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Abstract: The aim of the paper is to present the fundamental definitions connected to fractional 
differentiation and to present an overview of the CRONE approach in the fields of system 
analysis, modeling and identification, observation and control. Industrial applications of 
fractional differentiation are also described in this paper. Some recent developments are also 
presented. 

1. INTRODUCTION 

Fractional calculus is a mathematical tool which deals with 
integrals and derivatives of arbitrary orders. 
Fractional calculus may be considered as an old and yet a novel 
topic. It is an old topic since, starting from some speculations 
of G.W. Leibniz (1695, 1697) and L. Euler (1730), it has been 
developed up to nowadays. See for example the now classical 
book (Oldham and J. Spanier, 1974), the more formalised 
books (Samko et al 1993) (Miller and Ross, 1993) and 
(Oustaloup, 1995) and (Podlubny, 1999.a) for a thorough 
mathematical study of the equations. 
However, it may be considered a novel topic as well, since only 
from a little more than twenty years it has been the subject of 
specialized conferences and treatises. In recent years, a growing 
interest in fractional calculus has been stimulated by the 
numerous applications of this mathematical tool in various 
fields of physics and engineering, including practical 
applications, and numerical analysis.  
Transmission lines, electrical noises (Lewis et al. 2004), 
dielectric polarization and heat transfer phenomena (Battaglia 
et al., 2000) are only some of the fields having fractional 
physical laws.  
Another interesting application of fractional calculus is in the 
automatic control area. Some important considerations such as 
modeling, system identification, stability (Matignon, 1996), 
controllability, observability (Matignon and D’Andrea-Novel, 
1996) and robustness now involve fractional systems. The 
fractional generalisation of the PID controller (Podlubny, 
1999.b, Monje et al., 2004), gave rise these last ten years to a 
large number of studies. CRONE Control (Oustaloup and 
Mathieu, 1999), the French acronym for “Commande Robuste 
d'Ordre Non-Entier”, was the first robust control based on 
fractional differentiation for linear systems. Several extensions 
of this robust control method now exist and several industrial 
applications prove its efficiency (Oustaloup et al. 2006).  

In this paper, an overview of the CRONE group applications in 
the fields of system analysis, modeling and identification, 
observation and control is proposed. This paper gives all the 
materials required to be initiated to fractional differentiation 
and its applications, since it contains the most usual definitions 
used in the field of fractional systems and contains numerous 
references. The interested reader is also invited to read 
(Tenreiro Machado, 1997), (Baleanu and Muslih, 2005), 
(Vinagre Jara and Feliu 2007), (Chen et al. (2004)). 

2. PRELIMINARY DEFINITIONS 

The Riemann-Liouville definition of fractional differentiation 
is here considered but others definitions exist and the interested 
reader is invited to refer to (Samko et al., 1993). Riemann and 
Liouville main concern was to extend differentiation by using 
not only integer but also non-integer (real or complex) orders. 
They have defined the nth fractional order derivative by the 
relation (Samko et al., 1993): 
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with t > 0, n > 0 and 1nm . n  means the integer part of 
n. The Laplace transform of this derivative (Oldham and 
Spanier, 1974), considering zero initial conditions, is: 

sXstxD nnL , where txsX L . (2) 

Using relation (1), a fractional order system can be described 
by the following fractional order differential equation: 
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where y(t) and u(t) denote respectively the output and the input 
of the system.  
A sub-class of fractional models, namely commensurate order 
fractional models, is often used in the literature. It involves 
fractional differentiation orders in (3) multiples of the same 
commensurate order R. Relation (3) then becomes: 
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Fractional commensurable models can be represented in a 
transfer function form as: 
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Fractional models are also based on fractional state-space like 
representation; see (Matignon, 1996, Oustaloup, 1995, Cois et
al., 2001). In the particular case of a commensurate order, this 
representation can be obtained using txtxD kk 1 . The
following representation can thus be obtained: 

tD utC xty
tB utA xtxD . (6) 

The modal decomposition of fractional systems is obtained as 
for classical systems. Applying a similarity transformation to 
(6), a Jordan canonical form is written as (Cois et al., 2001): 

tuEtxCty

tuBtJ xtxD

JJJ

JJJ . (7) 

The system eigenvalues are on the diagonal of matrix J.
Considering zero initial conditions, the Laplace transform of 
the fractional “state like” equation of (7) is: 

s UBsJ XsXs JJJ . (8) 

with tsU uL  and txsX JJ L . Then, from the 
output equation of relation (7), system output is: 

t uEtuBJIsCty JJ
n

J
11L , (9) 

where  denotes the convolution product (see (Cois et al.,
2001)) for detailed expressions of matrices J, BJ, CJ). 
System’s output y(t) is thus composed of a linear combination 
of partial fractions called eigenmodes, 

ts
q

l u11L  where q is an integer number 
depending on the algebraic multiplicity of each eigenvalue l .
In the single input single output case, the transfer function 
corresponding to system (7) is thus given by: 
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with 
q

lqlql sKsH ,, .

