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Abstract: In this paper, the moving horizon recursive state estimator for linear singular
systems is derived from the minimum variance estimation problem. The proposed estimate
of the state using the measured outputs samples on the recent finite time horizon is unbiased
and independent of any a priori information of the state on the horizon. The convergence and
stability of the filter are evoked. A numerical example is presented to prove the performance of
the proposed filter.

1. INTRODUCTION

The study of estimation problem of singular systems (De-
scriptor systems or implicit systems) is presented in this
work. This study is motivated by the fact that systems
in descriptor formulation frequently arise naturally in
economical systems, image modeling, and robotics, etc.
Ishihara et al. [2005]. The problem of state estimation
for singular systems has been treated by several authors
Dai [1989], Darouach et al. [1992], Darouach et al. [1993],
Darouach et al. [1995], Bassong-Onana and Darouach
[1992], Nikoukhah et al. [1992], Nikoukhah et al. [1999],
Zhang et al. [1998], Zhang et al. [1999], Ishihara et al.
[2004] and Ishihara et al. [2005]. Most of these researchers
present the generalized Kalman filter as a solution for
recursive state estimation problem. The Kalman filtering
problem through a deterministic approach is studied in
Darouach et al. [1992], Darouach et al. [1993], Ishihara
et al. [2004] and Ishihara et al. [2005].

Investing the success of receding horizon control in the
estimation of dynamic states and parameters, for linear
and nonlinear systems, recent attention has been concen-
trated on the moving horizon estimation (MHE). In the
framework of MHE, only a fixed amount of measurement
data is used to solve an optimization problem, so that the
oldest measurement sample is discarded as a new sample
becomes available. Among the reasons of successes of MHE
approach are the possibility of incorporating the equality
and inequality constraints and also the reduced size of data
used for estimation.

In this paper, we derive the unbiased minimum-variance
estimation. We consider singular systems in the most
general case with no assumption regarding regularity and
causality. Using the moving horizon estimation strategy
(MHE), an optimal recursive filter is developed. Necessary
and sufficient conditions for convergence and stability of
the optimal filter are given.

The organisation of this paper is as follows. The problem
is stated in Section 2. The optimal solution of the estima-
tion problem for singular systems using moving horizon
approach is derived in section 3. In section 4, the conver-
gence and stability properties of the solution are presented
and finally a numerical example is given in section 5 to
illustrate this approach.

2. PROBLEM STATEMENT AND PRELIMINARIES

Let us consider the following discrete-time linear stochastic
singular system described by :

Exk+1 = Axk + Buk + wk, k = 0, 1, 2, ... (1a)

yk = Cxk + vk (1b)

where xk ∈ ℜn is the state vector, uk ∈ ℜl is the input,
yk ∈ ℜm is the measured output, wk ∈ ℜn is a state noise
vector, and vk ∈ ℜm is a measurement noise vector. E,
A, B and C are matrices with appropriate dimensions.
Let us consider the initial condition x0 ∈ ℜn be random
variable having mean x̄0 and covariance P0; the state
noise wj and the measurement noise vj are assumed to be
mutually uncorrelated, zero-mean, white random signals
with known covariance matrices

E

{[
wi

vj

] [
wi

vj

]T
}

=

[
Qw 0
0 Vv

]
δij > 0

where δij = 1 if i = j and δij = 0 otherwise. We assume
that x0 is independent of vj and wj for all k.

Based on the measure z over time (0, k) and the initial
state x0, the estimate of xk, denoted x̂k|k (the notation
∗i|j means that this is a discrete time variable at time
i given information up to time j) is computed from the
minimum variance estimation problem. In this case, we
seek to find an optimal estimate which minimise the mean
square error defined by

J = E{
(
xk − x̂k|k

) (
xk − x̂k|k

)T
}. (2)

The objective of this work is to apply the MHE approach
to singular linear systems. The MHE attempt, to preserve
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old information by using a ”information” window that
slides over the measurements. The state is estimated,with
the MHE approach, from the horizon of the most recent
N + 1 output measurements that moves forward at each
sampling time when a new measurement is available. The
old information is incorporated using a startup estimate
x̄k−N that is calculated from old filtered states and a
specific weight Pk−N |k−N .

