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Abstract: In this work the output feedback tracking problem for the angular
position of a induction motor driving a mechanical load is addressed. It is assumed
that the two rotor flux variables are not measured whilst the two stator current
variables and also the angular position and velocity are available for feedback.
The employed approach consists of the asymptotic reconstruction of a full state
feedback stabilizing control law, without using a Lyapunov function and by
applying a separation principle. Firstly, a Backstepping tracking controller is
considered, then, a dynamic output feedback is synthesized for the two voltage
control inputs, which asymptotically recovers the Backstepping control law.
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1. INTRODUCTION

The problem of tracking the angular position of
induction motors has been addressed by a number
of researchers (Marino and Spong, 1986). Both the
exact feedback linearization (Slotine and Li, 1991)
and the Backstepping (Dawson et al., 1998) tech-
niques have shown to be efficient for regulating
this system. These approaches stabilize induction
motors by designing a full information control law,
after assuming that all state variables are available
for feedback. This latter assumption restricts the
practical application of the designed controller. In
order to achieve a low cost system, by reducing
the number of sensors, the output feedback control
design problem is addressed in this work. The out-
put feedback stabilization problem of nonlinear
systems has been widely studied recently. Special

attention has been paid to nonlinear systems that
are linear in the unmeasured states, see for in-
stance the classical approach proposed in Freeman
and Kokotović (1996), and references therein.

A novel design technique to solve the output feed-
back stabilization problem has been developed
by Karagiannis et al. (2003), which is based on
ideas borrowed from the theory of the nonlinear
regulator problem and the notions of immersion
and invariance (Astolfi and Ortega, 2003). This
control design approach consists of the application
of a separation principle, which establishes that
it is possible to solve the output feedback stabi-
lization problem provided that two subproblems
are solvable. The first subproblem refers to find
a robust state feedback full information control
law. The second problem conducts to design a
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robust stabilization control law by output injec-
tion. Thus, a dynamic globally stabilizing output
feedback control law is obtained, whose dynamics
asymptotically recover the full information control
law. An important feature of this approach is that
the stabilization mechanism does not rely on the
construction of a Lyapunov function for the closed
loop system. By closely following this method,
a load position tracking controller is developed
in this work for the electromechanical model of
a induction motor, under the assumptions that
the two rotor flux variables are not measured,
whilst the two stator current variables and also
the angular position and velocity are available for
feedback. Firstly, a state feedback backstepping
controller is considered, as the full information
control law and, then, an output feedback con-
troller is synthesized by employing the control
design proposed in Karagiannis et al. (2003).

2. OUTPUT FEEDBACK STABILIZATION
OF A CLASS OF NONLINEAR SYSTEMS

The design procedure proposed by Karagiannis
et al. (2003) is revisited in this section. Consider
systems described by equations of the form

η̇ = A(y, u)η + B(y, u)

ẏ = ψ0(y, u) + ψ1(y, u)η (1)

with state (η, y) ∈ ℜn ×ℜp, output y and control
input u ∈ ℜm. It is assumed that only the output
y is available for feedback. Along with the system
(1), a performance output ρ is considered, which
is defined as

ρ = h(y, η) (2)

for some mapping h(·). The output feedback regu-
lation problem can be formulated as follows: Con-
sider the system (1) and the performance variable
ρ defined in (2). Find a dynamic output feedback
control law described by equations of the form

˙̂η = π(y, η̂)

u = α(y, η̂) (3)

such that all trajectories of the closed loop system
(1)-(3) are bounded and

lim
t→∞

ρ(t) = 0. (4)

The solution proposed in Karagiannis et al. (2003)
is summarized in the following proposition.

Proposition 1. Consider a system described by
equations of the form (1) and the performance
variable ρ defined as in (2). Suppose the following

assumptions hold.
(A1) There exists a full information control law

u∗ = α(y, η) (5)

such that all trajectories of the closed loop system
(1)-(3) are bounded and are such that condition
(4) holds. Moreover, the system (1) with u =
α(y, η + d(t)) is globally bounded-input bounded-
state stable with respect to the input d(t).
(A2) There exists a mapping β(y) such that the
system

ż =

(
A(y, u) −

∂β

∂y
ψ1(y, u)

)
z (6)

is uniformly globally stable for any y, and u; and
z(t) is such that, for any fixed y and η,

lim
t→∞

[α(y, η + z(t))] = α(y, η). (7)

Then there exists a dynamic output feedback con-
trol law, described by equations of the form (3),
solving the output feedback regulation problem.

