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Abstract: In this paper we study the problem of stability for one of the most popular models of coupled
phase oscillators, the Kuramoto model. The Kuramoto model is used to describe the phenomenon
of collective synchronization, in which an enormous system of oscillators spontaneously locks to a
common frequency although the oscillators have distinct natural frequencies. In the paper we consider
the stability of the Kuramoto model of coupled oscillators with identical natural frequency and provide a
stability analysis of phase difference equilibrium. The stability of the phase difference equilibrium make
it possible to apply the Kuramoto model in pattern recognition.
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1. INTRODUCTION

Collective synchronization phenomenon has long been ob-
served in biological, chemical and physical systems, when the
individual frequencies of coupled oscillators converge to a com-
mon frequency despite differences in the natural frequencies of
the individual oscillators. Biological examples include groups
of synchronously flashing fireflies (Buck [1988]) and crickets
that chirp in unison (Walker [1969]). One typical physical ex-
ample is Josephson junctions (see Wiesenfeld et al. [1998]).
The phenomenon has drawn considerable attention over the
past decade. Firstly, Weiner conjectured its involvement in the
generation of alpha rhythms in the brain (Weiner [1958]). It
was then taken up by Winfree who used it to study circadian
rhythms in living organisms (Winfree [1980]). Winfree’s model
was significantly extended by Kuramoto who developed results
for what is now well known as the Kuramoto model (Ku-
ramoto [1975],Kuramoto [1984]). A comprehensive summary
of Kuramoto’s work, and later attempts to answer the questions
that were raised by his formulations, can be found in Strogatz
[2000].

The synchronization of coupled oscillators has triggered a new
idea for computation. A novel computing paradigm, emerging
from a network of oscillators, has been studied (Acker et al.
[2003], Arbib [1995], Hoppensteadt et al. [1997]). Typically,
simple analog units such as artificial neurons in the network,
process information in parallel. Such networks perform pattern
recognition and associative recall via self-organization of neu-
rons. One candidate network is the weakly connected networks
of the Kuramoto model that can potentially be implemented
with identical coupled lasers (Hoppensteadt et al. [2000]).

In this paper, we first simply describe the model of a laser net-
work that can potentially be used to implement the Kuramoto
model. Then we anylyze the stability of the equilibrium in
phase differences of the nonlinear system, the Kuramoto model
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with identical natural frequency. We consider two forms of
connectivity among oscillators in the Kuramoto model: a global
connectivity and a local connectivity. With the global connec-
tivity every oscillator in the Kuramoto model is connected to all
the other oscillators, which forms all-to-all connectivity. With
the local connectivity, the oscillators are placed on a circle and
each oscillator is only connected to two neighboring oscillators,
which forms a ring. A detection technique based on the stability
of the equilibrium in phase differences of the Kuramoto model
has been proposed and can be found in Wang et al. [2005].

2. THE MODEL OF A LASER NETWORK

The network of coupled lasers has been described in detail
(Hoppensteadt et al. [2000]). Below is the brief description.
The lasers are written with the dimensionless rate equations as
follows:

Ėi = (1 + iα)NiEi + iωEi +
n

∑
j=1

ci jE j, (1)

Ṅi = µ [P−Ni − (1 + 2Ni)|Ei|2], (2)

where Ei and Ni are the complex electric field and the excess
carrier number of the ith laser, the derivatives ˙ = d/ds, s =
tτ−1

p is the time measured in units of the photon lifetime τp,

µ = τp/τs is the ratio of photon to carrier time scales, where
τs is the carrier lifetime, P is the pumping above threshold, α
is the linewidth enhancement factor, ω is normalized optical
frequency, and ci j are complex connection coefficients.

