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Abstract: A model identification procedure is applied to the well known benchmark problem of the 

pendulum hinged to a cart.  There is a dynamical model of the entire system. The PWM control signal and 

DC motor impact introduced electrically by EMF are included. A concatenation of trajectories collected 

during several control experiments is used to fit the parameters of the pendulum-cart mathematical model. 

The identification of model parameters is dedicated to the control goal. Several collected points of  

trajectories are neglected. The model matching corresponds to intervals. 

 

1. INTRODUCTION 

Models can come from introspection (based on laws of 

nature) or/and observation  (behavioral models). The goal is 

to find a functional form (a model architecture) and 

determine its adjustable parameters to best describe a set of 

collected experimental data. In other words, to obtain the best 

matching between the predictions of the model and the data. 

In general, we deal with three sets: different model 

architectures a , model parameters c  and measurement data 

d  (Gershenfeld, 1999). The data are compound of measured 

signals and noise. Moreover, if stochastic effects are present 

the concept of a random variable x  and its distribution )(xp  

has to be introduced, where ∫
β

α
dxxp )(  is probability to 

observe x  between α  and β . For a joint random variable 

according to Bayes’ rule we can define the conditional 

probability. Therefore the Bayesian model estimation should 

result in finding c  that are most likely given the choice of  a  

and .d  We have decided to stick with one model architecture 

a  i.e., a model described by ODE (analytical state and 

conjugate equations). Nevertheless their complex form we 

can simply derive the conjugate equations with the help of 

symbolic methods (MAPLE). A set of N  noisy 

measurements (a sample) ),( cxyy nn =  as a function of a 

variable nx  and coefficients c  is given. All measurements 

are thus trajectory points collected in real-time from sensors 

for a given system. The errors of measurement data, 

yye nn −=  are assumed to be normal (having a Gaussian 

distribution) because many random variables of practical 

interest are normal or approximately normal or easy 

transformed into normal random variables Errors between 

samples are independent and identically distributed i.e., the 

probability to see the entire data set is equal to the product of 

the probabilities to see each point (Eykhoff, 1974). Finally, 

we use the method of least squares: 
2

1

]),([min ∑ −
=

N

n
nn

c
cxyy .  

We can assume 12 =nσ  if the standard deviations 2
nσ  is not 

known in advance. The least squares formula is easily 

optimized if it can be expand as a linear sum of k  known 

basis functions. These are not however our cases. We deal 

with much more general examples where the coefficients c  

are inside the nonlinear basis functions. Starting from guess 

for c  the estimate is refined. Such a nonlinear optimization 

can be stopped at a local minimum. There is no guarantee 

that the local and global minima are the selfsame. However, 

for a small number of c  parameters (six in our case) it is a 

numerical evidence – as it will be illustrated in section 3 – 

that the attained minimum can be recognized as the global 

one. We have to emphasis that the identified model 

corresponds to real system trajectories of a special type. 

These trajectories respond to “bang-bang” controls. Therefore 

they are only a subset of all possible trajectories. Moreover, 

to fit better to the “bang-bang” optimal controls and to 

neglect a no homogenous static friction we can delete the 

trajectory points for a motionless system or the points being 

at the beginning of motion. In this way we focused our 

identification procedure not only to the “bang-bang” control 

trajectories but also to a piece-wise parameter fitting – only 

intervals of the entire trajectory are taken into account (see 

Fig. 4 in section 3 that illustrates how the intervals are 

generated due to the small velocities zone). Such an approach 

was described in (Marchewka, et al.,  2005) for the first time. 