Using the Mellin-Fourier inverse transformation and the residue 
theorem, the impulse response of an eigenmode can be 
expressed as: 
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where the poles pk of sH ql,  (if any) are defined by: 
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and where Q (x, y) is a 2 variables polynomial defined by: 
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Equation (11) shows the decomposition of fractional systems 
into two parts (Oustaloup, 1983): 
- the exponential mode, resulting from the computation of 
residue(s) on each pole of sH ql,  which generates an 
exponential behavior; 
- the aperiodic multimode, the main characteristic of fractional 
systems, resulting from an integral along the negative real axis. 
According to relation (11), any stable SISO linear fractional 
system can be decomposed as the sum of three subsystems:  
- an integer linear system denoted E ,
- pure fractional integrators,  
- a stable fractional system denoted P .
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Fig. 1.  Structural decomposition of a fractional system 

Using the structural decomposition of fractional systems (6) 
represented by Fig. 1, a stability condition is given by 
(Matignon, 1996): 

2
arg l ,    for   l=1,..,dim(x), (14) 

where the l  are the eigenvalues of matrix A.
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2. FRACTIONAL SYSTEMS ANALYSIS 

2.1. Fractional systems stability analysis 

According to the comments in the previous section, the stability 
of a fractional system is now a well defined notion. However 
only recent insights have been proposed for LMI (Linear 
Matrix Inequality) based stability characterization, often 
required to apply modern control analysis and control methods. 
As mentioned in (Sabatier et al, 2005), exponential stability 
cannot be used to characterize asymptotic stability of fractional 
systems. A new definition must be introduced. 

Definition: t  stability 
Trajectory x(t) = 0 of system d x(t)/dt = f(t,x(t)) is t
asymptotically stable if there is a positive real  such that : 

)(tx  with 0tt , (x(t), 0tt ) such that t t0,
-)( tNtx .      

The fact that the components of x(t) slowly decay towards 0 
following t-  leads to fractional systems sometimes being called 
long memory systems. 
The main issue when dealing with LMI is the convexity of the 
optimization set. In figure 2, which shows the stability domain 
of a fractional system according to the value of fractional order 

, note that the stability domain is not convex when 10 .

   a                b 

Fig. 2. Stability domain (     ) for: a) 10 ,    b) 21

As the stability domain of a fractional system with order 
21  is a convex set, various LMI methods for defining 

such a region have already been developed. Hence a LMI based 
theorem for the stability of a fractional system with order 

21  can be formulated as follows (Moze et al, 2005). 

Theorem 1: Fractional system described by (6) with order 
21  is asymptotically stable if and only if there exists a 

matrix 0TP P , P MM , such that the following LMI 
holds: 
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For a fractional system with order 10 , it can be 
demonstrated (Moze et al, 2005) that the arguments of the 
eigenvalues of matrix A  belong to ,2/2/,  if 
and only if 

2
1

A      is stable. (16) 

Stability of system (6) can thus be deduced by applying the 
Lyapunov stability condition to a fictive integer system with 

state matrix 2
1

A .

Theorem 2: Fractional system (6) is t -  stable if and only if a 
positive definite matrix P exists such that 

02
1*

2
1
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This condition is a necessary and sufficient condition as 
opposed to the condition previously proposed in (Momani and 
El-Khazali, 2001) which is only a sufficient condition. 
However, LMI condition (17) is expressed with a non-linear 
function of the fractional system state matrix. This thus reduces 
the utility of this condition. To overcome this problem, another 
stability condition is proposed. As the stability domain is non-
convex for 10 , the unstability domain is now identified 
using LMI (Moze et al, 2005). 

Theorem 3: Fractional system (6) is t- stable if and only if 
there does not exist any non-negative rank one matrix 
Q nn  such that  
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2.2. H2 norm computation of the impulse response 

To measure the quality of a fractional system approximation by 
a rational model, an analytical method for determining the H2
norm of any fractional explicit commensurate transfer function 
is proposed in (Malti et al, 2003). It generalizes the well-know 
results by Aström (1970), allowing to compute the H2 norm of 
any rational transfer function. 