It is convenient to use polar coordinates Ei = rie
iφi and ci j =

si je
iψi j to rewrite the model (1) and (2) in the form

φ̇i = αNi + ω +
n

∑
j=1

si j

r j

ri

sin(φ j + ψi j −φi), (3)

ṙi = Niri +
n

∑
j=1

si jr jcos(φ j + ψi j −φi), (4)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 514 10.3182/20080706-5-KR-1001.3669



Ṅi = µ [P−Ni − (1 + 2Ni)|ri|2]. (5)

In the case of weak connection, the dynamical analysis of the
model (3),(4) and (5) shows that

(ri(t), Ni(t)) −→ (
√

P, 0),

and the phase φi(t) → ωt + φ0
i , where φ0

i is determined by the
initial conditions. If all ri(t) → r0, then the phase model (3) for
α = 0 has the Kuramoto model form (Kuramoto [1984])

φ̇i = ω +
n

∑
j=1, j 6=i

si j sin(φ j −φi + ψi j) (6)

where φi, i = 1, · · · ,n, are phase variables taking values in the
interval [−π ,π). The parameters si j and ψi j are assumed to

satisfy si j = s ji ≥ 0, ψi j = −ψ ji. The index i, refers to the ith

unit and these units are coupled.

Below we give an illustration about this convergence from a
single(isolated) laser.

A single laser can be described as follows:

φ̇ = αN + ω , (7)

ṙ = Nr, (8)

Ṅ = µ [P−N − (1 + 2N)|r|2]. (9)

Then equilibria in the magnitude of the electric field and the
excess carrier number (re,Ne) are given by solving ṙ = 0 and

Ṅ = 0: e1 = (
√

P,0)(minus case is trivial) and e2 = (0,P).

Jacobian matrix in term of (r,N) is:

A(r,N) =

[

N r

−2µ(1 + 2N)r −µ(1 + 2r2)

]

With the first equilibrium e1, Jacobian matrix is:

A(e1) =

[

0
√

P

−2µ
√

P −µ(1 + 2P)

]

.

The eigenvalues with respect to e1 are obtained by calculating

‖λ I−A(e1)‖ =

∥

∥

∥

∥

[

λ −
√

P

2µ
√

P λ + µ(1 + 2P)

]∥

∥

∥

∥

= λ 2 + µ(1 + 2P)λ + 2µP
= 0,

which gives two eigenvalues with negative real part:

λ1,2 =
−µ(1 + 2P)±

√

µ2(1 + 2P)2−8µP

2

, So the equilibrium e1 = (
√

P,0) is locally stable.

With the second equilibrium e2, Jacobian matrix is:

A(e2) =

[

P 0
0 −µ

]

.

The eigenvalues with respect to e2 are obtained by calculating

‖λ I−A(e2)‖ =

∥

∥

∥

∥

[

λ −P 0
0 λ + µ

]∥

∥

∥

∥

= (λ −P)(λ + µ)
= 0,

which gives one negative eigenvalue λ1 = −µ and one positive
eigenvalue λ2 = P. So the equilibrium e2 = (0,P) is unstable.

So for a single laser, (r(t),N(t)) locally converges to (
√

P,0).

As pointed by Hoppensteadt and Izhikevich in Hoppensteadt
et al. [1997], the phase differences, but not phases, play a key
role in the neurocomputing mechanism, We are interested in
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Fig. 1. Phase Differences Φd(t) in 3rd Kuramoto model
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Fig. 2. Phase Differences Φd(t) in 4th order Kuramoto model

the stability of equilibrium in phase differences of the Ku-
ramoto model. We consider two forms of connectivity: global
connectivity and local connectivity. In the next two sections,
we analyze the stability of phase difference equilibrium of the
Kuramoto model in these forms of connectivity.

3. STABILITY ANALYSIS OF THE KURAMOTO MODEL
WITH ALL-TO-ALL CONNECTION

The Kuramoto model with global connectivity can be written in
the following form (see Kuramoto [1984]):

φ̇i = ω +
n

∑
j=1, j 6=i

si j sin(φ j −φi + ψi j) (10)

where φi, i = 1, · · · ,n, are phase variables taking values in the
interval [−π ,π). The parameters si j and ψi j are assumed to

satisfy si j = s ji ≥ 0, ψi j = −ψ ji. The index i, refers to the ith

unit and these units are coupled.

