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1. INTRODUCTION

The classical approach for solving a control problem is
“model-driven”—first a mathematical model of the plant
is obtained, and then a model for the controller is com-
puted, based on the model of the plant and on a perfor-
mance criterion.

In this paper we operate in the data-driven paradigm for
control design, where the control input signal is deter-
mined directly from measurements of the observed vari-
ables of the plant and from the performance criterion,
without the need to identify explicitly a model of the plant
or of the controller. Different approaches for developing
controllers or control signals directly from data have been
developed by many authors, see Chan (1996); Favoreel
et al. (1998); Fujisaki et al. (2004); Tkeda et al. (2001);
Woodley (2001). When compared to them, the data-driven
paradigm adopted in this paper exhibits two main original
aspects. On the one hand, our point of view considers as
a starting point any system trajectory that completely
represents the dynamics of the system, rather than one
of a specific nature (e.g. impulse- or step-response). On
the other hand, we operate instead in the behavioral
framework, where a system is identified by the set of
all its trajectories, rather than in representation-oriented
frameworks such as the transfer-function or state-space
approach.

In this paper we give an intrinsic proof of the optimality
of the state feedback control input in LQ-control: we show
that this fact can be deduced from first principles, and
need not be considered a mere consequence of a set-up
essentially based on the use of state-space representations.
We also show an orthogonality property of the optimal
trajectories, which mirrors the one already known in the
context of optimal filtering, and which leads to a simple
derivation of the Riccati difference equation. Surprisingly,
with the exception of some of the results by Kawamura
(see Kawamura (1998)), to the best of our knowledge
no explicit condition of this sort has been given in the
literature.
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The paper is organized as follows. In order to give an
intrinsic formulation of the problem, specified at the level
of the trajectories of the system, we first introduce some
important preliminary results, which are gathered in sec-
tion 2. We proceed to solve the linear quadratic control
problem in section 3. In section 4 we use the data-driven
formulation in order to give a self-contained and simple
proof of the optimality of state feedback in linear quadratic
control problems, without the need to assume a priori
the notion of state and of state-space representation. In
section 5 we illustrate an orthogonality property of the
optimal trajectories of the system, and we show that this
property implies that the optimal trajectory is a linear
function of the state. In this section we also relate the
orthogonality property to the Riccati difference equation.
Section 6 contains some final remarks.

In this paper we extensively use the conceptual framework
and the language of behavioral system and control theory;
we refer the reader unfamiliar with the concepts and termi-
nology of the behavioral approach to the book Polderman
et al. (1998).

Notation. In this paper we denote the set of nonnegative
integers with Z , the set of real numbers with R, and that
of complex numbers with C. The space of n-dimensional
real vectors is denoted by R®, and the space of m x n
real matrices, by R®™® If A € R™® then AT € R™™
denotes its transpose, and AT its pseudo-inverse. If A
is a matrix, possibly with an infinite number of rows or
columns, then im(A) denotes its image, and ker(A) its
kernel. If {A;}i=1, .~ is a set of matrices, then we define

AL O - 0
block diag (Ai);, = 0 A

(|

0 0 --- Ayn

If the sequence A; = Afori=1,..., N, we will be writing
block diag(A)i=1,..~. If {A;}i=1, .~ is a set of matrices
with the same number of columns, then we define
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Ay
col (Ai)izl,...,N =
An

The Hankel matriz of depth L associated with a matrix
sequence of finite length w(1),...,w(T) is

w(l) w2) - w@T-L+1)
w(2) wB) - w@T—-L+2)

Hp(w) = | . : : (1)
w(L) w(L+1) --- w(T)

The lower-triangular Toplitz matriz of depth L + 1 asso-
clated with a matrix sequence H(0),..., H(T) is defined

as
HO) 0 - 0

T (H) = HQ) HFO)

| @)
: : -0
H(L) H(L-1) --- H(0)
The set consisting of all sequences from Zj; to R¥ is
denoted with (R¥)?+. On such space we define the left,
i.e. backward, shift defined by (cw)(t) := w(t + 1) for all
t € Z; and the right, i.e. forward shift o=, defined by