Throughout this paper the following assumption is taken
to hold

Assumption 1. We suppose that

[
E
C

]
has full column

rank (see Darouach et al. [1993, 1995], Nikoukhah et al.
[1992], Ishihara et al. [2004]).

3. OPTIMAL ESTIMATION FOR SINGULAR
SYSTEMS

In the Kalman filter recursion, the optimal state estima-
tion at time k is determined recursively from the optimal
state estimate and output measurements at time k − 1.
In the receding horizon formulation, the optimal state
estimate at time k is determined recursively from the
optimal state at time k−N and the most recent N +1 out-
put measurements using the minimum variance estimation
formulation.

If the assumption 1 is verified, a non singular matrix J̄
exist, such as [

J̄1 J̄2

J̄3 J̄4

]

︸ ︷︷ ︸
J̄

[
E
C

]
=

[
In

0

]
. (3)

Firstly, let us present the current state xk in the horizon
[k − N, K] using the initial state xk−N .

Multiplying (1a) by J̄1, we find

J̄1Exk = J̄1(Axk−1 + Buk−1 + wk−1) (4)

which is equivalent to

xk = J̄2(yk − vk) + J̄1(Axk−1 + Buk−1 + wk−1)

= Fxk−1 + B̄rk + T1ηk (5)

with

B̄ =
[
J̄1B J̄2

]
, T1 =

[
J̄1 J̄2

]
, F = J̄1A (6a)

rk =

(
uk−1

yk

)
, ηk =

(
wk−1

−vk

)
. (6b)

using the same idea for k− 1 until k −N + 1, the state xk

can be calculated recursively as

xk = Fxk−1 + B̄rk + T1ηk

= F 2xk−2 + FB̄rk−1 + B̄rk + FT1ηk−1 + T1ηk

= . . .

= FNxk−N +
[
FN−1B̄ FN−2B̄ . . . B̄

]
r̄k

+
[
FN−1 FN−2 . . . I

]
W k (7)

with wk = T1ηk and

r̄k =
[
rT
k−N+1 rT

k−N+2 . . . rT
k

]T
(8a)

W k =
[
wT

k−N+1 wT
k−N+2 . . . wT

k

]T
. (8b)

Secondly, the measurement can be represented in a batch
form in the interval [k − N, k].

From (1b) and (3), we have

− J̄4yk−N+1 = J̄3Axk−N + J̄3Buk−N + J̄3wk−N

− J̄4vk−N+1 (9)

equation (9) can be written as

zk−N+1 = Cxk−N + vk−N+1 (10)

with

zk−N+1 = −Drk−N+1, D =
[
J̄3B J̄4

]
, C = J̄3A,

T2 =
[
J̄3 J̄4

]
, vk−N+1 = T2ηk−N+1 (11)

on the horizon [k−N, k], using (5), the measurements can
be expressed as follows

zk−N+1 = Cxk−N + vk−N+1

zk−N+2 = CFxk−N + CB̄rk−N+1 + Cwk−N+1

+vk−N+2

zk−N+3 = CF 2xk−N + CFB̄rk−N+1 + CB̄rk−N+2

+CFwk−N+1 + Cwk−N+2 + vk−N+3

...

zk = CFN−1xk−N + CFN−2B̄rk−N+1

+ . . . + CB̄rk−1 + CFN−2wk−N+1

+ . . . + Cwk−1 + vk

The finite number of measurements is given by

Zk = C̃Nxk−N + B̃N r̄k + G̃NW k + V k (12)

with

Zk =
[
zT

k−N+1 zT
k−N+2 · · · zT

k

]T

V k =
[
vT

k−N+1 vT
k−N+2 · · · vT

k

]T

C̃N =




C
CF
...