In pattern recognition with networks of oscillators, phase rela-
tions, instead of phases, play an crucial role. It is important to
understand the dynamics and stability of the equilibria in phase
relation of the nonlinear systems. For simplicity, we denote that
φi j = φi − φ j and WLOG set that ψi j = 0. Denote two vectors
as follows:

Φ = [φ1 φ2 · · · φn]
T

Φd = [φ12 φ13 · · · φ1n φ23 φ24 · · · φ(n−1)n]
T

then the Kuramoto model can be rewritten as:

Φ̇ = −AT S sin(Φd)+









1
1
...
1









ω

and
Φd = AΦ
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where A is N × n matrix of rank n− 1 with N = n(n−1)
2

. Each

row of A corresponding to φi j of Φd has 1 and −1 at ith and jth

columns and 0 at all others.

A =



























1 −1 0 0 · · · 0 0
1 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

1 0 0 0 · · · 0 −1
0 1 −1 0 · · · 0 0
0 1 0 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1



























and S is a diagonal matrix and

Diag(S) = [s12 s13 · · · s1n s23 s24 · · · s(n−1)n]
T

Hence an ODE in phase difference variables can be written as
follows:

Φ̇d = −AAT S sin(Φd)
If si j = s (wlog to say si j = 1) and denote M = −AAT , then

Φ̇d = M sin(Φd)

It is easy to verify that N ×N matrix M has rank n − 1 and
is symmetric and negative semi-definite. So the matrix M has
n−1 negative eigenvalues and all other eigenvalues are 0. Then
there exits an orthonormal matrix P = [p1 p2 · · · pN ] such that
PT MP = Λ with

Λ =























λ1

λ2

. . .

λ(n−1)

0
. . .

0























where λi < 0 for i ≤ n − 1. Define by transformation α =
[α1 α2 · · · αN ]T = PT Φd and therefore we have

α̇ = PT M sin(Φd) = ΛPT sin(Φd).

Hence αi = pT
i Φd and α̇i = λi p

T
i sin(Φd) for i = 1, · · · ,N. Note

that α̇i = 0 for i ≥ n since λi = 0 for i ≥ n. Now we define a
function in phase differences as follows:

V (Φd) = V (α(Φd)) =
1

2

N

∑
i=1

α2
i (Φd).

It is obvious that V (Φd) = 0 at Φd = 0 and V (Φd) ≥ 0 at all
other Φd . Differentiating the function we get

V̇ (Φd) =
N

∑
i=1

λiαiα̇i =
n−1

∑
i=1

λiαiα̇i =
n−1

∑
i=1

λi(pT
i Φd)(pT

i sin(Φd)).

Because P is orthonormal, then Φd and sin(Φd) can be written
as:

Φd = ∑N
i=1 ci pi

sin(Φd) = ∑N
i=1 di pi

with ci = pT
i Φd , di = pT

i sin(Φd). For ‖ Φd ‖ small enough,
cidi ≥ 0. So

V̇ (Φd) =
n−1

∑
i=1

λi(pT
i Φd)(pT

i sin(Φd)) =
n−1

∑
i=1

λicidi ≤ 0.

Then the set in which V̇ (Φd) = 0 is

E = {Φd | V̇ (Φd) = 0}=∩n−1
i=1 (Ei1∪Ei2) =∪ ji∈{1,2}(∩n−1

i=1 Ei ji)
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Fig. 3. Convergence of phase difference trajectories to the
invariant set W from different initial conditions in 3rd

Kuramoto model

with
Ei1 = {Φd | pT

i Φd = 0}
Ei2 = {Φd | pT

i sin(Φd) = 0}.
The tangent plane to the surfaces Ei1 and Ei2 at point Φd0 are

Ti1 = {Φd | pT
i (Φd −Φd0) = 0}

Ti2 = {Φd | qT
i (Φd −Φd0) = 0}

where

qi =











p1
i

p2
i

. . .

pN
i











cos(Φd0).