{ (c7'w) (t) ==w(t—1) fort<1

(c7'w) (0):=0  otherwise
We define the concatenation of two trajectories wy,wy €
(R")ZJr at time t > 0 to be the trajectory w; Awa € (R")Z+
defined by

(1 prua) 0= { ) XS

The set of linear, shift-invariant subspaces (“behaviors”)
of the space of trajectories from Z, to R¥ closed in the
topology of pointwise convergence will be denoted with £¥.
Equivalently (see Theorem 5 of Willems (1986a)), B is the
set of trajectories produced by a finite-dimensional, linear,
time-invariant system. The subset of £¥ consisting of all
controllable behaviors will be denoted with £ . . Associ-
ated with a behavior B are a number of important “integer
invariants” such as the order of 98, i.e. the minimal dimen-
sion of the state variable in a state-space representation of
B, denoted with n(B); the input cardinality of B, i.e. the
number of input variables of B, denoted with m(28); the
output cardinality of °B, i.e. the number of output variables
of B, denoted with p(B); and the lag of B, denoted with
L(®B), which we now define. Let R(c)w = 0 be a kernel
representation of B. The maximum of the degrees of the
polynomial elements of R is called the lag associated with
this particular kernel representation. L(8) is the smallest
possible lag over all kernel representations of 8. It can be
proved that there exists a kernel representations of B with
lags less than or equal to L(B).

In the following, when it will be clear from the context
which behavior is being referred to, we will drop the
explicit dependence on B in the invariants’ symbols, and
write n, m, p.

The ring of polynomials with real coefficients in the
indeterminate ¢ is denoted by R[¢]; the ring of two-variable
polynomials with real coefficients in the indeterminates ¢
and 7 is denoted by R[¢,7n]. The space of n x m polynomial

matrices in the indeterminate & is denoted by R**®[¢], and
that of n X m polynomial matrices in the indeterminates ¢
and 7 is denoted by R**®[(, n]. Given a polynomial matrix
R() = Ro + --- + Rp¢l € R™™[¢] with R, # 0, we
define its reciprocal matriz R"(€) as R"(€) := Roél+-- -+
Rp € Rnxm[ﬂ.

2. BACKGROUND MATERIAL

This section contains some essential notions needed for the
formulation of the data-driven linear quadratic problem.
In part this is background material, namely the notion
of persistent excitation of an input, and a condition for
the identifiability of a linear system from a finite set
of measurements (the so-called “Fundamental Lemma”),
which have appeared in Willems et al. (2005). The rest of
the section is devoted to the formalization of the concept
of “initial conditions” in a trajectory setting, using the
notion of state map introduced in Rapisarda et al. (1997).

We define a signal u : [1,T]NZ; — R" to be persistently
exciting of order L if the Hankel matrix Hy (u) of depth
L associated with u(1),...,u(T) is of full row rank, i.e. of
rank Lu.

In Willems et al. (2005) the authors have investigated
the following identifiability problem. Let 8 € L£¥, and let
w € B. Assume that a finite set of consecutive values

w(l),...,w(T) of w is given, and choose L < T'; when do
the restrictions

[w(1),w(2), ..., w(L)]

[w(2),w(3),..., w(L+1)]

[w(T'—L+1),w(T —L+2),...,w(T)] (3)

span the space B|; 1] consisting of all possible restrictions
of length L that can be produced by trajectories of 287
A sufficient condition for this is given in the following
“fundamental lemma”, which is the main result of Willems
et al. (2005).

Lemma 1. (Fundamental Lemma) Let B € £ . . and
let (u,y) be an input-output partition of the external
variable w. Denote with n(8) the order of 9B, and with

Hr(w) the Hankel matrix (1).
Assume that [w(1),w(2),...,w(T)] € B|;1 7). Then

(L), u(2), ..., u(T)
persistently exciting im (Hz(w)) = Bp,
of order L+ n(*B)

We proceed to illustrate the concept of state map in-
troduced in Rapisarda et al. (1997) (see also Praagman
(1988)), and how it relates to the specification of the
“initial conditions” of a trajectory by means of a “prefix”
trajectory.