Theorem 4: Let H(s) be a commensurable transfer function, 
with a commensurable order equal to , of a BIBO-stable 
system, defined in (5). Let q and  be respectively integer and 
non-integer parts of 1/ . Define  

jH G    and    xGxG
xB
xA . (19)

Then, the H2 norm of H(s), namely
2

H , depends on its 

relative degree (N  - M ) and is given according to  as: 

2
2

AspecRe AspecRe

AspecIm AspecIm

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14256



- if (N  - M )  1/2,  then 
2

H ,

- if (N  - M ) >1/2 and 0  then 
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where lka , , ks  and k  are respectively coefficients, poles 
and their multiplicity of the partial fraction expansion of  
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where ks  and k  are poles and their multiplicities of 
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xAxq 1 . s1 is an arbitrary chosen pole. ck and bk,l represent 

coefficients of the following expansion of: 
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All poles of order 1 are gathered in the left sum; all poles of 
order greater than one are gathered in the right double sum. 

Proof of this theorem and some other remarks can be found in 
(Malti et al, 2003).

2.3. H  norm computation 

Transfer matrix H(s) of system (6), denoted Sf, is given by 

DBAIsCs H
1

. (24) 
Let denotes a real positive number satisfying 

Dmax . (25) 
System fS H -norm is bounded by  if and only if 

jHmaxsup . (26) 

Equivalently, it can be demonstrated that (Sabatier et al, 2005) 
H -norm of system fS  is bounded by  if and only if  

12, jHjHI TR  exists. (27) 

As state matrix of the state space description associated with 

transfer matrix 
12 sHsHI T  is: 

,1212
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 (28) 

the following theorem can hence be stated (Sabatier et al,
2005). 

Theorem 5: H -norm of system fS , whose transfer function 
is given by relation (24), is bounded by a real positive number 

 if and only if the eigenvalues of matrix A  given by relation 

(28) do not lie on RC ,0 j .

Let tyP  and tyE  denote the integer subsystem P  output 
and the stable subsystem E output. According to Fig. 1 

tytyty EP . (29) 

The H -norm of a fractional system Sf is thus bounded by 
if Sf is stable and 

T
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where r  is a bound of the 1L norm of the impulse response 
of fractional subsystem P .

Such an analysis permits to derive a real bounded lemma based 
lemma (Sabatier et al, 2005). 

Lemma: Fractional system fS  is stable and its H -norm is 
bounded by  if there exists a symmetric positive definite 
matrix P such that  

0
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where EEEE DCBA ,,,  is the state space description of the 
integer subsystem E.

3. FRACTIONAL SYSTEMS MODELING 

Studies on real systems such as thermal or electrochemical 
(Battaglia et al., 2000, Cois et al., 2000), reveal fractional 
behavior. The use of classical models, based on integer order 
differentiation, is thus inappropriate in representing these 
fractional systems. This section present, through four examples, 
some fields for which an approach based on fractional 
differentiation permits to obtain models with a low number of 
parameters as compared to integer models. 

3.1 – Porous dyke 

Dyke builders have long been aware of the damping properties 
of the very irregular dykes, in particular those with cavities or 
depressions imprisoning pockets of air which can be 
compressed by the oncoming water. 
Given that nature is an inexhaustible source of solutions, we 
have studied the attenuation of the motion of water on this type 
of dyke. 
To tackle such a study which concerns the physics of the 
complex media, we aimed to establish the differential equation 
which governs a water mass, M, of speed V(t), in horizontal 
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relaxation on a dyke, said porous, exerting a reaction force F(t)
(Fig. 3). 

Fig. 3. Study system 
The dyke is then interpreted as a porous medium such as it 
makes it possible to conceive a model which achieves a good 
compromise between reality and simplicity. The porosity 
assumption is indeed motivated by a set of properties which 
favor this compromise.  
The dimensionless and heterogeneous properties of porosity, 
implies an indefinite number of pores of different sizes. 
The unordered character of porosity implies an indeterminate 
distribution of the different size pores. This distribution 
justifies the uniformity of the dynamic pressure and of the flow 
density on the cross-section of flow which defines the water-
dyke interface (just upstream of the dyke). Such a study 
configuration permits characterizing the interface by a 
hydraulic admittance. 
Porous rock is not necessarily permeable, which suggests 
considering pores not linked between them which give them an 
alveolar character (dead-end). 
Such a character allows describing a pore by its constituent 
elements which originate two distinct physical phenomena: 
- an orifice or canal which laminates water, which can be 
characterized by a hydraulic resistance, and where a dissipative 
energy is located; 
- a cavity or alveolus which imprisons air compressible by the 
moving water, which can be characterized by a pneumatic 
capacitance, and where an elasticity potential energy is located; 
the corresponding elasticity reduces the dynamic pressure 
peaks at the water-dyke interface. 
Due to the additivity of the flows in the pores (Fig. 4) 
namely

i iQQ , the admittance of the water-dyke interface is 
that of a parallel arrangement of resistance-capacitance 
hydropneumatic cells. Each cell illustrates both, for each pore, 
the energy dissipation through viscosity (and turbulence) and 
the elastic potential energy through air compression (case of the 
non saturated porous media). 

