)

∆i(Ki) =








[

Hi 0

0 (Hi − KiC)T

]

...

[

HT
i 0

0 (Hi − KiC)T

]

︸ ︷︷ ︸

si times








(36)

Ω =

([
B 0
0 B

] [[
H11 0
0 H11

]

· · ·

[
H1s1

0
0 H1s1

] [
H21 0
0 H21

]

· · ·

[
Hqsq 0

0 Hqsq

]])T

, (37)

Φ = diag

([
β11Is1

0
0 β11Is1

]

, ...,

[
β1s1

Is1
0

0 β1s1
Is1

]

,

[
β21Is2

0
0 β21Is2

]

, ...,

[
βqsq Isq 0

0 βqsq Isq

])

. (38)

Π =








ΨT

[
P1 0
0 P2

]

Ψ −

[
P1 0
0 P2

]

∆(K1, ..., Kq) + ΨT

[
P1 0
0 P2

]

Ω

(⋆) Ω

[
P1 0
0 P2

]

ΩT − Φ








(42)

Ψ =





(

Ax − AuF
)

AuF

0
(

Ax − LC
)



 (43)














−

[
P1 0
0 P2

]

∆(K1, ...,Kq)

[
AT

F P1 0

ĀT P1 AT
x P2 − CT Y

]

(⋆) −Φ Ω

[
P1 0
0 P2

]

(⋆) (⋆) −

[
P1 0
0 P2

]














< 0

(44)

with

Y = LT P2. (45)

Then, the gain L = P−1
2 Y T and the free solutions

Ki,i=1,...,q ensure the global asymptotic stability of the
system (31).

On the other hand, the arbitrary choice of the matrix F
is not desirable. To be rigorous or to obtain a systematic
method to synthesize the controller gain, we propose to
find F that stabilizes the system

xk+1 =
(

Ax − AuF
)

xk + Bf(xk). (46)

For this, we proceed as in Zemouche et al. (2007).
From (31), the system (46) has the following Linear Pa-
rameter Varying (LPV) form :

xk+1 =
(

Θ(ρ) − AuF
)

xk (47)

where

Θ(ρ) = Ax + B

i=q
∑

i=1

j=si∑

j=1

h̄ij(k)HijHi (48)

and

ρ =
(

h̄11, ..., h̄qsq

)

. (49)

From assumption 1 (inequality (3)), the parameter vector
ρ belongs to a bounded convex domain Hq of which the
set of vertices is defined as follows :

VHq
=
{

α = (α11, ..., α1s1
, ..., αqsq

) : αij ∈ {aij , bij}
}

.

(50)
By considering as Lyapunov function Wk = xT

k S−1xk with
S = ST > 0, we have Wk+1 − Wk < 0 if

(

Θ(ρ) − AuF
)T

S−1
(

Θ(ρ) − AuF
)

− S−1 < 0.

Pre- and post multiplying the last inequality by S, we
obtain Wk+1 − Wk < 0 if

S
(

Θ(ρ) − AuF
)T

S−1
(

Θ(ρ) − AuF
)

S − S < 0

or equivalently
[

−S SΘT (ρ) − SFT AT
u

(⋆) −S

]

< 0. (51)

Using the convexity principle Boyd and Vandenberghe
(2001) and the notation X = SFT , the inequality (51)
holds if the following linear matrix inequalities (LMIs )
are feasible :
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[

−S SΘT (α) − XAT
u

(⋆) −S

]

< 0, ∀ α ∈ VHq
. (52)

Now, we can state the following theorem :

Theorem 5. If there exist a symmetric positive definite
matrix S and a matrix X of adequate dimensions so that
the LMIs (52) are feasible, then the nonlinear system (46)
is globally asymptotically stable for F = XT S−1.

To summarize, a procedure that allows to solve the
observer-based control problem or to design the observer-
controller gains, without any equality constraint, is given
in the following algorithm :

Algorithm : The observer-based control problem (28) is
solved in two steps. The advantage of this algorithm is
that the equality constraint of theorem 4, which induce a
conservatism for the approach, is omitted.

(i) Solve the LMIs (52) with respect to S, X and set the
controller gain

F = XT S−1

if a solution exists;
(ii) For the same value of F given in (i), solve the

LMI (44) with respect to P1, P2, Y and Ki, i = 1, ..., q.
If a solution exists, then the observer gains are given by

L = P−1
2 Y T

and Ki, i = 1, ..., q are free solutions of (44).

Remark 6. Note that in section 3, we cannot proceed as
in Zemouche et al. (2007). Indeed, if it is the case, there
will be couplings between the Lyapunov matrix P and the
gains Ki, which leads to nonlinear synthesis condition.

5. CONCLUSION

In this paper, we proposed a new observer design method
for a class of Lipschitz discrete-time systems. Thanks to
the use of the DMVT, a reformulation of the Lipschitz
property is introduced. The objective of this reformulation
is to reduce the conservatism of the techniques based on
the classical Lipschitz property. The stability analysis is
performed using a quadratic Lyapunov function. This lat-
ter provided a less restrictive synthesis condition expressed
in term of LMI. Two methods are proposed to extend the
proposed approach to solve the problem of observer-based
control. In the first one, the observer-controller gains are
computed by solving a LMI condition under an equality
constraint. Since this equality constraint is difficult or
impossible to be solved for certain nonlinear systems, then
an alternative method, that avoids solving the equality
constraint, is presented. This latter is summarized in an
algorithm that solve the problem in two steps. Because of
the lack of space here, no numerical example is given.
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