Consider a kernel representation 8 = ker (R(0)); then a
polynomial matrix X € R**¥[¢] is said to induce a state
map for B if the system with latent variable x defined by
the equations
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R(o)w=0
X(o)w==x

satisfies the aziom of state, i.e. if for all (w,z) € B, it
holds that

[2(0) = 0] = [(O/Sw,O/O\x) e%f}

Algorithms to compute state maps and minimal state
maps are given in Rapisarda et al. (1997).

3. FINITE-HORIZON LQ-CONTROL PROBLEM

The finite-horizon data-driven quadratic optimal control
problem for linear time-invariant systems is formulated as
follows. Given:

(1) a trajectory w = col(w,y) € Bl 1,, where B €
Le ., With @ persistently exciting of order greater
than or equal to n(8) + L(*B);

(2) a positive-definite matrix ® = ®T € R"*¥; and

(3) an initial trajectory win; € Bljy ), with Ty > T >
L(B).

Find w* € ‘B|[T ) such that w’ = wiy; 9 w* minimizes

t=1
subject to w’ € B[y, 7]

A brief discussion of the set-up described above is in order.
The trajectory in point (1) above is the data which we
use in order to derive information about the plant. It
is a set of (input, output) measurements, for example
derived from an experiment. The matrix in point (2) is
that inducing the cost functional on the external variables
of the system. The “prefix” wj, in (3) corresponds to
the “initial conditions” of the system, and is analogous
to the “initial state” of the classical, i.e. state-space,
approach to optimal control problems. In the setting
described by (1)-(3), it is required to find among all
possible “emanations” of wy,;, i.e. among all trajectories
in ‘B|[11Tf} whose first T values coincide with w;,;, that
which minimizes the cost functional over the horizon [1, T']
(equivalently, considering that the values up to T are fixed,
over the horizon [T, T¥]).

In order to solve the finite-horizon data-driven control
problem, we first compute from the data two matrices
with T'yw rows, denoted respectively Hr and Hz, whose
columns form a basis for respectively the [1,Ty]-free re-
sponses and the [1, T]-zero-initial prefix behavior of the
system, which are defined as follows. The set of free re-
sponses is:

im (HF) = %F = { wl[l,Tf] = COl(u’y)Hl,Tf] S %|[1)Tf] |

u(k)=0forall 1 <k <Ty} (4)

Now partition Hp as Hrp = col(Hp, H}) with Hy €
R¥I*® and M/} € R¥Tr=T)x* and observe that the

trajectory Wiz, € By having w;, as prefix can be

obtained from Hp by finding the unique solution to the
linear system of equations H%@ = wi,; and then defining

wg = Hpa. Observe also that this trajectory Wiy 1y is

unique.

The zero-initial prefix subbehavior of %5 is defined as

By :={ w‘[lny] S %|[1,Tf] | 3 T < Ty
st.wk)=0for 1 <k <T' T >L(B)}

In Markovsky et al. (2007) and in Markovsky et al. (2006)
algorithms are given in order to compute a matrix Hz with
full column rank such that

im(Hz) =Bz (5)

Assuming that Hp and Hz have been computed such
that (4) and (5) hold, respectively, then every trajectory
w' € %|[17Tf] with prefix w;,; can be written as

w' =Hra+Hz8 (6)

where @ satisfies H@ = wiy. Now denote with ® the
matrix ® := block diag(®);=1,...,7,, and observe that since

® is positive definite, also ® is positive definite. Then it is
easy to see that the minimal cost trajectory is associated
with the vector §* such that

HLOHpa + HydHz 3" =0 (7)

and consequently,

~ -1 -
w* = [1 My (H}@HZ) H}@} Hra  (8)

Not surprisingly considering the quadratic nature of the
cost functional, w* is obtained from the free trajectory
‘Hpa with prefix w;,; by subtracting from it its Projection
(in the metric induced by the cost matrix ®) on the
zero-initial prefix subbehavior 9. Another geometrical
interpretation of formulas (6)-(7) is given in section 5 of
this paper.

In the rest of this paper we examine the implications of
formulas (7) and (8), beginning in the next section with
its relationship with the concept of “state feedback”.

