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Abstract: This paper focuses on a stochastic scheduling problem in which n immediately available jobs 

are to be scheduled jointly with the preventive maintenance in a single machine subject to breakdowns. 

The objective is to minimize expected total earliness and tardiness costs with a common due-date. The 

problem of scheduling only n jobs to minimize total earliness and tardiness costs in a single machine 

subject to breakdowns is well known to be NP-hard. We first give a relevant literature review dealing with 

the single machine to minimize the ET-cost. After we introduce the process of breakdowns considered in 

this paper. Last we formulate a dynamic programming to solve the problem optimally. 

 

1. INTRODUCTION 

Production and maintenance are two important functions in 

any industrial process and are interrelated problems. In the 

past, production and maintenance have been treated as two 

separate functions. Nowadays because of the interdependence 

between them, there is an increasing interest to develop 

optimization models that take into consideration the 

integration of the two functions (Coudert et al. 2002, Raouf 

et al. 1995, Swanson 1999). 

Most of the literature on scheduling assumes that machines 

are available at all times. However, due to maintenance 

activities machines cannot operate continuously without 

some kind of unavailability periods. In general, maintenance 

activities can be classified into two categories: preventive and 

corrective. For the corrective maintenance, the machine is 

repaired following any breakdown. On the other hand 

preventive maintenance PM is performed on the machine in 

order to reduce the increasing risk of machine breakdown. 

Thus for the preventive maintenance the machine is checked, 

repaired and re-calibrated before failure to be kept in an 

appropriate condition.  

In this paper we consider the problem of jointly scheduling n 

available at time zero jobs and the preventive maintenance in 

a single machine subject to breakdowns to minimize expected 

total earliness and tardiness cost with a common due-date D. 

The processing times τj of the jobs j=1,...,n are deterministic 

and known. Suppose that pre-empting one job for another job 

is not permitted. On one hand, completion of a job j after the 

arrival of transporters will incur a much higher delivery cost. 

In this case the completion time of the job j is greater than or 

equal to the common due-date D, which is assumed as given. 

We denote the tardiness of the job j by Tj=max {Cj-D,0}. On 

the other hand, the completion of a job before the arrival of 

transporters will incur an inventory cost. In this case the 

completion time of the job j is smaller than or equal to the 

common due-date D. The earliness of the job j will be 

denoted as Ej=max {D-Cj,0}. The well known total earliness-

tardiness cost which we refer to as the ET-cost is: 

 

Where αj and βj are, respectively, the per time unit penalties 

of the job j for being early or tardy. There are two categories 

of common due-date D; (i) D as a decision variable 

(unrestricted due date); (ii) and D as a given parameter 

(restricted due date). In this paper we deal only with the 

second case.  

This type of performance measure is known to be a non-

regular as opposed to a regular measure of performance 

which is an increasing function of the jobs’ completion times 

(Lee et al. 1991). It corresponds to the just-in-time (JIT) 

concept where tardy or early jobs would generate penalties. 

We assume that jobs can not be pre-empted for PM and if a 

job is pre-empted for a breakdown it can be resumed after 

repair with or without penalty. In addition to choosing a job 

scheduling, one must also decide whether to perform or not 

PM prior to each job. The integrated problem is further 

complicated because the completions times are stochastic 

regarding to breakdowns. Although extensive research has 

been carried out on a single machine with common due date 

for minimizing ET-cost, to the best of our knowledge, the 

problem with the preventive maintenance and breakdowns 

has not been studied before. We first give a relevant literature 

review dealing with the single machine to minimize the ET-

cost. After we introduce the process of breakdowns 

considered in this paper. Last we formulate a dynamic 

programming to solve the problem optimally. 

2. LITERATURE REVIEW 
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The common due date single machine problems have been 

widely studied. For excellent surveys readers are referred to 

Raghavachari (Raghavachari 1988) and Baker and Scudder 

(Baker et al. 1990). The problem with restrictive common 

due-date is NP-hard even if  αj=βj=1. It has been proven for 

the first time by Hall et al. (Hall et al. 1991). That is 

problems with (αj=α, βj=β), (αj=βj) and (αj≠βj) are also NP-

hard (De et al. 1993, Hall et al. 1991, James et al. 1997). 

When (αj=βj=1), Bagchi et al. (Bagchi et al. 1986) propose an 

algorithm enumerative in nature to solve the problem 

optimally. De et al (De et al. 1993) propose a solution 

methodology, based on dynamic programming that is pseudo-

polynomial in its complexity. Sundararaghavan et al. 