CFN−1




B̃N =




0 0 · · · 0 0
CB̄ 0 · · · 0 0

CFB̄ CB̄ · · · 0 0
...

...
...

...
...

CFN−2B̄ CFN−3B̄ · · · CB̄ 0




G̃N =




0 0 · · · 0 0
C 0 · · · 0 0

CF C · · · 0 0
...

...
...

...
...

CFN−2 CFN−3 · · · C 0




.

The vectors G̃NW k and V k are strongly correlated but
still white. To remove the correlation, equation (10) can
be transformed as follows

zk−N+2 = CFxk−N + CB̄rk−N+1 + Cwk−N+1

+vk−N+2 + CSR−1(zk+1 − zk+1)

= CF sxk−N + CB̄srk−N+1 + Cws
k−N+1

+vk−N+2

and

xk = F sNxk−N + Lr̄,N r̄k + L
W

s

,N
W

s

k (13)
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with

S = T1

[
Qw 0
0 Vv

]
T T

2 , R = T2

[
Qw 0
0 Vv

]
T T

2

Q = T1

[
Qw 0
0 Vv

]
T T

1 , F s = F − SR−1C

B̄s = B̄ − SR−1D, T s
1 = T1 − SR−1T2

Qs = Q − SR−1ST , Rs = R, ws
k+1 = T s

1 ηk+1.

here Q and R is the covariance of wk+1 and vk+1 respec-
tively. It can be checked that Q and R are positive definite.

Equation (12) can be written as

Zk = C̃s
Nxk−N + B̃s

N r̄k + G̃s
NW

s

k + V k (14)

where the matrices C̃s
N , B̃s

N and G̃s
N are the matrices C̃N ,

B̃N and G̃N respectively while replacing the matrices F
and B̄ by F s and B̄s respectively.

Equation (7) is also transformed as follows

xk = F sNxk−N + Lr̄,N r̄k + L
W

s

,N
W

s

k (15)

with

Lr̄,N =
[
F sN−1B̄s F sN−2B̄s . . . B̄s

]

L
W

s

,N
=

[
F sN−1 F sN−2 . . . I

]

The MHE estimator is presented as

x̂k|k = Mx̄k−N + HZk + Lr̄k (16a)

with

H = [ HN HN−1 . . . H1 ] (17a)

L = [ LN LN−1 . . . L1 ] (17b)

M = M1M2 . . . MN (17c)

the startup value x̄k−N is determined from the filtered
optimal estimate computed N+1 time intervals in the past
and is named x̂k−N |k−N which is the estimate of initial
state xk−N .

The estimation error can be written as

ek = xk − x̂k|k

= F sNxk−N + Lr̄,N r̄k + L
W

s

,N
W

s

k − Mx̂k−N |k−N

−HZk − Lr̄k

by replacing Zk by their expression, we botain

ek = F sNxk−N + Lr̄,N r̄k + L
W

s

,N
W

s

k − Mx̂k−N |k−N

−Lr̄k − H
(
C̃s

Nxk−N + B̃s
N r̄k + G̃s

NW
s

k + V k

)

=
(
F sNxk−N − HC̃s

N

)
xk−N − Mx̂k−N |k−N + HV k

+
(
Lr̄,N − HB̃s

N − L
)

r̄k +
(
L

W
s

,N
− HG̃s

N

)
W

s

k

we have

x̂k−N |k−N = xk−N − ek−N (18a)

then

ek =
(
F sN − HC̃s

N

)
xk−N − M (xk−N − ek−N ) + HV k

+
(
Lr̄,N − HB̃s

N − L
)

r̄k +
(
L

W
s

,N
− HG̃s

N

)
W

s

k

=
(
F sN − HC̃s

N − M
)

xk−N + Mek−N + HV k

+
(
Lr̄,N − HB̃s

N − L
)

r̄k +
(
L

W
s

,N
− HG̃s

N

)
W

s

k

to satisfy the unbiased condition, i.e,, E(ek) = 0, the
following constraint should be satisfied