4. WHY “STATE” FEEDBACK?

The notion of state is all-pervasive in system and control
theory, all the more so in linear quadratic control, where
the fact that the optimal feedback law is a function of
the state of the system is rightly considered to be one
of the most important results of the framework initiated
by Kalman. In this section we show that an alternative
approach to linear quadratic control, one that deduces and
does not postulate the fact that the state is involved in
the computation of the optimal trajectory can and, in our
opinion, should be taken, if only because of its simplicity
and of its pedagogical effectiveness.

In order to justify these claims, we first prove the following
result.

Proposition 2. Let B € £7, let ¢ > L(B), and denote with
V(4) the minimum value of the problem

12287



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

T@w

min — E

subJect to wy, ., € %l[iva]

w(j) =w; given, j =14,...,i+L(B) -1 (9)

Let w* be such that V(i) = %Z;‘ZZ *(5) T ®w*(5); then
for every state map X € R®**¥[{] there exists a positive
definite matrix K; = K, € R***® such that

V(i) = (X(o)w")(@) " Ki(X (o)w?) (i) (10)
We now briefly comment the statement of Proposition 2
by comparing it with the results available in the clas-
sical framework for control. The fact that in the state-
space setting, the optimal performance index for the linear
quadratic regulator problem is a quadratic form in the
state is a well-known result both in continuous- and in
discrete-time, see for example sections 2.2, 2.3 and 2.4 of
Anderson et al. (1989). However, the reader should note
that the result of Proposition 2 has been obtained from
first principles, starting from a description of the system
as a set of higher-order difference equations possibly in-
cluding algebraic constraints among the variables, and not
on the basis of a first order representation as the one
considered in the state-space setting. Proposition 2 shows
that the fact that the optimal cost is a quadratic function
of the state is a direct consequence of the nature of the
problem itself, and not of the particular representation used
for solving the problem.

The main result of this section follows in a straightforward
manner applying Bellman’s optimality principle to the
optimization problem defined in (11), and from the result
of Proposition 2.

Proposition 3. Let B € £¥, and consider the problem

Ty

1 ) .

min 5 Zw(g)Tq)w(j)
j=1

subject to Wi, o

(11)

For every state map X € R**¥[{] and every i € [1,TY]
there exists a matrix L; € R"*® such that the optimal
trajectory w* satisfies

w*(i) = Li (X (a)w”) (i)

w(j) =w; given, j =1,...,T

(12)

Remark. It follows from the proof of Proposition 3 that
the value of w* at any time instant is a function of the
past values of w*. m

Remark. An additional and alternative proof of the
optimality of state feedback laws is given in section 5 of
this paper. m

Remark. It can be shown that the feedback gain L; of
Proposition 3 can be computed recursively, analogously to
what happens in the state-space approach to LQ-optimal
control with the Riccati difference equation. The simplest
way to consider this problem is to study the L-step ahead
recursion, in which at each step of the iteration one
computes the gain- and the optimal cost matrix for the
optimal control problem on the horizon [i,T] based on

the optimal cost matrix for the optimal control problem
on the horizon [i + L,Ty]. We will not enter into these
details here. m

5. THE ORTHOGONALITY PROPERTY AND THE
RICCATI DIFFERENCE EQUATION

On the space (R¥)%* N7 e define the following inner
product induced by the matrix ® = &7 € R¥*¥:

w17w2 D = E w1

and we call w; orthogonal to wsy if (w1, ws)e = 0, written
wy Le ws. Given a behavior %‘[I,be we define its ®-

(I)’LUQ )

orthogonal, denoted with %\{LTf]J'q’
1
(Blur) ™"

The main result of this section is the following.

Proposition 4. Let B € £" and consider the finite-
horizon LQ-problem defined in section 3. Then w* :=
{w*(1) w*(Ty)} with prefix w;,; solves the LQ data-
driven problem if and only if w* belongs to %;‘B, the ®-
orthogonal behavior of the zero initial prefix behavior.

, as

= {w‘[lny] | (w,v)e = 0 for all v € Bl;y p,}

The proof of this statement is based on the observation
that a trajectory w* = Hrpa+H.0* is optimal if and only
if

Hy® [Hpa +HzB*] =0 (13)
holds true. Equation (13) will be used in the following
also to establish an orthogonality property of the optimal
trajectories of the system.

