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Abstract: In this paper, the optimal filtering problem for polynomial system states over polynomial
observations is studied proceeding from the general expression for the stochastic Ito differentials of the
optimal estimate and the error variance. In contrast to the previously obtained results, the paper deals
with the general case of nonlinear polynomial states and observations. As a result, the Ito differentials
for the optimal estimate and error variance corresponding to the stated filtering problem are first derived.
The procedure for obtaining a closed system of the filtering equations for any polynomial state over
observations with any polynomial drift is then established. In the example, the obtained optimal filter
is applied to solve the optimal third order sensor filtering problem for a quadratic state, assuming a
Gaussian initial condition for the extended third order state vector. The simulation results show that the
designed filter yields a reliable and rapidly converging estimate.

1. INTRODUCTION

Although the general optimal solution of the filtering problem
for nonlinear state and observation equations confused with
white Gaussian noises is given by the equation for the con-
ditional density of an unobserved state with respect to obser-
vations [1], there are a very few known examples of nonlin-
ear systems where that equation can be reduced to a finite-
dimensional closed system of filtering equations for a certain
number of lower conditional moments (see [2]–[4] for more
details). The complete classification of the ”general situation”
cases (this means that there are no special assumptions on the
structure of state and observation equations and the initial con-
ditions), where the optimal nonlinear finite-dimensional filter
exists, is given in [5]. There also exists an extensive bibliogra-
phy on robust filtering for nonlinear stochastic systems ([6]–
[18]). Apart form the ”general situation,” the optimal finite-
dimensional filters have been designed for certain classes of
polynomial system states over linear observations ([19]–[21]).
However, the cited papers did not consider the optimal filtering
problems for polynomial systems, where both, state and obser-
vation, equations include polynomial functions of the system
state in the right-hand sides.

This paper presents the optimal finite-dimensional filter for
polynomial system states over polynomial observations, con-
tinuing the research in the area of the optimal filtering for
polynomial systems, which has been initiated in ([19]–[21]).
In contrast to the previously obtained results, the paper deals
with the general case of nonlinear polynomial states and obser-
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vations. Designing the optimal filter over polynomial observa-
tions presents a significant advantage in the filtering theory and
practice, since it enables one to address some filtering problems
with state and observation nonlinearities, such as the optimal
cubic sensor problem [22] for various polynomial systems. The
optimal filtering problem is treated proceeding from the general
expression for the stochastic Ito differentials of the optimal
estimate and the error variance [23]. As the first result, the
Ito differentials for the optimal estimate and error variance
corresponding to the stated filtering problem are derived. It
is then proved that a closed finite-dimensional system of the
optimal filtering equations with respect to a finite number of
filtering variables can be obtained for any polynomial state and
observation equations, additionally assuming a Gaussian initial
condition for the extended state vector. This assumption is quite
admissible in the filtering framework, since the real distribu-
tions of the extended vector components are actually unknown.
In this case, the corresponding procedure for designing the
optimal filtering equations is suggested.

As an illustrative example, the closed system of the optimal
filtering equations with respect to two variables, the optimal
estimate and the error variance, is derived in the explicit form
for the particular case of a quadratic state and third order
polynomial observations, assuming a Gaussian initial condition
for the extended third order state vector. This filtering problem
generalizes the optimal cubic sensor problem stated in [22]. The
resulting filter yields a reliable and rapidly converging estimate,
in spite of a significant difference in the initial conditions
between the state and estimate, whereas the extended Kalman-
Bucy filter estimate, constructed according to [24], behaves
unsatisfactorily.

The paper is organized as follows. Section 2 presents the fil-
tering problem statement for polynomial system states over
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polynomial observations. The Ito differentials for the optimal
estimate and the error variance are derived in Section 3, where
the procedure for obtaining a closed system of the filtering
equations is suggested for any polynomial state over obser-
vations with any polynomial drift. In Section 4, the obtained
optimal filter is applied to solution of the optimal third order
sensor filtering problem for a quadratic state, assuming a Gaus-
sian initial condition for the extended third order state vector.