Fig. 4. Dyke interpretation (as an indeterminate distribution of 
an indefinite number of pores of different sizes not linked 
between them) 

The fractal character attributed by Benoît Mandelbrot to 
porosity because of its property of self-similarity (Mandelbrot, 
1975), suggests the (simplifying) assumption of recursivity on 
the distribution of the resistances and capacitances, thus leading 

to a recursive parallel arrangement of series RC cells, with 
constant ratios  and  between the resistances and the 
capacitances of two consecutive cells,  and  being greater 
than one and called recursive factors (Fig. 5).  

Fig. 5. Recursive parallel arrangement of series RC cells

These recursive factors condition the form of the Bode 
asymptotic diagrams of admittance jY :
- the gain asymptotic diagram results from a regular sequence 
of steps ; 
- the phase asymptotic diagram results from a regular sequence 
of crenels. 
The smoothing of these asymptotic diagrams can be defined by 
a non integer admittance of the form mjjY 0  with 
0<m<1, 0 denoting the frequency for which the gain 
smoothing straight line intersects the axis 0 dB, called unit gain 
frequency or transition frequency 

The idea of the CRONE suspension in hydropneumatic 
technology results from the transposition, in vibration 
insulation, of the porous dyke interpretation. 
To pass from this interpretation to the hydropneumatic concept 
of the CRONE suspension of a quarter vehicle (Fig. 6), it 
suffices: 
- to rotate of a quarter of turn the study system of Fig. 4; 
- to replace air by nitrogen; 
- to replace water by oil; 
- to set oil in motion with a piston linked to the wheel. 

Fig. 6 - Idea of the multisphere CRONE suspension 

3.1 – Viscoelasticity 

Fractional differentiation is often used to model viscoelastic 
material. In this section, a car silent-block is studied.  

Fig. 7 presents a single degree-of-freedom system which 
consists of a rigid body (mass M) connected to a silent-block. 
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x(t) is the horizontal displacement of mass M defined from 
static equilibrium position and force solicitation f(t).

x(t)

f(t)
M

Fig. 7 : One-degree-of-freedom model 
In the most general case, the relationship between uniaxial 
stress (t) and strain (t) in a viscoelastic material may be 
expressed by a linear combination of integer derivatives, called 
the standard viscoelastic model (Bagley and Torvik, 1985), 
namely: 

Jj

j

r
j

Ii

i

q
i tDEtEtDet ji

1
0

1
 , (32) 

in which the factors ei, E0 and Ej together with integer orders 
derivative qi and rj are model parameters. The parameters are 
determined from frequency identification by least-squares fit to 
experimental data.  
For viscoelastic materials having mechanical properties that are 
strongly frequency dependent over many decades of frequency 
(Bagley and Torvik, 1986), the number of parameters is large. 
As a result, computations on the model are time consuming and 
produces high-order differential equations. 
The fractional derivative model for a uniaxial solicitation is a 
generalization of (32): 

Jj

j

n
j

Ii

i

m
i tDEtEtDet ji

1
0

1
 , (33) 

with 0 < mi < 1 and 0 < ni < 1 (Oldham and Spanier, 1971). 

It has been observed (Bagley and Torvik, 1985) that only five 
parameters often suffice in the stress-strain relationship (33) to 
get a good fit to experimental data, namely: 

tDEtEtDet nm 11 101  . (34) 

To obtain a thermodynamically well-behaved model some 
constraints have to be placed on the parameters of the model. In 
(Bagley and Torvik, 1986), these constraints are: 

.10

,,0,0,0

11

1
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1
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EeEE

 (35) 

In other words, the orders of the two fractional derivatives in 
the model have to be equal, which means that the original five-
parameter model reduces to a four-parameter model, namely: 

tDEtEtDet mm
101  . (36) 

The fractional derivative model has several very attractive 
features. The first is that it produces a compact analytic 
representation, well behaved in both the frequency and time 
domains. The second is that the mathematical form has its 

foundation in accepted molecular theories governing the 
mechanical behaviour of viscoelastic media (Bagley and 
Torvik, 1986). Finally, the fractional derivative model may be 
viewed as an extension of the standard viscoelastic model in the 
sense that the derivatives are no longer limited to being of 
integer order. 