By defining the auxiliary vector

z = Mη̂ − η + β(y), (8)

where M is an invertible matrix and η̂ is an
estimate of the unmeasured states η, and by
following the constructive proof of Proposition 1
in Karagiannis et al. (2003), it can be synthesized
the dynamic output feedback control law

˙̂η = M−1

[
A(y, α(y, Mη̂ + β(y)))(Mη̂ + β(y))

+B(y, α(y, Mη̂ + β(y)))

−
∂β

∂y
ψ0(y, α(y, Mη̂ + β(y)))

−
∂β

∂y
ψ1(y, α(y, Mη̂ + β(y)))(Mη̂ + β(y))

]

u = α(y, Mη̂ + β(y)), (9)

obtaining the closed loop system in the η, y and
z coordinates

η̇ = A(y, α(y,Mη̂ + β(y)))η

+B(y, α(y,Mη̂ + β(y)))

ẏ = ψ0(y, α(y, Mη̂ + β(y)))

+ψ1(y, α(y,Mη̂ + β(y)))η (10)

ż =

[
A(y, α(y, Mη̂ + β(y)))

−
∂β

∂y
ψ1(y, α(y, Mη̂ + β(y)))

]
z

As a result, by Assumption (A2), the variable
z remains bounded for all t, and it is such that
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equation (7) holds. Furthermore, by Assumption
(A1), y and η are bounded for all t and condition
(4) holds. Roughly speaking, this design method
relies on the asymptotic reconstruction of a sta-
bilizing full information state feedback control
law, by synthesizing a dynamic output feedback
controller, including a nonlinear observer for the
unmeasured states.

3. BACKSTEPPING CONTROL OF A
INDUCTION MOTOR

Consider a triphasic induction motor driving a
mechanical load giving by the following differen-
tial equations (Dawson et al., 1998)

Mq̈ + Bq̇ + Nsin(q) = ψaIb − ψbIa (11)

LI İa = −RIIa + α1ψa + α2ψbq̇ + Va (12)

LI İb = −RIIb + α1ψb − α2ψaq̇ + Vb (13)

Lrψ̇a = −Rrψa − α3q̇ψb + KIIa (14)

Lrψ̇b = −Rrψb + α3q̇ψa + KIIb (15)

where q(t), q̇(t) and q̈(t), are the angular position,
velocity and acceleration of the mechanical load;
Ia(t), Ib(t) are the stator currents; ψa(t), ψb(t) are
the rotor fluxes; and Va(t), Vb(t) are the stator
input voltage. The positive constants LI , RI , KI ,
α1, α2 and α3 are the electrical parameters of the
motor related in the following way

LI = Ls − M2

e /Lr KI = RrMe

RI = (M2

e Rr + L2

rRs)/Lr2

α1 = MeRr/L2

r α2 = npMe/Lr α3 = npLr

where Rs, Rr, np, Ls, Lr and Me, are the stator
resistance, the rotor resistance, the number of pole
pairs, the stator inductance, the rotor inductance
and the mutual inductance, respectively. Whilst
in the differential equation modelling the mechan-
ical part (11), M is the mechanical inertia of all
system, N is a constant relating the load mass
and the gravitational constant,and B is the coef-
ficient of viscous friction. Assuming that all state
variables are available for feedback, a stabilizing
controller has been synthesized in Dawson et al.
(1998), by following the integrator backstepping
methodology. In the seek of clarity, the steps fol-
lowed there are revisited in this section.