(Sundararaghavan et al. 1984) propose a heuristic procedure. 

Hall et al. (Hall et al. 1991) provide a pseudo polynomial 

dynamic programming algorithm with O( ∑
=

n

i

in
1

τ ) time 

running. This algorithm allows dealing with the problems up 

to 1000 jobs. Hoogeveen et al. (Hoogeveen et al. 1991) 

present a branch-and-bound algorithm based on Lagrangian 

lower and upper bounds and an O(nlogn) (4/3)-approximation 

algorithm. When (αj=α and βj=β), Bagchi et al. (Bagchi et al. 

1987) propose branching procedure which is suitable for the 

problems with a small size. For the problem with (αj=βj), 

Hoogeveen et al. (Hoogeveen et al. 1991) give an 

O( ∑

=

n

i
in

1

2
τ ) algorithm. Finally, concerning the problem with 

(αj≠βj), James (James. 1997) and other researchers use meta-

heuristics to give approximation solutions. 

The problem of scheduling a single machine subject to 

breakdowns to minimize the ET-cost has been studied by few 

researchers. Pinedo et al. (Pinedo et al. 1980) investigate a 

single machine problem in which the machine is subject to 

external shocks according to a non-homogeneous Poisson 

process. Glazebrook (Glazebrook 1984) focuses on a single 

machine problem and formulates it as a cost-discounted 

Markov decision process. Birge et al. (Birge et al. 1990) 

consider more general breakdown process. There are few 

researchers that explicitly try to integrate preventive 

maintenance and scheduling decisions on a single machine. 

All of them don't deal with the ET-cost and to the best of our 

knowledge the problem with the preventive maintenance to 

minimize the ET-cost has not been studied before. For 

instance Grave et al. (Grave et al. 1999) consider the problem 

to optimize weighted completion time and they take into 

consideration only one preventive maintenance period. Ji et 

al. (Ji et al. 2005) consider the same problem to minimize the 

makespan. Since the jointly scheduling jobs and preventive 

maintenance to minimize the ET-cost problem is never 

studied before, we develop a dynamic programming model to 

solve it optimally. The particularity of our model is that it 

could take into consideration more than one preventive 

maintenance period as well as the ET-cost. 

3. PROBLEM STATEMENT 

The problem of minimizing the earliness-tardiness cost when 

(αj=βj=1), (αj=α, βj=β) and (αj=βj) has been solved by pseudo 

polynomial dynamic programming algorithms. The new 

element we introduce is that of the preventive maintenance 

planning and a possible breakdown by the machine, which is 

a random event. The problem studied in this paper may be 

formulated to read as follows: What is the “best” time to 

perform overhaul on the machine in order to forestall the 

waste if it breaks down during the processing of a job? We 

assume a failure rate that increases with “age”. The longer the 

machine is in use, the higher is the probability that it will fail. 

A known example of a distribution with increasing failure 

rate (IFR) is the Erlang distribution with c.d.f. 

 

    Now the problem decomposes into two parts: (i) How to 

schedule the n jobs so as to minimize the earliness-tardiness 

cost, and (ii) where would we place the maintenance period 

so as to minimize the expected loss. Observe that in Part (i) 

there is no randomness because we assume continuous 

machine availability. Therefore optimization is over a 

deterministic problem. However, Part (ii) relies on the 

probability distribution of machine failure and therefore we 

must take randomness into account. The major part of our 

model is the evaluation of cost. In Part (i) the costs are more-

or-less straightforward, given the cost of carrying an item in 

inventory (earliness) and the cost of having the transporters 

waiting for the item (tardiness). 

    It is the determination of the cost in Part (ii) that requires 

careful analysis. Here is the reason why. If the machine were 

continuously available (no possibility of breakdown) then the 

answer given in Part (i) is optimal because we cannot do 

better, by the very definition of optimality of the ET-cost. 

However, Part (ii) implies that we shall intentionally insert 

the maintenance time immediately after the completion of job 

j, thus delaying all the jobs that are scheduled beyond that 

point in time; jobs j+1,...,n. 

    Consider time t at the completion of the job j. We have to 

choose between two decisions: 

1. Do not perform maintenance on the machine. Here, there 

are two possible outcomes, 

a. the machine does not fail during the processing of job j+1. 