2.  THE CART AND PENDULUM BENCHMARK 

Consider the system depicted in Fig. 1. 
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Fig. 1. Pendulum on a cart system 
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A pendulum rotates in a vertical plane around an axis located 

on a cart. The cart can move along a horizontal rail, lying in 

the plane of rotation. The cart is pulled forth and back by a 

DC motor via a belt drive encircling two belt pulleys. The 

state of the system is a vector ),,,(col 4321 xxxxx = where 

1x  is the cart position, 2x  is the angle between the upward 

direction and the pendulum, measured counterclockwise 

0( 2 =x  for the upright position of the pendulum), 3x  is the 

cart velocity, and 4x  is the pendulum angular velocity. The 

computer control )(tu  takes values in the interval 

[− maxu , maxu ], where maxu  is the unit-less maximal 

magnitude of a pulse width modulation (PWM) signal 

generated by the I/O computer board. For simplicity, )(tu  is 

replaced by u . Consequently, the t  parameter will be 

omitted in the formulas. The signal u  multiplied by the 

voltage gain uK  becomes the input voltage to DC motor, 

.uKu ⋅  A control force F  generated by a DC flat motor, 

parallel to the rail, is applied to the cart 

 321 xpupF += ,                    (1)      

where 1p  and 2p  are respectively the control force to PWM 

signal and control force to cart velocity ratios 

 ,1 uKp ε=    
d

rpm

r

U
p

32
102

60

⋅
−=

π
ε ,   

where              (2) 

 
id

i

Rr

M
=ε .                                          

The total mass of the pendulum and cart is denoted by .m  

The armature circuit dynamics is neglected. That is justified 

due to a very small time constant. Of course, the motor has a 

big impact for the entire control system and it is present in 

the model: electrically by EMF the electro-magnetic force to 

rpm (rotation per minute) ratio i.e., rpmU  involved in 2p  and 

mechanically by an equivalent mass em  (the total mass m  

has to be increased to involve inertial effects of  the armature 

and belt pulleys). l  is the distance from the axis of rotation 

of the pendulum to the center of mass of the system. J  is the 

moment of inertia of the pendulum with respect to its 

rotational axis on the cart. The cart friction is compound of 

two forces: the static Coulomb friction, sFx )sign( 3  and the 

viscous friction proportional to the cart velocity, 3xfc . The 

discontinuous "sign" function is approximated by )tanh( 3xn  

where n  is an natural number i.e., 10=n . There is also a 

friction torque in the angular motion of the pendulum, 

proportional to the angular velocity, 4xf p . iM  and iR  are 

parameters of the DC motor and denote respectively: the 

torque to current ratio and internal and connecting wires total 

resistance. g  is the gravity. The dynamics of the driving DC 

motor-belt system is not represented in the model. The DC  

motor dynamics can be easily dealt with, at the cost however 

of increasing the order of the system. The state equations are 

as follows 

31 xx =& ,  

42 xx =& ,   

)(

cos)(),( 2211
3

xd

xxwuxwa
x

+
=& ,                  (3) 
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)(cos),( 2221
4
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xwaxuxw
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+
=& ,   

where 

)tanh(sin),( 33322
2
411 xnkxkxxukuxw −−−= , 

4422 sin)( xkxgxw −= ,       

2
2cos)( xbxd −= . 

The 32121 ,,,,, kkkbaa and 4k  parameters are expressed as 

follows: 
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The control u is constrained  

maxuu ≤ .               (6) 

3. IDENTIFICATION OF THE MODEL PARAMETERS 

The model given above involves six parameters: 

432121 and,,,, kkkkaa  to be identified by real-time 

experiments carried out in the system. In the real system two 

state variables: 1x  and 2x  are measured with a high 

accuracy. The former measurement is obtained from 12 bit 

encoder and the later from similar encoder in a non direct 

way. The rotational DC motor movement is transferred to the 

linear cart movement via a belt drive. These encoders are 

mounted at  the  pendulum and DC motor shafts. The 

pendulum angle is measured with the accuracy equal to 

0.001534 rad (2π /4096) and the cart position with the 

accuracy 0.076 m (one rotation corresponds to the cart shift 

equal to 0.156 m). The computer sampling period is defined 

as 0.005 s. The remaining variables 3x  and 4x  are 

reconstructed (an observer might be introduced). We collect 

six state trajectories (enumerated by i, 6,,1K=i ) 

corresponding to different controls )(ku i  iNk ,,1K= , 

where k denotes a consecutive point of the trajectory and iN  
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is the number of trajectory points in the experiment i. These 