2. PROBLEM STATEMENT

Let (Ω,F,P) be a complete probability space with an increas-
ing right-continuous family of σ -algebras Ft , t ≥ t0, and let
(W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be independent Wiener
processes. The Ft-measurable random process (x(t),y(t) is de-
scribed by nonlinear polynomial differential equations for the
system state

dx(t) = ρ(x, t)dt +σ(x, t)dW1(t), x(t0) = x0, (1)

and the observation process

dy(t) = h(x, t)dt +B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the observa-
tion vector. The initial condition x0 ∈ Rn is a Gaussian vector
such that x0, W1(t) ∈ Rp, and W2(t) ∈ Rq are independent. It is
assumed that B(t)BT (t) is a positive definite matrix, therefore,
m ≤ q. All coefficients in (1)–(2) are deterministic functions of
appropriate dimensions.

The nonlinear functions ρ(x, t) ∈ Rn, σ(x, t) ∈ Rn, and h(x, t) ∈
Rm are considered polynomials of n variables, components of
the state vector x(t) ∈ Rn, with time-dependent coefficients.
Since x(t) ∈ Rn is a vector, this requires a special definition of
the polynomial for n > 1. In accordance with [21], a p-degree
polynomial of a vector x(t) ∈ Rn is regarded as a p-linear form
of n components of x(t)

ρ(x, t) = α0(t)+α1(t)x+ (3)

α2(t)xxT + . . .+αp(t)x . . .p times . . .x,

where α0(t) is a vector of dimension n, α1 is a matrix of
dimension n×n, α2 is a 3D tensor of dimension n×n×n, αp is
an (p+1)D tensor of dimension n×. . .(p+1) times . . .×n, and x×
. . .p times . . .×x is a pD tensor of dimension n× . . .p times . . .×n
obtained by p times spatial multiplication of the vector x(t) by
itself (see [21] for more definition). Such a polynomial can also
be expressed in the summation form

ρk(x, t) = α0 k(t)+∑
i

α1 ki(t)xi(t)+∑
i j

α2 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

αp ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1, . . . , ip = 1, . . . ,n.

The estimation problem is to find the optimal estimate x̂(t) of
the system state x(t), based on the observation process Y (t) =
{y(s),0 ≤ s ≤ t}, that minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[ξ (t) | FY
t ] means the con-

ditional expectation of a stochastic process ξ (t) = (x(t) −
x̂(t))T (x(t)− x̂(t)) with respect to the σ - algebra FY

t gener-
ated by the observation process Y (t) in the interval [t0, t]. As
known [23], this optimal estimate is given by the conditional
expectation

x̂(t) = mx(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t

generated by the observation process Y (t) in the interval [t0, t].
As usual, the matrix function

P(t) = E[(x(t)−mx(t))(x(t)−mx(t))
T | FY

t ]

is the estimation error variance.

The proposed solution to this optimal filtering problem is based
on the formulas for the Ito differentials of the optimal estimate
and the estimation error variance (cited after [23]) and given in
the following section.

3. OPTIMAL FILTER DESIGN

The stated optimal filtering problem is solved by the following
theorem.

Theorem 1. The optimal filter for the polynomial state x(t) (1)
over the polynomial observations y(t) (2) is given by the follow-
ing equations for the optimal estimate m(t) = [mz(t),mx(t)] =
E([z(t),x(t)] | FY

t ) and the estimation error variance P(t) =
E[([z(t),x(t)]−m(t))([z(t),x(t)]−m(t))T | FY

t ]:

dm(t) = E( f̄ (x, t) | FY
t )dt +P(t)[I,0]T× (4)

(B(t)BT (t))−1(dy(t)−mz(t)dt),

dP(t) = (E(([z(t),x(t)]−m(t))( f̄ (x, t))T | FY
t )+ (5)

E( f̄ (x, t)([z(t),x(t)]−m(t))T ) | FY
t )+

E(ḡ(x, t)ḡT (x, t) | FY
t )−P(t)[I,0]T (B(t)BT (t))−1[I,0]P(t)),

with the initial conditions m(t0) = [mz(t0),mx(t0)] = E([z0,x0] |
FY

t0
) and P(t0) = E[([z0,x0]−m(t0)([z0,x0]−m(t0)

T |FY
t0

]. Here,

f̄ (x, t) = [ f (x, t),ρ(x, t)], ḡ(x, t) = [g(x, t),σ(x, t)],

f (x, t) =
∂h(x, t)