This occurs with probability 

  

Where (.)F is the complementary distribution function 

(c.d.f.) of the life of the machine, and τj+1 is the processing 

time of job j+1. In this eventuality the original schedule is 

kept intact, which we know is optimal, and the decision 
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process moves on to time t+τj+1 where we are faced with the 

same problem again but relative to job j+2. 

b. the machine fails during the execution of job j+1, which 

occurs with probability 

 

That means that a breakdown occurs in the machine. Now we 

are forced to perform the maintenance which is a repair 

activity on the machine and occupies a fixed duration tR. Job 

j+1 and all the jobs that follow it (i.e., jobs j+1,...,n) are now 

delayed (at least) by an amount of time given by Y+tR, in 

which Y is the time between the start of job j+1 and machine 

failure; Y is a random variable. The expected time to failure 

during that interval is given by 

 

Therefore the expected delay of jobs j+1,...,n due to this 

machine failure, assuming no other machine failure will 

occur in the interval 

 

is  

 

The cost of this delay (away from the original schedule) can 

be evaluated according to the equation 10. However, this cost 

will happen if the machine does not fail after time yt + . 

This happens with probability 

 

With probability 

 

the machine will fail during this span of time, and additional 

delay will be experienced. 

2. Perform maintenance on the machine. Now we know with 

certainty that jobs  j+1,...,n will be delayed by tR, and the cost 

of such delay can be evaluated according to the equation 9, 

again assuming the the machine does not fail after time t+tR. 

We consider in this case that the repair activity and the 

preventive activity take the same duration of time which is tR. 

4. THE AGE OF MACHINE 

Let us denote the number of failures in θ time units of 

machine operation by N(θ). Φ(θ) will denote the expected 

value of N(θ). The age of the machine after processing the j
th

 

job in a given sequence is denoted by aj. ja will denote the 

age of the machine immediately prior to the j
th

 job in the 

sequence (Fig.1.). We assume that the preventive 

maintenance renews the machine, and repair is minimal. 

Hence we have: 

 

where: 

 

Then the expected value of the completion time of the j
th

 job 

in the sequence can be formulated as follows: 

 

aj+1

j+1
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j
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aj : the machine age after processing the jth job in the sequence
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j+1

aj+1
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aj : the machine age after processing the jth job in the sequence

j+1
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j

j+1
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j

aj : the machine age after processing the jth job in the sequence  

Fig. 1. The age of machine 

5. ILLUSTRATIVE EXAMPLE 
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To well illustrate the studied problem, we consider the 

following example with five jobs to treat under the single 

machine. We assume that pre-emption for preventive 

maintenance is not allowed and for a breakdown is with a 

penalty (the job has to be restarted). 

 

We suppose that the mean time between failure under the 

single machine is equal to 10 (MTBF=10). We consider that 

the maintenance activity renews the age of machine. In order 

to simplify the problem by not taking into consideration the 

expected value of the cost, we suppose that every 10 units of 

time we have a breakdown. We consider that the preventive 

duration (tP) and the repairing duration after a breakdown (tR) 

are equal (tP=tR=10). For instance, we evaluate the cost of the 

schedule (J1⇒J2⇒J3⇒J4⇒J5). First, we consider the case 

where we don't perform the preventive maintenance during 

the time horizon (Fig.2.): 

J1 J2 J3 J3 J4 J5 J5

Breakdowns

5 7 10 11 15 18 21 22 28

J1 J2 J3 J3 J4 J5 J5

Breakdowns

5 7 10 11 15 18 21 22 28

 

Fig.2. Without preventive maintenance 

The objective function of this solution is  

ET-cost = (11×1) + (9×2) + (1×1) + (2×1) + (12×2) = 56.  

Now suppose that we perform once the preventive 

maintenance and we assume only one breakdown (Fig.3.). 

For the same job scheduling solution: 

J1 J2 J3 J3 J4 J5

Breakdown

5 7 10 11 15 18 19 25

Preventive 

maintenance

J1 J2 J3 J3 J4 J5

Breakdown

5 7 10 11 15 18 19 25

Preventive 

maintenance  

Fig.3. With one preventive maintenance period 

The objective function of this solution is  

ET-cost = (11×1) + (9×2) + (1×1) + (2×1) + (9×2) = 50.  