six trajectories are stored in the )},(),(),(),({ 4321 kxkxkxkx iiii  

iNk ,,1K= , 6,,1K=i  concatenated form and become a 

pattern to be used to fit parameters of the model. The same 

controls, 6,,1, K=iu
i

 are applied in the model (the initial 

values of 432121 and,,,, kkkkaa  are guessed). The state 

trajectories obtained from the model under the control )(ku
i

 

are denoted ),(~),(~{ 21 kxkx ii  )}(~),(~
43 kxkx ii  for iNk ,,1K=  

6,,1K=i . The points of the real (pattern) and model 

trajectories have to be specified at the same instants. To fit 

the trajectories an optimization procedure is performed. The 

multidimensional unconstrained nonlinear minimization 

Fminsearch (Nelder-Mead) from MATLAB is used with the 

quality factor Q  in the form 

( )

10,1

)(~)()~,(

2431

2

1

6
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4

1

====

∑ −∑ ∑=
== =

αααα

α
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k

i
j

i
j

i j
j kxkxxxQ

                        (7)  

We minimize Q  and each iQ , for 6,...,1=i , with respect to 

432121 and,,,, kkkkaa  

)~,(min
432121 ,,,,,

min xxQQ
kkkkaa

=                            (8) 

)~,(min
432121 ,,,,,

min xxQQ i
kkkkaa

i = , 6,...,1=i                   (9) 

min
Q is attained at ΣΣΣΣΣΣ

432121 ,,,,, kkkkaa . This is just the 

goal of identification to find a unique set common to all real-

time trajectories. min
iQ  is attained at iiiiii kkkkaa 432121 ,,,,, . 

Obviously ∑>
=

6

1

minmin

i
iQQ . For each experiment we 

calculate 

.),,,,,,~,(

),,,,,,~,(

min
432121

432121

i
iiiiii

i

ii

QkkkkaaxxQ

kkkkaaxxQQ

=>

>= ΣΣΣΣΣΣΣ

        (10) 

The less min
iQ  differs from Σ

iQ  and less ,,, 121
ΣΣΣ kaa  

ΣΣΣ
432 ,, kkk  differ from iiiiii kkkkaa 432121 ,,,,,  the better is 

model matching. The switching times and final time for six 

experiments are shown in Table 1. Table 2 shows the best 

model matching parameter sets: iiiiii kkkkaa 432121 ,,,,, , min
iQ , 

Σ
iQ  for the experiments. The unique identified parameter set 

common to all experiments and the minimum minQ  from 

formula (7) attained for this set are shown in Table 3. To 

provide an evidence that the attained minimum of quality 

factor (7) has not got solely a local character the Fminsearch 

minimization procedure have been repeated 10 times starting 

from random values of six parameters. The same result as 

that presented in Table 3 has been obtained. All real-time 

experiments have been carried out starting from the same 

initial states 0x = col(0, π , 0, 0) with different controls 

maxu± . Each experimental trajectory consists of 200 points 

except sixth experiment with 180 points. Each modeled 

trajectory has approximately five times more points. To have 

the same number of points an interpolation technique is used. 

Among five parameters 
Σ
1a  is perfectly identified. It means 

that  nearly the same values are obtained in each experiment. 

The parameters of experiment 1 deviate mostly from the 

average values. In spite of that their values are closest to the 

unique parameter values commonly evaluated for all 

experiments. 

Table 1. Switching times and the final time 

exp. 

no. 

switch 

 1 

switch 

 2 

switch 

 3 

switch 

 4 

switch 

 5 

final 

1 0.3 0.8 0.85 1.0 1.76 2.0 

2 0.2 0.8 0.95 1.0 1.6 2.0 

3 0.5 1.0 1.1 1.2 1.6 2.0 

4 0.41 0.82 0.85 1.1 1.7 2.0 

5 0.3 0.5 0.8 1.2 1.7 2.0 

6 0.41 0.815 0.85 1.05 1.76 1.8 

 

Table 2. The best model matching parameters 

and corresponding quality factors  

exp. 

no. 