∂x
ρ(x, t)dt +

∂h(x, t)

∂ t
dt+

1

2

∂ 2h(x, t)

∂x2
σ(x, t)σT (x, t)dt, g(x, t) =

∂h(x, t)

∂x
σ(x, t),

and the additional polynomial state z(t) = h(x, t) satisfies the
equation

dz(t) =
∂h(x, t)

∂x
ρ(x, t)dt +

∂h(x, t)

∂ t
dt+ (6)

1

2

∂ 2h(x, t)

∂x2
σ(x, t)σT (x, t)dt +

∂h(x, t)

∂x
σ(x, t)dW1(t),

with the initial condition z(0) = z0. The system of filtering equa-
tions (4),(5) becomes a closed-form finite-dimensional system
after expressing the superior conditional moments of the system
state x(t) with respect to the observations y(t) as functions of
only two lower conditional moments, m(t) and P(t).

Proof. Let us reformulate the problem, introducing the stochas-
tic process z(t) = h(x, t). Using the Ito formula (see [23]) for the
stochastic differential of the nonlinear function h(x, t), where
x(t) satisfies the equation (1), the equation (6) is obtained for
z(t)

dz(t) =
∂h(x, t)

∂x
ρ(x, t)dt +

∂h(x, t)

∂ t
dt+

1

2

∂ 2h(x, t)

∂x2
σ(x, t)σT (x, t)dt +

∂h(x, t)

∂x
σ(x, t)dW1(t).

with the initial condition z(0) = z0. Note that the addition
1
2

∂ 2h(x,t)
∂x2 σ(x, t)σT (x, t) appears in view of the second derivative

in x in the Ito formula. The initial condition z0 ∈ Rn is consid-
ered a Gaussian random vector. This assumption is quite ad-
missible in the filtering framework, since the real distributions
of x(t) and z(t) are actually unknown.
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A key point for further derivations is that the right-hand side
of the equation (6) is a polynomial in x. Indeed, since h(x, t)

is a polynomial in x, the functions
∂h(x,t)

∂x
,

∂h(x,t)
∂ x

x(t), ∂h(x,t)
∂ t

,

and
∂ 2h(x,t)

∂x2 are also polynomial in x. Thus, the equation (6) is

a polynomial state equation with a polynomial multiplicative
noise. It can be written in the compact form

dz(t) = f (x, t)dt +g(x, t)dW1(t), z(t0) = z0, (7)

where

f (x, t) =
∂h(x, t)

∂x
ρ(x, t)+

∂h(x, t)

∂ t
+

1

2

∂ 2h(x, t)

∂x2
σ(x, t)σT (x, t), g(x, t) =

∂h(x, t)

∂x
σ(x, t).

In terms of the process z(t), the observation equation (2) takes
the form

dy(t) = [I,0][z(t),x(t)]T dt +B(t)dW2(t), (8)

where the matrix [I,0] is the m× (n + m) matrix composed of
the m×m-dimensional identity matrix and m× n-dimensional
zero matrix.

The reformulated estimation problem is now to find the optimal
estimate [mz(t),mx(t)] of the system state [z(t),x(t)], based on
the observation process Y (t) = {y(s),0 ≤ s ≤ t}. This optimal
estimate is given by the conditional expectation

m(t) = [mz(t),mx(t)] = [E(z(t) | FY
t ),E(x(t) | FY

t )]

of the system state [z(t),x(t)] with respect to the σ - algebra FY
t

generated by the observation process Y (t) in the interval [t0, t].
The matrix function

P(t) = E[([z(t),x(t)]− [mz(t),mx(t)])×

([z(t),x(t)]− [mz(t),mx(t)])
T | FY

t ]

is the estimation error variance for this reformulated problem.