Now suppose that we perform two times preventive 

maintenance which eliminates the risk of breakdown 

occurrence (Fig.4.). For the same job scheduling solution: 

J1 J2 J3 J4 J5

5 7 8 12 15 16 22

Preventive 

maintenance

J1 J2 J3 J4 J5

5 7 8 12 15 16 22

Preventive 

maintenance  

Fig.4. With two preventive maintenance periods 

    The objective function of this solution is  

ET-cost= (11×1) + (9×2) + (4×1) + (6×2) = 45. 

    We have tested three solutions with different values of the 

objective function. In this case the fact to perform only 

preventive maintenance is better, but it's not always true. It 

depends on the scenario of breakdowns and the relationship 

between preventive maintenance and the age of machine. As 

we can see from this example, the studied problem is 

complex. We have to decide (1) when to start processing 

jobs? (2) in which sequence? (3) if we perform preventive 

maintenance after a given job or not? 

6. DYNAMIC PROGRAMMING 

In this section we formulate a dynamic programming when 

(αj=βj=1), (αj=α, βj=β) and (αj=βj). We can see from the 

above narrative the “recursive” nature of the problem. Indeed 

follow the procedure solving the problem without 

maintenance activities to end up with the optimal ET-

schedule. It is given in a pseudopolinomial time running (see 

the literature review). Number the jobs in the order given by 

that schedule from 1 to n. Now iterate backwards. The stage 

of the DP iterations is the job number. The state of the DP 

model is the (absolute) time t and the “age” of the machine, 

which we shall denote by a. The decision at stage j shall be 

generically denoted by dj . Clearly, dj can take on two values: 

perform maintenance and do not perform maintenance, which 

we shall denote by 1 and 0; respectively. Let vj(t) denote the 

expected stage reward when job j is considered at time t; it is 

given by (in which cET(·) is the ET-cost), 

 

The rationale for (8) is that when maintenance is undertaken 

it will consume time tR which is followed by the processing 

time of job j. The rationale for (9) is that when no 

maintenance is undertaken the machine will fail after 
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time )(ay , on the average, with probability p, and will not 

fail with probability 1-p. The value of p is given in (4) above. 

Therefore, the expected stage cost under decision dj=0 is 

 

Finally, let fj(t,a) denote the minimal expected cost of stages 

j, j+1,...,n (the “tail” stages) when considered at time t with a 

machine of age a. We have, 

 

in which we indicated, for emphasis, that the completion time 

of job n depends on the decision made. Observe that the 

expectation is relative to the random variable. Y which 

signifies the behaviour of the machine during the period of 

processing job n, which is equal to τn. This initiates the 

iterations. For any stage j, 1≤j≤n-1, the extremal equation 

takes the form of 

 

    in which both t′ and a′ are functions of the decision made: 

• t′=t+tR+τj, if dj=1; 

• t′=t+τj if dj=0 and the machine did not fail (which 

happens with probability 1-p); 

• t′=t+tR+τj+ )(ay  if dj=0 and the machine failed 

(which happens with probability p); 

• a′=a+tR+τj, if dj=1; 

• a′=a+τj if dj=0 and the machine did not fail (which 

happens with probability 1-p); 

• a′=a+ )(ay +tR+τj if dj=0 and the machine failed 

(which happens with probability p). 

Observe that (.)y  in the above expressions is a function of 

the age of the machine, a. The problem is solved when we 

secure f1(0,0). 

The running time of this algorithm is still manageable for 

problems with small sizes. For instance if the planning 

horizon is one day and the life of the machine is a random 

variable over a span of two weeks. One (rather crude) way to 

ameliorate the computational burden is to (i) assume the jobs 

to be “uniform”, meaning they all take the same processing 

time τ , which is the average processing time of the 

population of jobs, and (ii) assume the horizon to be infinite 

(very large number of “uniform” jobs). 

7. CONCLUSION 

In this paper we have studied the problem of scheduling 

production jobs and planning preventive maintenance in a 

single machine subject to breakdowns. The objective is to 

minimize the expected total earliness-tardiness cost with a 

common due date. We have given a relevant literature 

considering on one hand the common due date in a single 

machine to minimize the ET-cost and on the other hand the 

integration of scheduling jobs and preventive maintenance 

planning. We have introduced the stochastic process of 

breakdowns considered for the problem studied in this paper. 

The major contribution of this paper is the formulation of a 

dynamic programming algorithm to solve the problem 

optimally. Our future works could be directed to focus on 

some properties of the optimal solution in order to reduce the 

running time of our algorithm and propose heuristics to give 

approximation solutions. 
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