3.1 Position/Velocity tracking control

We define the load position tracking error e(t) as

e = qd − q (16)

where qd(t) represents a smooth and bounded
desired load position. In addition, we define the
filtered tracking error r(t) as

r = ė + αe (17)

where α is a positive scalar constant. The overall
tracking control objective will be met if r(t),
and hence e(t), is driven to zero. After obtaining
the open-loop filtered tracking error dynamics,
it is multiplied by M and substituted in the
mechanical system dynamics in (11), to obtain

Mṙ = Wτθτ − (ψaIb − ψbIa) (18)

where the known regression matrix Wτ and the
parameter vector θτ are given by

Wτ = [ q̈d + αė q̇ sin(q) ], θτ = [ M B N ]T

Due to the structure of the electromechanical
system (11)-(15), the mechanical subsystem error
dynamics (18) lack a true torque level control
input. We add and subtract a desired torque signal
τd(t) in (18) to yield

Mṙ = Wτθτ − τd + ητ (19)

where ητ (t) represents the torque tracking error
defined by

ητ = τd − (ψaIb − ψbIa). (20)

The voltage control inputs must be designed in
order to compensate for the effects of ητ (t). To
accomplish this additional control objective the
dynamics of the torque tracking error are needed.
By taking time derivative of ητ (t), multiplying the
result by LI and substituting the right-hand sides
of (12)-(15) results

LI η̇τ = LI τ̇d − LIL
−1

r Ib(−Rrψa − α3q̇ψb)
+LIL

−1

r Ia(−Rrψb − α3q̇ψa)
−ψa(−RIIb − α2ψaq̇)

+ψb(−RIIa + α2ψbq̇) + ψbVa − ψaVb

(21)

Notice that the voltage control inputs Va and Vb

have appeared on the right-hand side of (21).

3.2 Flux tracking objective

In order to avoid unbounded signals, the rotor
fluxes are forced to track a bounded signal. We
define the flux tracking error ηψ(t), as

ηψ = ψd −
1

2
γ = ψd −

1

2
(ψ2

a + ψ2

b ) (22)

where ψd(t) is the desired flux. Differentiating (22)
with respect to time and multiplying by Lr and,
finally, by substituting Lrψ̇a and Lrψ̇b from (14)
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and (15), the dynamics of the flux tracking error
are given by

Lrη̇ψ = Lrψ̇d + Rrγ − KI(ψaIa + ψbIb) (23)

By dividing the latter equation by KI , we obtain

Lrη̇ψ = Yψθψ − (ψaIa + ψbIb) (24)

where Yψ and θψ are given by

Yψ =
[
ψ̇d γ

]
, θψ =

[
Lr Rr

]T
(25)

with Lr = Lr

KI

and Rr = Rr

KI

. Similar to the
position tracking objective, it shall be used the
integrator backstepping approach to add and sub-
tract a fictitious flux controller uI(t), in (24) to
obtain

Lrη̇ψ = Yψθψ − uI + ηI (26)

where ηI(t) is defined by

ηI = uI − (ψaIa + ψbIb). (27)

From (26), we can see that if the auxiliary variable
ηI(t) were zero, the fictitious flux controller uI(t),
could be easily designed to force ηψ(t) to zero. To
this end, we construct the open loop dynamics
for ηI(t) and follow a similar procedure to the
one used in the torque tracking error dynamics,
obtaining

LI η̇I = LI u̇I − ψaVa − ψbVb

−LIL
−1

r Ia(−Rrψa − α3q̇ψb + KIIa)
−LIL

−1

r Ib(−Rrψb − α3q̇ψa + KIIb)
−ψa(−RIIa + α1ψa)
−ψb(−RIIb + α1ψb).

(28)

Notice that the voltage control inputs Va and
Vb have also appeared on the right-hand side
of (28).Based on the structure of (19) and, in
order to force the load along the desired position
trajectory, τd is specified as

τd = Wτθτ + ksr (29)

where ks is a positive constant control gain. The
resulting closed-loop filtered tracking error dy-
namics is given by

Mṙ = −ksr + ητ (30)

To complete the open-loop system description for
the dynamics of ητ , we firstly compute

τ̇d = Ẇτθτ + ksṙ

= M(q
′′′

d + α(q̈d − q̈)) + Bq̈ + Nq̇ cos(q)

+ks(q̈d − q̈ + αė) (31)

where q̈ can be obtained from (11)

q̈ = −
B

M
q̇ −

N

M
sin(q) +

1

M
(ψaIb − ψbIa). (32)

Notice that (31) can be rewritten as

τ̇d = M(q
′′′

d + αq̈d) + Nq̇cos(q) + ks(q̈d + αė)
+(B − Mα − ks)q̈.