The obtained filtering system includes the two equations, (6)
(or (7)) and (1), for the partially measured state [z(t),x(t)]
and the equation (8) for the observations y(t), where z(t) is
a completely measured polynomial state with a polynomial
multiplicative noise, x(t) is an unmeasured polynomial state,
and y(t) is a linear observation process directly measuring
the state z(t). As follows from the general optimal filtering
theory ([23]), the optimal filtering equations take the following
particular form for the system (7), (1), (8)

dm(t) = E( f̄ (x, t) | FY
t )dt +P(t)[I,0]T× (9)

(B(t)BT (t))−1(dy(t)−mz(t)dt),

dP(t) = (E(([z(t),x(t)]−m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)([z(t),x(t)]−m(t))T ) | FY
t )+ (10)

E(ḡ(x, t)ḡT (x, t) | FY
t )−

P(t)[I,0]T (B(t)BT (t))−1[I,0]P(t))dt+

E((([z(t),x(t)]−m(t))([z(t),x(t)]−m(t))×

([z(t),x(t)]−m(t))T | FY
t )[I,0]T×

(B(t)BT (t))−1(dy(t)−mz(t)dt),

where f̄ (x, t) = [ f (x, t),ρ(x, t)] is the polynomial drift term
and ḡ(x, t) = [g(x, t),σ(x, t)] is the polynomial diffusion (multi-
plicative noise) term in the entire system of the state equations
(7), (1), and the last term should be understood as a 3D tensor
(under the expectation sign) convoluted with a vector, which
yields a matrix. The equations (9), (10) should be comple-
mented with the initial conditions m(t0) = [mz(t0),mx(t0)] =

E([z0,x0] |FY
t0

) and P(t0) = E[([z0,x0]−m(t0)([z0,x0]−m(t0)
T |

FY
t0

].

Let us show that a closed system of the filtering equations
can be obtained for the incompletely measured polynomial
state [z(t),x(t)] over the linear observations y(t), in view of
the polynomial properties of the functions in the right-hand
side of the equation (6). Indeed, as shown in [19]–[21], a
closed system of the filtering equations for polynomial system
states (6) (or (7)) and (1) with polynomial multiplicative noises
over linear observations can be obtained, if the observation
matrix is invertible for any t ≥ t0. Since the observation matrix

A(t) = [I,0] ∈ Rm×(n+m) in (8) is not invertible, the following
transformations are introduced.

First, note that the matrix A is a matrix of complete rank, m,
which is equal to the dimension of the observation process
y(t) ∈ Rm. Further note that the number of Wiener processes
in the observation equations can also be reduced to m, the di-
mension of independent observations, by summarizing and re-
numerating the Wiener processes in each observation equation
(2). Therefore, the matrix B can always be assumed a square
matrix of dimension m×m, such that B(t)BT (t) is a positive
definite matrix (see Section 2 for this condition). Next, the
new matrices Ā(t) and B̄(t) are defined as follows. The matrix

Ā(t) ∈ R(n+m)×(n+m) is obtained from A(t) = [I,0] ∈ Rm×(n+m)

by adding n linearly independent rows such that the resulting

matrix Ā(t) is invertible. The matrix B̄(t) ∈ R(n+m)×(n+m) is
made from the matrix B(t)∈ Rm×m by placing B(t) in the upper
left corner of B̄(t), defining the other n diagonal entries of B̄(t)
equal to infinity, and setting to zero all other entries of B̄(t)
outside the main diagonal or outside the submatrix B(t). In
other words, B̄(t) = diag[B(t),β In], where β = ∞, and In is the
identity matrix of dimension n× n. Thus, the new observation
equation is given by

ȳ(t) = Ā(t)x(t)dt + B̄(t)dW2(t), (11)

where ȳ(t) ∈ Rn+m.

The key point of the introduced transformation is that the new
observation process ȳ(t) is physically equivalent to the old one
y(t), since the fictitious last n components of ȳ(t) consist of
pure noise in view of infinite intensities of white Gaussian
noises in the corresponding n equations, and the first m com-
ponents of ȳ(t) coincide with y(t). In addition, the entire obser-

vation matrix Ā(t) is invertible, and the matrix (B̄(t)B̄T (t))−1 ∈

R(n+m)×(n+m) exists and equals to the (n+m)× (n+m) – di-
mensional square matrix, whose upper left corner is occupied
by the submatrix (B(t)BT (t))−1 ∈ Rm×m and all other entries
are zeros.