Note:

Φ̇d = Pα̇ =
n−1

∑
i=1

λi pi p
T
i sin(Φd).

In the subset of E defined by ∩n−1
i=1 Ei ji with all ji = 2, it is easy

to verify that Φ̇d = 0 and hence this subset is invariant.

In the subset of E defined by ∩n−1
i=1 Ei ji with some ji = 1, wlog,

to say, ji = 1, i ≤ k and ji = 2, i > k for 1 < k ≤ n− 1, the

tangent plane to this subset is ∩n−1
i=1 Ti ji for the same j′is. Then

Φ̇d = Pα̇ =
k

∑
i=1

λi pi p
T
i sin(Φd)

is not in the tangent plane since

pT
i Φ̇d = λip

T
i sin(Φd) 6= 0

which means it is even not in Ti1 for i ≤ k. So the largest
invariant set contained in E is

W = ∩n−1
i=1 Ei2 = {Φd | pT

i sin(Φd) = 0, i = 1, · · · ,n−1}.

By LaSalle’s theorem, the solution Φd(t) approaches W as
t → ∞.

Fig.1 and 2 show that the phase differences in the 3rd and 4th or-
der Kuramoto models converge to constants respectively. Fig. 3
shows that the phase differences in the 3rd order Kuramoto
model converge to the invariant set W in 3 dimensional space.
Fig. 4 and 5 show that the the phase differences in the 4th order
Kuramoto model converge to the invariant set W in different
ways respectively.

Note: The solution Φd(t) moves but stays on the phase plane
defined by

n

∑
i=1

φi =
n

∑
i=1

φi(0)
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since
n

∑
i=1

φ̇i(t) = 0, all t.

Fig. 6 shows that the sum of phases in the 3rd order Kuramoto
model stays on the plane determined by the initial phase condi-
tion of the oscillators in the Kuramoto model.

4. STABILITY ANALYSIS OF THE KURAMOTO MODEL
IN FORM OF RING

We next consider a Kuramoto model in the form of local
connectivity that forms a ring of oscillators. In this case, the
Kuramoto model can be written as:

φ̇1 = ω + s12 sin(φ2 −φ1 + ψ12)+ s1n sin(φn −φ1 + ψ1n)
φ̇i = ω + si(i−1) sin(φ(i−1)−φi + ψi(i−1))

+si(i+1) sin(φ(i+1)−φi + ψi(i+1))
for i = 2, · · · ,(n−1)

φ̇n = ω + sn(n−1) sin(φ(n−1)−φn + ψn(n−1))
+sn1 sin(φ1 −φn + ψn1)

where si j = s ji and ψi j = ψ ji. Define φi j = φi − φ j and denote
the vectors as follows:

Φ = [φ1 φ2 · · · φn]
T

Φd = [φ12 φ23 · · · φ(n−1)n φn1]
T

Ψ = [ψ12 ψ23 · · · ψ(n−1)n ψn1]
T

Then we can have:

Φ̇ = −AT S sin(Φd −Ψ)

and

Φd = AΦ

where A is n× n matrix of rank n− 1. Each row of A corre-
sponding to φi j of Φd has 1 and −1 at ith and jth columns and
0 at all others.

A =













1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1
−1 0 0 0 · · · 0 1













S is a diagonal matrix and

Diag(S) = [s12 s13 · · · s1n s23 s24 · · · s(n−1)n]
T

Then we have an ODE on phase difference variables as follows:

Φ̇d = −AAT S sin(Φd −Ψ)+









1
1
...
1









ω

If si j = s (wlog to say si j = 1) and Ψ = 0, and denote M =
−AAT . Then

Φ̇d = M sin(Φd)

and

M = −2In +

[

I(n−1)

1

]

+

[

1
I(n−1)

]

=

















−2 1 0 0 · · · 0 0 1
1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 −2 1
1 0 0 0 · · · 0 1 −2

















It is easy to verify that the n× n matrix M has rank n− 1 and
is symmetric and negative semi-definite. M has n− 1 negative
eigenvalues and one zero eigenvalue.