(33)

Then, after substituting (33) in (21), the torque
tracking error has the form

LI η̇τ = wa − (ψaVb − ψbVa) (34)

where the auxiliary variable wa is given by

wa = LI

[
M(q

′′′

d + αq̈d) + Nq̇cos(q)
+ks(q̈d + αė)

]
+ ψb(−RIIa + α2ψbq̇)

−LIL
−1

r Ib(−Rrψa − α3q̇ψb)
+LIL

−1

r Ia(−Rrψb + α3q̇ψa)
−ψa(−RIIb − α2ψaq̇) + LI(B − Mα − ks)q̈

(35)

From (34), a voltage control input can be designed
to force the torque tracking error ητ (t) to zero

ψaVb − ψbVa = wa + k1ητ + r (36)

where k1 is a positive control gain. Substituting
(36) in (34), the closed-loop torque tracking error
system yields

LI η̇τ = −k1ητ − r (37)

To achieve the second control objective of forcing
the flux tracking error ηψ(t) to zero, a fictitious
flux controller uI(t) is designed as

uI = Yψθψ + k2ηψ (38)

where k2 is a positive control gain. Substituting
(38) in (26), the closed-loop dynamics for the flux
tracking error yield

Lrη̇ψ = −k2ηψ + ηI . (39)

To ensure ηI(t) goes to zero, a voltage controller
must be designed. Taking the time derivative of
(38), multiplying by LI , substituting (14) and
(15), and then substituting in (28), the open loop
dynamics for ηI(t) results

LI η̇I = wb − (ψaVa + ψbVb) (40)

where the auxiliary scalar variable wb is given by

wb = LrLI ψ̈d

+L−1

r (2LIRrψa − LIIa)
×(−Rrψa − α3q̇ψb + KIIa)

+k2LIL
−1

r (Yψθψ − (ψaIa + ψbIb))
+L−1

r (2LIRrψb − LIIb)
×(−Rrψb + α3q̇ψa + KIIb)

−ψa(−RIIa + α1ψa) − ψb(−RIIb + α1ψb)

(41)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12227



From the structure of (40), we propose the follow-
ing voltage input control Va and Vb, to drive ηI(t)
to zero

ψaVa + ψbVb = wb + k3ηI + ηψ (42)

where k3 is a positive control gain. After substitut-
ing the right-hand side of (42) in (40), we obtain
the closed-loop description for ηI(t) as

LI η̇I = −k3ηI − ηψ (43)

Based on (36) and (42), we can find Va and Vb as
the following error dynamics



Va

Vb



 =
1

−γ




ψb −ψa

−ψa −ψb








wa + k1ητ + r

wb + k3ηI + ηψ



(44)

The stability analysis in Dawson et al. (1998)
shows that the filtered tracking error goes to zero
exponentially fast.

4. OUTPUT FEEDBACK CONTROL OF AN
INDUCTION MOTOR

By assuming that the magnetic fluxes ψa and ψb

are non measurable state variables and consider-
ing system (1), it can be identified

A(·) =




−
Rr

Lr

−
α3

Lr

ω

α3

Lr
ω −

Rr

Lr


 B(·) =




KI

Lr

Ia

KI

Lr

Ib


 (45)

and the functions

ψ0(·) =




ω

−
N

M
Sen(θ) −

B

M
ω

−
RI

LI

Ia +
1

LI

Va

−
RI

LI

Ib +
1

LI

Vb




(46)

ψ1(·) =




0 0

Ib

M
−

Ia

M

α1

LI

α2

LI

ω

−
α2

LI

ω
α1

LI




(47)

with η = [ψa, ψb]
T and y = [θ, ω, Ia, Ib]

T .