Using 
S
tut      and  

L
txt , (37) 

where S and L are, respectively, the cross section and the length 
of the material elastomer, relation (36) can be rewritten as: 

txDE
L
StxE

L
StuDetu mm

101  . (38) 

The corresponding rheological model to relation (38), given in 
Fig. 8, is composed of two elastic elements and one fractional 
element.  

x(t)x0(t)

k0

k

( m,m)

x(t)L

S

Fig. 8. Rheological model of the silent-block 

3.2 – Thermal systems 

The thermal system considered is a semi-infinite plane 
homogenous medium with a conductivity and diffusivity .
At rest, the system is considered to be at ambient temperature. 
All simulations are carried out starting from this equilibrium 
position. A flux density t  is applied on the outgoing normal 
surface n  of the medium. Losses on the surface where the 
thermal flux is applied are neglected. 
If x denotes the abscissa of the measurement slot in the 
medium (Fig. 9), 1D heat transfer in a semi-infinite plane 
medium is governed by the following partial differential 
equations (Crank, 1957): 

0,0,0,

0,0,,

0,0,,,
2

2

txtxT

txt
n

txT

tx
x

txT
t

txT

. (39) 

Laplace transform of the first equation leads to: 

0,,
2

2
sxTs

x
sxT , (40) 

 where         txTsxT ,, L . (41) 

This relation is a differential equation of the variable x. 
Solution of this equation is given by: 

sxsx
esKesKsxT 21, . (42) 
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xt 0

Fig. 9. Semi-infinite plane medium 
Tacking into account boundary conditions, the following 
transfer function can be expressed: 

sx

pCss
sxTsxH e1,, . (43) 

Two studies can then be done. The first one corresponds to the 
medium thermal impedance obtained for 0x :

s
sTsH ,0,0 . (44) 

The second one corresponds to the study of the transfer 
obtained for 0x  defined by: 

s
sxTsxH ,, . (45) 

If 0x , relation (43) becomes: 

pCss
sTsH 1,0,0 , (46) 

or, in time domain, initial conditions being considered null:  

tI
C

tT t
p

5.0
0

1,0 . (47) 

This relation highlights that the thermal impedance of a semi-
infinite media is based on a 0.5 fractional order integrator. This 
result allows an analytic expression of the temperature tT ,0
by a 0.5 fractional integral of t . The compactness property 
of the fractional order operator is thus shown. In comparison 
with a spatio-temporal discretisation of the media (finite 
element method) leading to large dimensional integer model, 
the fractional approach leads to a simple model with few 
parameters. 
If the temperature is measured at an abscissa 0x  inside the 
medium, transmittance sxH ,  is given by relation (43). 
Given that : 
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sx
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CsCs
sxH

2

2

e

e1e, , (48) 

using Taylor series expansion of the exponential function, the 
following approximation is obtained : 
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'

k
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k , (50) 

and demonstrates that sxH K ,~  can be expressed, in time 
domain, by fractional order differential equations whose orders 
are multiples of 0.5. Their approximation by integer admittance 
is thus impossible on the entire frequency domain. 

3.4 – Electrochemistry 

The Randles’ model is frequently used in the literature for 
modeling lead acid batteries. This model results from a 
simplified solution of the electrochemical diffusion equation in 
batteries (Fick’s law) (Sathyanarayana, et al, 1979). If u(t)
denotes voltage variations from the open circuit voltage and if 
i(t) denotes the battery current, then Randles’ model is defined 
by the electric circuit shown in Fig. 10. 

lRL C

R ns
W

ti

tu

twi

twu
Fig. 10. Randles’ model of a lead acid battery 
Fractional behavior of Randles’ model is due to fractional 
impedance W(s). This impedance is known as Warburg cell and 
is a fractional order integrator of order n = 0.5.  

Using Fig. 10, Randles’ model transfer function (for L=0) is 
given by: 

11

1

0
nn

n
ll

n
l

L CsRCss
sRRCsRRCsR

sI
sUsH . (51) 

Relation (51) thus demonstrates that Randles’ model frequently 
used for battery modeling is a fractional order differential 
model. 
It also demonstrates that low frequency asymptotic behavior 
(behavior obtained as Laplace variable s tends towards 0) of the 
Randles’ model is that of a fractional integrator of order 0.5. 
However, this analysis is in contradiction with the time domain 
behavior of the battery in discharge.  
To overcome this problem, a new model whose transmittance is 
denoted HCRONE(s) has been proposed in (Sabatier et al, 2006). 
This model is not constructed using physical arguments as the 
Randles model was (there is no physical justification). It was 
constructed only using frequency responses (obtained by 
harmonic analysis) obtained for various batteries, for various 
states of charge and operating temperatures. This new model is 
made of two limited frequency band integrators and has: 
- a low frequency asymptotic behavior of order 0, in accordance 
with observed batteries time responses in discharge; 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14260