Then there exits an orthonormal matrix P such that PT MP = Λ

Λ =













λ1

λ2

. . .

λ(n−1)

0












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Define by transformation α = [α1 α2 · · · αn]
T = PT Φd .

Therefore we have

α̇ = PT M sin(Φd) = ΛPT sin(Φd).

Then αi = pT
i Φd and α̇i = λi p

T
i sin(Φd) for i = 1, · · · ,n. Note

that α̇i = 0 for i = n since λi = 0 for i = n.

Define

V (Φd) = V (α(Φd)) =
1

2

n

∑
i=1

α2
i (Φd).

It is obvious that V (Φd) = 0 at Φd = 0 and V (Φd) ≥ 0 at all
other Φd .

Then

V̇ (Φd) =
n

∑
i=1

λiαiα̇i =
n−1

∑
i=1

λiαiα̇i =
n−1

∑
i=1

λi(pT
i Φd)(pT

i sin(Φd))

Because P is orthonormal, then

Φd = ∑n
i=1 ci pi

sin(Φd) = ∑n
i=1 di pi

with ci = pT
i Φd , di = pT

i sin(Φd). For ‖ Φd ‖ small enough,
cidi ≥ 0. So

V̇ (Φd) =
n−1

∑
i=1

λi(pT
i Φd)(pT

i sin(Φd)) =
n−1

∑
i

λicidi ≤ 0

Then the set

E = {Φd | V̇ (Φd) = 0}=∩n−1
i=1 (Ei1∪Ei2) =∪ ji∈{1,2}(∩n−1

i=1 Ei ji)

with
Ei1 = {Φd | pT

i Φd = 0}
Ei2 = {Φd | pT

i sin(Φd) = 0}

The tangent plane to the surfaces Ei1 and Ei2 at point Φd0 are

Ti1 = {Φd | pT
i (Φd −Φd0) = 0}

Ti2 = {Φd | qT
i (Φd −Φd0) = 0}

where

qi =











p1
i

p2
i

. . .

pn
i











cos(Φd0)

Note:

Φ̇d = Pα̇ =
n−1

∑
i=1

λi pi p
T
i sin(Φd)

In the subset of E defined by ∩n−1
i=1 Ei ji with all ji = 2, it is easy

to verify that Φ̇d = 0 and hence this subset is invariant.

In the subset of E defined by ∩n−1
i=1 Ei ji with some ji = 1, wlog,

to say, ji = 1, i ≤ k and ji = 2, i > k for 1 < k ≤ n− 1, the

tangent plane to this subset is ∩n−1
i=1 Ti ji for the same j′is.

Then

Φ̇d = Pα̇ =
k

∑
i=1

λi pi p
T
i sin(Φd)

is not in the tangent plane since

pT
i Φ̇d = λi p

T
i sin(Φd) 6= 0

which means it is even not in Ti1 for i ≤ k

So the largest invariant set contained in E is

W = ∩n−1
i=1 Ei2 = {Φd | pT

i sin(Φd) = 0, i = 1, · · · ,n−1}.

By LaSalle’s theorem, the solution Φd(t) approaches E as
t → ∞.

Note: The solution Φd(t) moves but stays on the phase plane
defined by

n

∑
i=1

φi =
n

∑
i=1

φi(0)

since
n

∑
i=1

φ̇i(t) = 0, all t.

Furthermore,the solution Φd(t) stays on the plane difference
defined by

n

∑
i=1

Φi
d =

n

∑
i=1

Φi
d(0) = 0

since
n

∑
i=1

Φ̇i
d(t) = 0, all t.

5. CONCLUSION

In the paper we mainly discussed on the stability of equilibrium
in phase difference of the Kuramoto model in two forms of
connectivity. We sketched the analysis using LaSalle’s theorem.
We also introduced the model of laser network and it is relation
with the Kuramoto model in this paper.
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