ia1  ia2  ik1  ik2  ik3  
i

k4  
min
iQ   Σ

iQ   

1   0.324  64 815 142 77 0.034 19 29  

2   0.324 49 583 96 48 0.029 16 25 

3   0.326 44 546 77 59 0.025 13 16 

4   0.327 43 541 88 48 0.036 19 25 

5   0.324 41 502 88 43 0.021 18 23 

6   0.325 48 589 73 77 0.015 12 37 

 

Table 3. Identified parameters common to all 

experiments 

Σ
1a  

Σ
2a  Σ

1k  Σ
2k  Σ

3k  Σ
4k  minQ  

0.3249 62.7 798 112 92.5 0.0356 155 

 

Figs 2 – 5 illustrate six real time experiments (the trajectories 

are depicted by dotted line). The corresponding modeled 

trajectories (see formulas (3)) for the identified parameters 

(see Table 2) are depicted by solid line. In principle the 

mismatch of the real and modeled trajectories corresponds to 

the cart position and velocity variables. This is caused by 

varying cart friction effects. Therefore parameters modeling a 

given trajectory do not need to fit perfectly to model another 
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trajectory. Nevertheless the model error is acceptable, as we 

can see further, to extract the time optimal control to be used 

even in the open loop. There is the small velocity zone 

depicted in Fig. 4. 
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Fig. 2. Cart positions in six experiments; real measured – dot 

line; commonly modeled – solid line 
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Fig. 3. Pendulum angles in six experiments; real measured – 

dot line; commonly modeled – solid line 

The trajectory points that belong to this zone are excluded 

from the )~,( xxQ  set in formula (7). In this way we avoid 

large errors related to the reconstructed (calculated not 

measured) velocities 3x  and 4x . This is the crucial idea to 

obtain a more accurate parameter fitting. One can notice that 

the excluded points lead to the identification procedure 

performed in intervals. The first and second intervals of 

trajectory No. 2 are depicted in Fig. 4. Having identified five 

model parameters we can extract the physical parameters of 

the system. From formula (4) 2/1 al = =0.01595 m, 

== lamJ e 1/ 0.005182 m
2
 and

 
b = 20.37123. The total mass 

of the system, m can be measured with a high accuracy. 

However we need to use the equivalent mass em . Thus it 

seems to be better to calculate the pendulum inertia 

momentum J on the basis of the pendulum geometrical shape. 

Using the well known formulas of mechanics we obtain =J  

0.00527 kgm
2
. Hence, =em 1.017 kg (the weighted mass, m 

= 0.56 kg). From formula (2) lmkp e11 = , =1p 12.9439 N, 

uKp /1=ε  and taking =uK 24 V we calculate =ε 0.5393 

NV
−1

. After calculating ε  we can extract the internal motor 

and connecting wires resistance )/( dii rMR ε= . The torque 

to current ratio iM = 0.0477 NmA
−1

 is a catalogue nominal 

parameter of the motor. 
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Fig. 4. Cart velocity in six experiments; real observed – dot 

line; commonly modeled – solid line 
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Fig. 5. Pendulum velocity in six experiments; real observed –

dot line; commonly modeled – solid line 

The wheel radius =dr 0.0341 m is measured. Hence, we 

obtain iR = 2.594 Ω . On the basis of the other catalogue 

nominal value, rpmU = 5 mV(rpm)
−1

 and from formula (2) 
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=2p – 0.75516 Ns/m. Finally, from formula (5) we have 

22 plmkf ec += , lmkF es 3=  and lmkf ep 4= . Their values 

are as follows: =cf 1.0615 Ns(m)
−1

,  =sF 1.5004 N and 

=pf 410 5.7745 −⋅  Nms(rad)
−1

. 