- a frequency behavior compatible with the frequency behavior 
of a lead acid battery, whatever its state of charge and its 
operating temperature. 
Transmittance of this new model is given by : 

21

1111
n

hr

n

rb
CRONE

ssssKsH

.  (52) 
This model is based on implicit fractional order integration, 
fractional order n1 and n2 being not directly applied to Laplace 
variable s.This model has been validated by several trails, using 
frequency and time data (Sabatier et al, 2006). 

Figure 11 presents model and battery response (filtered) 
comparison for a state of charge equal to 80% at temperature 
T = 20°C (similar comparisons have been done for others state 
of charges and temperatures). This comparison permits to 
conclude that the model HCRONE(s) is a powerful tools for 
battery behavior modeling. 

Fig. 11. Comparisons of battery response and obtained model 
response for S0C =80% and at 20°C 

4. FRACTIONAL SYSTEMS IDENTIFICATION 

The aim of system identification is to establish a mathematical 
model capable of reproducing system's physical behaviour as 
faithfully as possible from a series of observations. Many 
methods have been developed using continuous time models 
(Young, 1981), (Unbehauen and Rao, 1987) (Neumann and 
Isermann, 1988). Such models are based on classical 
differential equations whose parameters are usually estimated 
by minimizing a given criterion. In the context of identifying 
systems based on diffusive processes, the use of these 
‘classical’ models, based on integer order differentiation, 
appears to be inappropriate because of the inherent fractional 
behaviour of such systems. Thus, models described by (3) have 
been used. 
One of the goal of the identification procedure consists now in 
estimating not only coefficients T

MN bbaa 00 ,
but also differentiation orders T

MN 00 . In 
this context, 2 types of method have been developed: 
- equation error methods where only the coefficients are 

estimated, differentiation orders being fixed according to a 
prior knowledge; 

- output error methods where both coefficients and 
differentiation orders are estimated. 

4.1. Equation error methods 

The developed Equation Error methods are based on the use of 
the Linear Least Square optimization technique. Recall that in 
this case, the goal is to estimate only the coefficients of 
fractional differential equation (3), the differentiation orders 
being supposed known by the user (as it is the case for many 
thermal systems) (Battaglia et al., 2000).  

First method: Model discretization. A first method, developed 
in (Oustaloup et al., 1996b), (Oustaloup, 2005), consists in 
replacing the continuous fractional derivatives by their discrete 
Grünwald approximation (Oustaloup, 1995): 

K

k
s

k

s

n TkKf
k
n

T
tfD

0
11 , (55) 

where sT  denotes the sampling period, and sTKt . A 
recursive equation, called fractional ARX model, is obtained. A 
discrete-time linear regression form can be built, and the 
parameters are then estimated by a classical Prediction Error 
Method (PEM). 

Second method: Fractional State Variable Filters. A second 
method is based on the use of fractional state variable filters 
(Cois et al., 2001). In this case, a continuous-time linear 
regression is directly built from (53) filtered by a fractional 
state variable filter: 

t
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Fig. 12. Use of fractional state variable filters for equation error 
methods 
The parameter estimation is then obtained by using the classical 
Least Square applied on filtered input/output data:  

*
f
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f

1
*
f
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f 0 Yan

opt D   (57) 

where  
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. (58) 

4.2 - Output error methods 

When the fractional differentiation orders cannot be easily 
determined by the user, Output Error Methods provide 
estimation of both coefficients and differentiation orders using 
Non Linear Optimization Techniques, such as the Marquardt 
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Algorithm. The procedure consists in optimizing the model 
parameters by minimizing a quadratic criterion of the output 
error. Two types of model structure have been developed: 
- frequency bounded fractional models; 
- modal fractional models. 

Frequency bounded fractional models. Developed by 
Trigeassou (Trigeassou et al, 1999), the frequency bounded 
fractional models are based on the use of the following 
frequency bounded Fractional Integrator: 

1

b
0

h

1
1

1

n

n

s

I s C
ss

. (59) 

The advantage of such a structure lies in the fact that it makes 
the time-domain simulation easier, by approximating fractional 
integrators through recursive distributions of zeros and poles. 