M = F sN − HC̃s
N (19a)

L = Lr̄,N − HB̃s
N . (19b)

substituting M and L in ek, we have

ek =
(
F sN − HC̃s

N

)
ek−N +

(
L

W
s

,N
− HG̃s

N

)
W

s

k

+HV k (20a)

Then the problem is reduced to determine matrix H such
that the trace of the error covariance is minimum, which
is given by

Pk|k = E{ekeT
k } (21a)

=
(
F sN − HC̃s

N

)
Pk−N |k−N

(
F sN − HC̃s

N

)T

+
(
L

W
s

,N
− HG̃s

N

)
Qs

k

(
L

W
s

,N
− HG̃s

N

)T

+HRs
kHT (21b)

the minimum of trace Pk|k is given by

H =
(
F sNPk−N |k−N (C̃s

N )T + L
W

s

,N
Qs

k(G̃s
N )T

)

(
C̃s

NPk−N |k−N (C̃s
N )T + G̃s

NQs
k(G̃s

N )T + Rs
k

)−1

, (22)

the condition for the existence of H is that(
C̃s

NPk−N |k−N (C̃s
N )T + G̃s

NQs
k(G̃s

N )T + Rs
k

)
> 0

substituting (22) in (21b), we obtain

Pk|k =
[
F sN Lws,N

] [
W1,1 W1,2

WT
1,2 W2,2

]−1
[ (

F sN
)T

LT
ws,N

]

with

W1,1 = (C̃s
N )T (Rs

N )−1C̃s
N

W1,2 = (C̃s
N )T (Rs

N )−1G̃s
N

W2,2 = (G̃s
N )T (Rs

N )−1G̃s
N + (Qs

N )−1

Rs
N = diag(Rs, . . . , Rs)

Qs
N = diag(Qs, . . . , Qs)

Note that the matrix H can be written as follows

H =
[
F sN Lws,N

]
[

W1,1 + P−1

k−N |k−N
W1,2

WT
1,2 W2,2

]−1

[
(C̃s

N )T

(G̃s
N )T

]
(Rs

N )−1 (23)

These results are summarized in the following theorem.

Theorem 1. Let us suppose that the assumption 1 is
verified, then the MHE estimate of the state vector at time
k and the matrix of error covariance are computed as

x̂k = F sN x̂k−N |k−N +
[
F sN Lws,N

]
[

W1,1 + P−1

k−N |k−N
W1,2

WT
1,2 W2,2

]−1 [
(C̃s

N )T

(G̃s
N )T

]
(Rs

N )−1

×
(
Zk − C̃s

N x̂k−N |k−N − B̃s
N r̄k

)
+ Lr̄,N r̄k.

Pk|k =
[
F sN Lws,N

]
[

W1,1 + P−1

k−N |k−N
W1,2

WT
1,2 W2,2

]−1

[
F sN Lws,N

]T
(24)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14530



The solution given by the theorem 1 is equivalent to the
solution proposed by lemma 2 who can be to check easily.

Lemma 2. The MHE estimate of system (1) given by
theorem can be calculated as

x̂k =
[
F sN Lws,N

]
[

W1,1 + P−1

k−N |k−N
W1,2

WT
1,2 W2,2

]−1

×

([
P−1

k−N |k−N

0

]
x̂k−N |k−N +

[
(C̃s

N )T

(G̃s
N )T

]
(Rs

N )−1

(
Zk − B̃s

N r̄k

))
+ Lr̄,N r̄k.