4. TIME-OPTIMAL CONTROL 

The identified model has to be verified in real-time. Fig. 6 

and Fig. 7 present results of ten repeated experiments.  
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Fig. 6. Pendulum angles in ten real-time experiments 
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Fig. 7. Cart positions in ten real-time experiments 

Consider the optimization problem x0 = col(0, π , 0, 0) and 

open-loop unstable target state f
x = 0. The numerical 

algorithm is applied to the pendulum on a cart model with 

parameters: ΣΣΣΣΣΣ
432121 ,,,,, kkkkaa  (see Table 3) and 

admissible control u (see formula (6)) with maxu = 0.5. The 

most critical model utility test is the open loop time-optimal 

control. To perform such a test we use here the optimization 

procedures described in (Turnau, et al., 1999) and evaluated 

in (Turnau, et al., 2005). The method has been developed 

further. The approach proposed below is applied also to 

varying control structure. This is achieved by combining the 

linearized feedback scheme with the monotonous structure 

evolution (Szymkat, et al., 2003). The new method gives 

good disturbance rejection at a low computational cost. The 

conjugate equations corresponding to the state equations (3 – 

5) and the control constraints (6) have the following form 

,01 =ψ&           

,),(),( 4243232 ψψψ uxAuxA +=&      

,)()( 43433313 ψψψψ xAxA ++−=&               (11) 

.)()( 44434324 ψψψψ xAxA ++−=&     

where: 
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α
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The gradient has the form 

D

X
g

243 cosψψ +
−= .                                      (13) 

If singularities do not occur the time optimal control has the 

bang-bang character 





<+−

>+
=

0)(cos)()(if ,

0)(cos)()(if    ,
)(

243max

243max

txttu

txttu
tu

ψψ

ψψ
.       (14) 

The following sequence of "bang-bang" control time 

switchings (in seconds) is obtained: 0.4016 0.775 0.826  

1.0575 1.411 1.748 and the final control time, 1.859. These 

values are rounded off to 5 ms that is the sampling period 

value in the real system: 0.40 0.78 0.83 1.06 1.41 1.75 and 

1.86. Next, two sampling periods are added to each switching 

time. Because the real system when starts remains two 

sampling periods delayed. Finally, the time switchings in (see 

Table 4) up to the horizon are applied in the real-time open 

loop control experiments. They prove reliably sufficient 

accuracy of the identified model. If the identified model were 

not accurate one would never be able to achieve the control 

target successfully and repeatedly in the open loop.  
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Table 4. Time switchings in the real-time 

experiments 

sw. 1 sw. 2 sw. 3 sw. 4 sw. 5 sw. 6 horizon 

0.41s 0.79s 0.84s 1.0s 1.42 s 1.76s 1.87s 

 

Two trajectory bundles in Figs 6 and 7 related to the 

pendulum angular position and the cart position are 

sufficiently narrow – from the control beginning to its 

horizon – to believe to a good quality of the model. Notice, 

this observation is valid till 1.87 s at both figures. Later, in 

some predetermined neighborhood of the target (when a 

small vicinity of the pendulum upright equilibrium point is 

achieved ( ≤2x 0.08 [rad]) the time-optimal open-loop 

control is replaced by a stabilizing controller. In our 

experiments an l-q optimal controller is used keeping the 

pendulum in the upright position simultaneously centering 

the cart in the middle of the rail (see Fig. 7). Therefore, to 

verify correctness of the identified parameters we refer only 

to the parts of Fig. 6 and Fig. 7 limited by the horizon vertical 

line at 1.87 s. Later points of the trajectory bundles are not 

used to identify the model. There are two effects related to 

discrete nature of measurement and control signals: the 

computer sampling period equal to 0.005 s and the 

quantization determined by the construction of sensing 

devices – the encoders. Further diminishing the sampling 

period is not recommended. First, it must be a trade-off 

between quantization and sampling. Second, for a closed-

loop time-optimal control we do require time to repeat an 

optimization procedure.  

5. CONCLUSIONS 

The model construction and parameter identification 

procedures are complex tasks. If a control goal is defined it 

helps to diminish a set of system trajectories to be involved 

into the model fitting. This is the most important issue of the 

proposed identification method. The model identification 

becomes dedicated to the time-optimal control. The 

parameter identification procedure is narrowed only to “bang-

bang” trajectories. Moreover, motionless or slow velocities 

trajectory points are excluded. In this way disturbances 

generated by static friction effects are neglected. The 

identification processed in intervals yields the more accurate 

modeling   
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