Modal fractional models. Modal fractional models are based on 
the diagonal form of representation (7) (Cois et al., 2000). 
Under such a form, the model can be expressed as the sum of 
fractional eigenmodes characterized by 3 parameters: a 
differentiation order, a coefficient and an eigenvalue. 
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Fig. 13. Natural mode decomposition of a non integer model 

The estimation procedure consists then in optimizing the modal 
parameters with respect to the model output error. 

4.3 - Example 

The example concerns a thermal application in the field of 
machining by turning (Battaglia, 2001). The goal was to 
estimate, during machining the heat flux through the tool, 
through using an inverse model obtained off-line using system 
identification (as direct measurement of heat flux is not 
possible). 

To obtain the machining tool model, a thermocouple (type T) is 
embedded close to the tip of the insert tool. Heat flux is then 
generated using a heat resistor formed by a platinum film (10 
μm) placed on a thin ceramic substrate (250 μm) that allows to 
neglect the thermal inertia of such a resistor compared to the 
sampling interval, h=0.4s, of the experiment. 

Two sequences have been generated, one for parameter 
estimation, the other for model validation. Parameter estimation 
is performed using the instrumental variable method based on 
fractional SVF described in section 4.1 that leads to the 5 
parameter model: 

tDt

tTDtTDtTDtT
5.0

5.115.0

65.122.6

81.3904.190.10
. (61) 

Insert tool

sensor

Tool holder

Heated surface

thermocouple
T

q

Fig. 14. Description of operation  

Fig. 15 shows residue and output error signals. As it clearly 
appears, a very small number of parameters are required in 
order to fit the measured temperature. As shown in model 
validation results of Fig. 16, the model output correctly fits the 
measured temperature. This proves the reliability of the model 
during the time concerned by the identification procedure. 
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Fig. 15. Residue signal and output error 
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Fig. 16. Model validation results 

4.4 – Others applications 

System identification methods previously described has been 
used to model several others fractional systems. Among these 
applications, the most representative ones are: 
- lead acid batteries state of charge estimation (Sabatier et al,
2006), 
- gastrocnemius frog muscle modeling (Sommacal et al., 2006) 
- car driver dynamic behavior modeling. 

5 – Control and observation 

5.1. CRONE Control 

The CRONE control-system design is based on the common 
unity-feedback configuration (Fig. 17). The robust controller or 
the open-loop transfer function is defined using fractional order 
integro-differentiation. The required robustness is that of both 
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stability margins and performance, and particularly peak value 
Mr (called resonant peak) of the common complementary 
sensitivity function T(s).

Fig.17. Common CRONE control-system diagram 

Three CRONE control design methods have been developed, 
successively extending the application field.  
The third CRONE control generation, based on complex 
fractional integration, must be used when the plant frequency 
uncertainty domains are of various types (not only gain-like). It 
is based on the definition of a generalized template described as 
a straight line in the Nichols chart of any direction (complex 
fractional order integration), or by a multi-template (or 
curvilinear template) defined by a set of generalized templates.  
An optimization allows to determine the independent 
parameters of the open loop transfer function. This optimization 
is based on the minimization of the stability degree variations, 
while respecting other specifications taken into account by 
constraints on sensitivity function magnitude. The complex 
fractional order permits parameterization of the open-loop 
transfer function with a small number of high-level parameters. 
The optimization of the control is thus reduced to only the 
search for the optimal values of these parameters. As the form 
of uncertainties taken into account is structured, this 
optimization is necessarily nonlinear. It is thus very important 
to limit the number of parameters to be optimized. After this 
optimization, the corresponding CRONE controller is 
synthesized as a rational fraction only for the optimal open-loop 
transfer function. 
The third generation CRONE CSD methodology, the most 
powerful one, is able to design controllers for plants with 
positive real part zeros or poles, time delay, and/or with lightly 
damped modes (Oustaloup et al.,1995). Associated with the w-
bilinear variable change, it also permits to design digital 
controllers. The CRONE control has also been extended to 
linear time variant systems and nonlinear systems whose 
nonlinear behaviors are taken into account by sets of linear 
equivalent behaviors (Pommier et al., 2002). For MIMO 
(multivariable) plants, two methods have been developed 
(Lanusse et al., 2000). The choice of the method is made 
through an analysis of the coupling rate of the plant. When this 
rate is reasonable, one can choose the simple multi SISO 
approach. 

Within a frequency range [ A, B] around open-loop gain-
crossover frequency cg, the Nichols locus of a third generation 
CRONE open-loop is defined by an any-angle straight line 
segment, called a generalized template (Fig. 18). 
The generalized template can be defined by an integrator of 
complex fractional order n whose real part determines its phase 
location at frequency cg, that is –Re/i(n) /2, and whose 
imaginary part determines its angle to the vertical (Fig. 18). 