By following the design method described in Kara-
giannis et al. (2003), it can be synthesized a dy-
namic feedback control law of the form

˙̂η = ω

u = α(y, η̂ + β(y)). (48)

Then, by defining the auxiliary vector

z = η̂ + β(y) − η, (49)

and considering (6), β(y) should be appropriately
chosen to guarantee stability of the auxiliary dy-
namics ż = Az. In this case we propose the
following mapping

β(y) =




βa(Ia)

βb(Ib)



 =




LiRr

α1Lr

kaIa

−
α3Li

α2Lr

Ib


 (50)

to obtain the auxiliary dynamics

ż = Az =



−

Rr

Lr

(1 + ka) −ω(1 + ka)np

0 0


 z (51)

The A matrix has an eigenvalue at zero and the
other one at −Rr

Lr

(1 + ka), with ka a design para-
meter. In other words, the auxiliary dynamics are
stable and thus the rotor fluxes are bounded. The
output feedback control law is obtained by replac-
ing the state variables of η by the corresponding
variables η̂ + β(y) in the full information control
designed in the previous section, i.e.




ψa

ψb



 7→




ψ̂a + βa(Ia)

ψ̂b + βb(Ib)



 (52)

Finally, the designed dynamic output feedback
tracking control law is as follows:

˙̂η = A




ψ̂a + βa(Ia)

ψ̂b + βb(Ib)



 +




KI

Lr

Ia

KI

Lr

Ib




−




∂βa

∂y

−
∂βb

∂y






ψ0 + ψ1




ψ̂a + βa(Ia)

ψ̂b + βb(Ib)









u =
1

γ̂




ψ̂b + βb(Ib) −ψ̂a − βa(Ia)

−ψ̂a − βa(Ia) −(ψ̂b − βb(Ib)





×




ŵa + k1ητ + r

ŵb + k3ηI + ηψ





(53)
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with

γ̂ = −
(
(ψ̂a + βa(Ia))2 + (ψ̂b + βb(Ib))

2

)

and ŵa, ŵb are the corresponding wa and wb

functions obtained after applying (52).

4.1 Digital Simulations

Digital simulations were carried out to evaluate
the performance of the induction motor regulated
by the output feedback dynamic controller. The
system parameters were

Rs = 3.05Ω, Rr = 2.12Ω, Ls = 0.243H, np = 1,
Lr = 0.306H, Me = 0.225H,G = 9.81Kg − m/s2

J = 2.1x10−4Kg − m2, B0 = 0.015Nm − s/rad,
L0 = 0.305m, m = 0.401Kg.

The desired trajectories for the load position and
magnetic flux were chosen, respectively,

qd =
π

2
sin(5t)(1 − e−0.1t3) rad

ψd = 2(1 − e−t2) + 1 Wb.Wb.

The design parameters were set at ka = 1, ks =
k1 = 0.82, K2 = k3 = 10 and α = 1. The closed-
loop performance of the designed controlled is
shown in the figures below. Figure 1 shows the
asymptotic convergence of the controlled angular
position to the desired trajectory, whilst figures
2 and 3 depict both real and estimate magnetic
fluxes for phase a and phase b, respectively.

5. CONCLUSIONS

The output feedback tracking problem of a in-
duction motor driving a mechanical load, when
the rotor fluxes are not measured has been solved
by applying a systematic design procedure based
on a separation principle. It was shown that by
applying this approach, a feedback backstepping
full information control law can be recovered from
a dynamic output feedback controller, including
a nonlinear observer to estimate the unmeasured
state variables. Digital simulations showed the
asymptotic stability of the controlled angular po-
sition of the induction motor and boundedness of
the remaining state variables.

REFERENCES

Astolfi, A. and R. Ortega (2003). Immersion
and invariance: a new tool for stabilization
and adaptive control of nonlinear systems.
IEEE Transactions on Automatic Control
48(4), 590–606.

Dawson, D.M., J. Hu and T.C. Burg (1998). Non-
linear Control of Electric Machinery. Marcel
Dekker. New York.

Freeman, Randy and Petar Kokotović (1996).
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Fig. 1 Controlled angular position.
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Fig. 3 Rotor magnetic flux, Phase b.
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