The result of Proposition 4 has a straightforward geomet-
ric interpretation, illustrated in Figure 1. With reference
to the proof of Proposition 4, denote with wy the “free-
response” trajectory Hpa emanating from wy,;, and with
w, the “control-trajectory” Hz(* emanating from the zero
initial prefix. Then equation (13) shows that the optimal
trajectory w* is the orthogonal projection (in the metric
induced by (-, -)a) of wy onto B*, and that it is obtained
from wy by adding to it the trajectory we.

We

Fig. 1. Geometry of optimal control: w* = w¢ 4w, € BJZ‘@.

The orthogonality condition stated in Proposition 4 can
hardly be called surprising, considering the least-squares
framework in which the optimization problem is cast;
however, to the best of the knowledge of the authors, with
the exception of the work of Kawamura (see Kawamura
(1998)) discussed later in this section, no explicit condi-
tion of this sort has been given in the literature on the
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linear quadratic optimal control problem. It is interest-
ing to contrast this situation with standard treatments
of least-squares estimation (see for example Luenberger
(1968)), where orthogonality of random variables plays an
important role both from the pedagogical and from the
algorithmic point of view.

In the following we show that the orthogonality condition
stated in Proposition 4 has some rather interesting con-
sequences. The first one we prove is that it also implies
that the optimal trajectory is a linear function of the state
(Proposition 3), giving yet another interpretation of the
“state feedback” law (12), and an independent proof of
the optimality of state-feedback.

Proposition 5. Let B € £", and consider the finite-horizon
LQ-problem defined in section 3. Let X (o) be a state

map for B. If w‘*[lny] € Blp,r,) belongs to %;‘i’, then

for every 1 < ¢ < Ty there exists L; € R¥*® such that
w*(i) = L; (X (0)w*) (7).

Before exploring further the consequences of the result of
Proposition 4, we briefly comment on its relationship with
the “basic orthogonality condition” of Kawamura (1998).
In Theorem 3 of that paper it is shown that in the context
of state space systems

z(k +1) = Az(k) + Bu(k)

0= o]

under the assumptions of stabilizability, detectability, and
positive-definiteness of DT D, a feedback law u(k) = Gz (k)
is the infinite-horizon optimal LQ-control law if and only
if the impulse response of the closed-loop system

xz(k+1)=(A+ BG)z(k) + Bu'(k)
Cx(k 0
2(k) = { Dg)} + H o (k)
is orthogonal in the ¢5 sense with any free response of the
closed-loop system (see equations (6)-(7) and Theorem 3 of
Kawamura (1998)). Observe that instead in Proposition 4
it is stated that any open-loop zero-initial prefix trajectory

and any free response of the closed-loop (optimal) system
are orthogonal.

In Corollary 4 of Kawamura (1998) it is also shown
that if the solution to the algebraic Riccati equation is
positive semidefinite, then the ARE and the gain equation
are equivalent with the orthogonality condition. In the
following proposition we state a similar result derived
from the orthogonality condition of Proposition 4. For
this purpose, we consider the behavior B consisting of the
trajectories w = col(u, ) satisfying

ox = Az + Bu (14)
and the finite-horizon LQ problem with cost functional
induced by

RO
o [1] s

with R >0, @ > 0.
Proposition 6. The trajectory
w* = (u*,2%) € B :={(u,x) | (u,x) satisfy (14)}

is orthogonal to Bz in the inner product (-,-)¢ induced
by (15) if and only if

uw*(i)= —(R+B"K;;1B) 'B" K Az* (i)

where

(16)

Kr, == Q;
Ki=ATKi1A+Q
~A"K;\1B(R+B"K;11B) 'B"K,; 1A (17)

it=1,...,Tf —1 and K, is a positive definite matrix.
6. CONCLUSIONS

In this paper we have presented two independent results
on the optimality of state feedback laws in finite-horizon
linear quadratic control problems, namely Proposition 3
and Proposition 5. These results have been deduced from
first principles: the fact that the optimal cost is a quadratic
function of the state has been shown to be a consequence of
the nature of the problem itself, and not of the particular
representation adopted for the system.
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