Fig. 18. Generalized template in the Nichols plane 
The transfer function including complex fractional order 
integration (Oustaloup et al, 2000) is: 
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with n = a + ib i and j, and where i and j are 
respectively time-domain and frequency-domain complex 
planes. The definition of the open-loop transfer function 
including the nominal plant must take into account: 
- accuracy specifications at low frequencies; 
- the generalized template around frequency cg;
- plant behaviour at high frequencies while respecting the 
control effort specifications at these frequencies. 
Thus, the open-loop transfer function is defined by a transfer 
function based on band-limited complex fractional order 
integration: 

ssss hl , (63) 
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- where l(s) is an integer order nl proportional integrator: 
l1ll

n
l sCs  (66) 

- where h(s) is a low-pass filter of integer order nh:
h1hh

n
hsCs  (67) 
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The optimal open loop transfer function is obtained by the 
minimization of the robustness cost function 

- MTJ
P
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,

jsup , (30) 

where Mr0 is the resonant peak set for the nominal parametric 
state of the plant, while respecting the following set of 
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inequality constraints for all plants (or parametric states of the 
plant) and for +:

ljinf  TT
P

 and  TT
P

ujsup ,

  (69) 
 SS

P
ujsup ,  CSCS

P
ujsup

and   PSPS
P

ujsup ,  (70) 
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As the uncertainties are taken into account by the least 
conservative method, a non-linear optimization method must be 
used to find the optimal values of three independent 
parameters. The parameterization of the open-loop transfer 
function by complex fractional orders, then simplifies the 
optimization considerably. During optimization a complex 
order has the same effect as a large set of parameters found in 
common rational controllers. 
When the optimal nominal open-loop transfer is determined, 
the fractional controller KF(s) is defined by its frequency 
response: 

jjj 0F PK , (72) 

where P0(j ) is the nominal frequency response of the plant. 
The parameters of a rational transfer function KR(s) with a 
predefined low-order structure are tuned to fit the ideal 
frequency response KF(j ). The rational integer model on 
which the parametric estimation is based, is given by: 

sAsBsK R  , (73) 

where B(s) and A(s) are polynomials of specified integer 
degrees nB and nA. Any frequency-domain system-identification 
technique can be used. Whatever the complexity of the control 
problem, satisfactorily low values of nB and nA, usually around 
6, can be used without performance reduction. 

5.2. CRONE observer as an application of CRONE Control 

Dynamic output feedback based observer concept was 
introduced in (Marquez, 2003) and (Marquez and Riaz, 2005) 
in which the observation problem is solved using the feedback 
diagram of Fig. 19. The plant P, the model M and the dynamic 
controller K are supposed single input / single output systems 
represented by the state space descriptions: 

tCxty
tButAxtx

P :  (74) 

txCty
twtuBtxAtBvtxAtxM

ˆˆ
ˆˆˆ

:  (75) 

txCtw
txtxCBtxA

tBtxAtx
K

KK

KK

KKkK

ˆ:  (76) 

State x(t) is supposed not measurable and tx̂  denotes the 
estimated state. All the elements of matrices and vectors in (74) 
to (76) are supposed to be real. 

Fig. 19 clearly shows that the goal of the used feedback 
structure is to cancel the observation error txtxt ˆ  by 
cancelling the error signal tytŷ .

Fig. 19. Dynamic output feedback based observer 
Robustness considerations versus plant perturbation are also 
addressed in (Marquez, 2003) in an H  framework for the 
synthesis of a dynamic output feedback based observer. In the 
CRONE observer synthesis methodology, plant perturbation is 
taken into account like with CRONE Control, thus leading to a 
new formulation of of the CRONE control-system design 
methodology. That thus permits to profit from the advantages 
of CRONE control versus H  (it turn out that in practice a 
CRONE controller permits to obtain better performance than an 
H  one on the same plants, see for instance (Landau, et al, 
1995) for a comparison on a benchmark based on robust digital 
control of a flexible transmission system).  

6 – Conclusion 

Various activities of the CRONE group in the field of fractional 
systems began about thirty years ago with an application of 
fractional order controllers for robust control of continuous 
colorant lasers. Since then, many others applications have been 
developed in many others fields (Oustaloup, 1995) and 
industrial applications now exist (Oustaloup et al. 2006). This 
paper only gives an overview of the most recent CRONE group 
applications in the field of system analysis, modeling and 
identification, observation and control. Beyond this 
presentation, this paper is also an introduction to fractional 
differentiation and fractional systems. It could be a starting 
point for researchers willing to work in the field of fractional 
differentiation and its applications. 
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