Pk|k =
[
F sN Lws,N

]
[

W1,1 + P−1

k−N |k−N
W1,2

WT
1,2 W2,2

]−1

[
F sN Lws,N

]T
(25)

4. CONVERGENCE AND STABILITY

Let us giving the following lemma

Lemma 3. The MHE estimate of system 1 given by
Lemma 2 is equivalent to the Kalman filter.

Proof. See Kwon and Han [2005].

Using the result of lemma 3, the MHE estimate can be
written as follows

x̂k|k =
(
F s − Ks

k−1C
)
x̂k−1|k−1 +

(
B̄s − Ks

k−1D
)
rk

Pk|k = F sPk−1|k−1F
sT + Qs − Ks

k−1CPk−1|k−1F
sT

(26)

with

Ks
k−1 = F sPk−1|k−1C

T
(
CPk−1|k−1C

T + Rs
)−1

,

and P0|0 = P0.

The Riccati algebraic equation (RAE) associate to the
Riccati difference equation (RDE) (26) is given by

P = F sPF sT + Qs − KsCPF sT (27)

with

Ks = F sPCT
(
CPCT + Rs

)−1
.

The necessary and sufficient conditions for the convergence
of the sequence {Pk|k, k ≥ 0} to the strong or the stabi-
lization solution of the ARE (when this solution exist)are
given by theorem 4.

Theorem 4. Bassong-Onana and Darouach [1992]

• Assume that P is the unique strong solution of the
ARE, and that the initial condition P0|0 satisfies
P0|0 − P ≥ 0. Then, the sequence {Pk|k, k ≥ 0},
generated by by the RDE, converges exponentially
to P , if and only if (C, F s) is detectable.

• Assume that P is the unique stabilization solution
of the ARE and that P0|0 ≥ 0. Then, the sequence
{Pk|k, k ≥ 0}, generated by by the RDE, converges
exponentially to P , if and only if (C, F s) is detectable

and (F s), Ds (Ds is any square root matrix of Qs) has
no unreachable mode inside the unit circle.

Proof. See de Souza et al. [1986].

5. NUMERICAL EXAMPLE

Consider the singular discrete-time system described by
the following equations

Exk+1 = Axk + Buk + wk, k = 0, 1, 2, ...

yk = Cxk + vk

with

E =

[
1 1 1 0
2 0 −1 0
0 1 0 1

]
, A =

[
1 1 0 0.59
0 −1 0 0.5
1 0 1 0.09

]
,

B =

[
1 1
2 0
1 2

]
, C =

[
1 0 0 1
0 1 −0.5 0
0 0 0 1

]

P0 =




0.6 0 0 0
0 0.2 0 0
0 0 0.5 0
0 0 0 0.7


 , W =

[
0.6 0 0
0 0.8 0
0 0 0.7

]
, and

V =

[
0.3 0 0
0 0.3 0
0 0 0.6

]

we take the initial state x̄0 = [ 3 3 3 3 ]
T
, N = 10 and

k = 65. The input uk is given by figure (1). Note that

matrix

[
E
C

]
is full column rank, then assumption 1 is

verified.

The matrices J̄1,J̄2, J̄3 and J̄4 are given by

J̄1 =




1 0 −3
0 1 3
0 −1 0
1 1 −1


 , J̄2 =




0 2 3
−2 −2 −1
2 0 −2
−3 0 5


 ,

J̄3 =

[
1 0 −3
0 1 2

]
, J̄4 =

[
−1 2 4
−2 −2 0

]

The simulation results based on the filter given by theorem
1 is shown in the figures (2) − (5). The true state x(k) is
plotted by the solid line and the MHE estimate is presented
by the dashed line.

6. CONCLUSION

Using minimum-variance unbiased estimation and the
moving horizon estimation approach, a recursive filter for
discrete-time linear stochastic singular systems is derived.
The necessary and sufficient condition for convergence and
stability are presented. To show the obtained results, a
numerical example has been presented.
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MHE estimate (dashed line).
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Fig. 3. The true value of state x2(k) (solid line) and the
MHE estimate (dashed line).
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