In terms of the new observation equation (11), the optimal
filtering equations (9) and (10) take the form

dm(t) = E( f̄ (x, t) | FY
t )dt +P(t)ĀT (t)×

(B̄(t)B̄T (t))−1(dȳ(t)− Ā(t)m(t)dt), (12)

dP(t) = (E(([z(t),x(t)]−m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)([z(t),x(t)]−m(t))T ) | FY
t )+ (13)

E(ḡ(x, t)ḡT (x, t) | FY
t )−

P(t)ĀT (t)(B̄(t)B̄T (t))−1Ā(t)P(t))dt+

E((([z(t),x(t)]−m(t))([z(t),x(t)]−m(t))×

([z(t),x(t)]−m(t))T | FY
t )×

ĀT (t)(B̄(t)B̄T (t))−1(dȳ(t)− Ā(t)m(t)dt),

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14524



with the initial conditions m(t0) = [mz(t0),mx(t0)] = E([z0,x0] |
FY

t0
) and P(t0) = E[([z0,x0]−m(t0)([z0,x0]−m(t0)

T | FY
t0

].

Since the new observation matrix Ā(t) is invertible for any
t ≥ t0, the random variable x(t)−m(t) is conditionally Gaussian
with respect to the new observation process ȳ(t), and therefore
with respect to the original observation process y(t), for any
t ≥ t0 (see [19]–[21]). Hence, the following considerations are
applicable to the filtering equations (12),(13).

First, since the random variable x(t) − m(t) is condition-
ally Gaussian, the conditional third moment E((([z(t),x(t)]−
m(t))([z(t),x(t)]−m(t))([z(t),x(t)]−m(t))T | FY

t ) with respect
to observations, which stands in the last term of the equation
(13), is equal to zero, because the process [z(t),x(t)]− m(t)
is conditionally Gaussian. Thus, the entire last term in (13) is
vanished and the following variance equation is obtained

dP(t) = (E(([z(t),x(t)]−m(t))( f̄ (x, t))T | FY
t )+ (14)

E( f̄ (x, t)([z(t),x(t)]−m(t))T ) | FY
t )+

E(ḡ(x, t)ḡT (x, t) | FY
t )−

P(t)ĀT (t)(B̄(t)B̄T (t))−1Ā(t)P(t))dt

with the initial condition P(t0) = E[([z0,x0]−m(t0)([z0,x0]−
m(t0)

T | FY
t0

].

Second, if the functions f̄ (x, t) and ḡ(x, t) are polynomial func-
tions of the state x with time-dependent coefficients, the ex-
pression of the terms E( f̄ (x, t) | FY

t ) in (12) and E((x(t) −
m(t)) f̄ T (x, t)) | FY

t ), E(ḡ(x, t)ḡT (x, t) | FY
t ) in (14) would

also include only polynomial terms of x. Then, those poly-
nomial terms can be represented as functions of m(t) and
P(t) using the following property of Gaussian random vari-
able [z(t),x(t)]−m(t): all its odd conditional moments, m1 =
E[([z(t),x(t)]−m(t)) |Y (t)], m3 = E[([z(t),x(t)]−m(t)3 |Y (t)],
m5 = E[([z(t),x(t)]−m(t))5 | Y (t)], ..., are equal to 0, and all

its even conditional moments m2 = E[([z(t),x(t)] − m(t))2 |
Y (t)], m4 = E[([z(t),x(t)]− m(t))4 | Y (t)], ...., can be repre-
sented as functions of the variance P(t). For example, m2 = P,

m4 = 3P2, m6 = 15P3,..., etc. After representing all polyno-
mial terms in (12) and (14), that are generated upon express-
ing E( f̄ (x, t) | FY

t ), E(([z(t),x(t)]− m(t)) f̄ T (x, t)) | FY
t ), and

E(ḡ(x, t)ḡT (x, t) | FY
t ) as functions of m(t) and P(t), a closed

form of the filtering equations would be obtained. The cor-
responding representations of E( f̄ (x, t) | FY

t ), E(([z(t),x(t)]−
m(t))( f̄ (x, t))T | FY

t ), and E(ḡ(x, t)ḡT (x, t) | FY
t ) have been de-

rived in [19–21] for certain polynomial functions f̄ (x, t) and
ḡ(x, t).

Finally, in view of definition of the matrices Ā(t) and B̄(t)
and the new observation process ȳ(t), the filtering equations
(12),(14) can be written again in terms of the original observa-
tion equation (2) using y(t), A(t) = [I,0], and B(t). As a result,
the optimal filtering equations (4),(5) are obtained

dm(t) = E( f̄ (x, t) | FY
t )dt +P(t)[I,0]T×

(B(t)BT (t))−1(dy(t)−mz(t)dt),

dP(t) = (E(([z(t),x(t)]−m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)([z(t),x(t)]−m(t))T ) | FY
t )+

E(ḡ(x, t)ḡT (x, t) | FY
t )−P(t)[I,0]T (B(t)BT (t))−1[I,0]P(t)),

with the initial conditions m(t0) = [mz(t0),mx(t0)] = E([z0,x0] |
FY

t0
) and P(t0) = E[([z0,x0]−m(t0)([z0,x0]−m(t0)

T | FY
t0

]. ¥

In the next example section, a closed form of the filtering
equations will be obtained for a particular case of scalar second

and third order polynomial functions ρ(x, t), σ(x, t), and h(x, t)
in the equations (1) and (2). Nonetheless, application of the
same procedure would result in designing a closed system of the
filtering equations for any polynomial functions ρ(x, t), σ(x, t),
and h(x, t) in (1),(2).

4. EXAMPLE: THIRD DEGREE SENSOR FILTERING
PROBLEM FOR QUADRATIC SYSTEM

This section presents an example of designing the optimal filter
for a quadratic state over third degree polynomial observations,
reducing it to the optimal filtering problem for a fourth degree
polynomial state with a second degree polynomial multiplica-
tive noise over linear observations, where a Gaussian state ini-
tial condition is additionally assumed.

Let the unmeasured scalar state x(t) satisfy the quadratic equa-
tion

dx(t) = x2(t)dt +dw1(t), x(0) = x0, (15)

and the observation process be given by the scalar third degree
sensor equation

dy(t) = (x3(t)+ x(t))dt +dw2(t), (16)

where w1(t) and w2(t) are standard Wiener processes indepen-
dent of each other and of a Gaussian random variable x0 serving
as the initial condition in (15). The filtering problem is to find
the optimal estimate for the quadratic state (15), using the third
degree sensor observations (16).

Let us reformulate the problem, introducing the stochastic
process z(t) = h(x, t) = x3(t) + x(t). Using the Ito formula
(see [23]) for the stochastic differential of the cubic function
h(x, t) = x3(t)+ x(t), where x(t) satisfies the equation (15), the
following equation is obtained for z(t)

dz(t) = (x2(t)+3x(t)+3x4(t))dt +(3x2(t)+1)dw1(t), (17)

with the initial condition z(0) = z0. Here,
∂h(x,t)

∂x
= 3x2(t)+ 1,

1
2

∂h2(x,t)
∂x2 = 3x(t), and

∂h(x,t)
∂ t

= 0; therefore, f (x, t) = x2(t) +

3x(t)+3x4(t) and g(x, t) = 3x2(t)+1. The initial condition z0 is
considered a Gaussian random variable. In terms of the process
z(t), the observation equation (16) takes the form

dy(t) = z(t)dt +dw2(t). (18)

The obtained filtering system includes two equations, (17) and
(15), for the partially measured state [z(t),x(t)] and an equation
(18) for the observations y(t), where z(t) is a completely
measured fourth degree state with a multiplicative quadratic
noise, x(t) is an unmeasured quadratic state, and y(t) is a
linear observation process directly measuring the state z(t).
Hence, the designed optimal filter can be applied for solving
this problem. The filtering equations (4),(5) take the following
particular form for the system (17),(15),(18)

dm1(t) = (1+3m2(t)+3m2
2(t)+3P22(t))dt+ (19)

P11(t)[dy(t)−m1(t)dt],

dm2(t) = (m2
2(t)+P22(t))dt +P12(t)[dy(t)−m1(t)dt], (20)

with the initial conditions m1(0) = E(z0 | y(0)) = m10 and
m2(0) = E(x0 | y(0)) = m20,

Ṗ11(t) = 12(P12(t)m2(t))+6P12(t)+27P2
22(t)+ (21)

54P22(t)m
2
2(t)+9m4

2(t)+6P22(t)+6m2
2 +1−P2

11(t),

Ṗ12(t) = 1+6(P22(t)m2(t))+3P22(t)+ (22)

3(m2
2(t)+P22(t))−P11(t)P12(t),
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Ṗ22(t) = 1+4P22(t)m2(t)−P2
12(t), (23)

with the initial condition P(0)= E(([x0,z0]
T −m(0))([x0,z0]

T −
m(0))T | y(0)) = P0. Here, m1(t) is the optimal estimate for the

state z(t) = x3(t) + x(t) and m2(t) is the optimal estimate for
the state x(t).

The estimates obtained upon solving the equations (19)–(23)
are compared to the estimates satisfying the extended Kalman-
Bucy filtering equations for the quadratic state (17) over the
third order polynomial observations (16), which are obtained
using Theorem 8.1 from [24]:

ṁK(t) = m2
K(t)+PK(t)(3m2

K(t)+1)[y(t)−m3
K(t)−mK(t)],

(24)
with the initial condition mK(0) = E(x(0) | y(0)) = m20,

ṖK(t) = 1+4mK(t)PK(t)− (3m2
K(t)+1)2P2

K(t), (25)

with the initial condition PK(0) = E((x(0) − mK(0))(x(0) −
mK(0))T | y(0)) = PK(0) = P22(0).

Numerical simulation results are obtained solving the systems
of filtering equations (19)–(23) and (24)–(25). The obtained
values of the state estimates m2(t), satisfying the equation (20),
and mK(t), satisfying the equation (24), are compared to the
real values of the state variable x(t) in (15).

For the filters (19)–(23), (24)–(25) and the reference system
(17),(15),(18) involved in simulation, the following initial val-
ues are assigned: x0 = z0 = 0, m20 = mK(0) = 10, m10 = 1000,
P11(0) = 15, P12(0) = 3, P22(0) = PK(0) = 1. Gaussian dis-
turbances dw1(t) and dw2(t) are realized using the built-in
MatLab white noise functions. The simulation interval is set
to [0,0.7].

Figure 1 shows the graphs of the errors between the reference
state x(t) (15) and its optimal estimate m2(t) (20), and the refer-

ence state z(t) = x3(t)+x(t) (17) and its optimal estimate m1(t)
(19), in the entire simulation interval from t0 = 0 to T = 0.7.
It can be observed that the optimal estimation errors converge
to the real states very rapidly and then maintain zero mean
value, in spite of a considerable error in the initial conditions,
m20 − x0 = 10, m10 − z(0) = 1000. The estimation error for
the state x(t) at T = 0.7 is equal to m2(0.7)− x(0.7) = 0.04.
Figure 2 shows the graph of the error between the reference
state x(t) (15) and the extended Kalman-Bucy filter estimate
mK(t) (24). It can be observed that the extended Kalman-Bucy
filter estimate does not converge to zero for the simulation time,
admitting quite a large error at T = 0.7, which is equal to
mK(0.7)− x(0.7) = 0.57, fourteen times more than the optimal
estimation error in Fig. 1.

Thus, it can be concluded that the obtained optimal filter (19)–
(23) solves the optimal third order sensor filtering problem
for the system (15),(16) and yields a reliable estimate of the
unmeasured state.

5. CONCLUSIONS

This paper presents the optimal filter for polynomial system
states over polynomial observations. It is shown that the optimal
filter can be obtained in a closed form for any polynomial
functions in state and observation equations. In the example,
the optimal solution is obtained to the filtering problem for a
quadratic state over third degree polynomial observations, as-
suming a Gaussian initial condition for the extended third order
state vector. The resulting filter yields a reliable and rapidly

converging estimate, in spite of a significant difference in the
initial conditions between the state and estimate, whereas the
extended Kalman-Bucy filter estimate behaves unsatisfactorily.
Although this conclusion follows from the developed theory,
the numerical simulation serves as a convincing illustration.
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Fig. 1. Above. Graph of the estimation error between the
reference state x(t) (15) and its optimal estimate m2(t)
(20) in the interval [0,0.7]. Below. Graph of the estimation
error between the reference state z(t) (17) and its optimal
estimate m1(t) (19) in the interval [0,0.7].
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Fig. 2. Graph of the estimation error between the reference state
x(t) (15) and its estimate mK(t) (24) in the interval [0,0.7].
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