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Abstract: This paper derives the analytic solution of nonlinear H∞ robust controller for a system with 
mass and moments of inertia uncertainties and investigates the implementation using control surface 
inverse algorithm. A special Lyapunov function with mass and moments of inertia uncertainties is 
introduced to solve the associated Hamilton-Jacobi partial differential inequality (HJPDI). The HJPDI is 
solved analytically, resulting in a nonlinear H∞ robust controller with simple proportional feedback 
structure. The control surface inverse algorithm (CSIA) is employed to determine the angles of control 
surface deflection from the nonlinear H∞ control command. The ranges that guarantee stability and 
robustness of nonlinear H∞ flight control system implemented by vehicle actuators are derived. 
Numerical simulation is carried out and the results show that the responses still show good convergence 
for large initial perturbation. 

 

1. INTRODUCTION 

The existing applications of nonlinear H∞ flight control are 
almost restricted to the longitudinal or lateral motion alone. 
Accounting complete six degrees-of-freedom (DOF) motion 
(including both longitudinal and lateral directions) is still a 
challenge for all nonlinear flight control design methods. The 
main difficulty encountered in the six DOF nonlinear H∞ 
flight control design is to solve an associated Hamilton-
Jacobi partial differential inequality (HJPDI). This difficulty 
can be conquered by a methodology recently developed by 
(Yang et al., 2000) where an analytical solution of HJPDI 
was derived for general flight vehicles with six DOF motions. 
However, it is not clear that how to implement this nonlinear 
H∞ flight control command by using the aerodynamic control 
surface and engine thrust in that paper. Furthermore, there is 
no discussion of the effect of parameter uncertainties on the 
controller performance.  
In this paper, we re-drive the analytical solution of HJPDI 
with mass uncertainty and try to implement it to general 
vehicle by control surfaces. Along the three perpendicular 
body axes, we decompose nonlinear H∞ flight control 
command into three force commands and three moment 
commands, and find that it at least needs six independent 
control surfaces (and the related actuators) to generate the 
required forces and moments. However, flight vehicle 
generally has only five or four independent control surfaces, 
and that those have the limitations of saturation. It is thus 
unavoidable that the six DOF nonlinear H∞ flight control 
command can not be implemented exactly by actuator 
systems. Therefore the key of flight control implementation 
issue is to minimize the tracking errors between the H∞ 
commands and the actually achievable control forces and 
moments. The control surface inverse algorithm (CSIA) 
developed in this paper is just aimed at this purpose, which is 

based on the Moore-Penrose generalized inverse formulas 
that can be found in many other applications such as tracking 
control (Robinett et al., 1996), and redundancy optimization 
(Roberts et al., 1991). The proposed CSIA algorithm 
computes the best deflection angles at each sampling instant 
so as to produce the control forces and moments with the 
deviations from the H∞ commanded values being as small as 
possible. While one may wonder if the system is still stability 
or not when the control forces and moments are generated by 
CSIA. In this paper, the applying range of CSIA to guarantee 
robustness and stability is driven.  
Otherwise, it does occur that the nonlinear H∞ commanded 
amplitude and rate of control surface deflection exceed the 
operation ranges of aircraft actuating systems. A proper 
design of command prefilter to avoid this saturation of 
control system is therefore indispensable. Before the 
computed nonlinear H∞ command is fed into the aircraft 
flight control system, it need be reshaped by a command 
prefilter. Parameters in command prefilters (Reigelsperger et 
al., 1998) can be designed to vary with flight conditions so as 
to optimally reflect the maneuverability of the aircraft and to 
achieve the best flight qualities. In this paper, the range of 
control command prefiler is designed such that the control 
surface deflections commanded by nonlinear H∞ controller 
can be followed as close as possible by aircraft actuator 
system.  

2. NONLINEAR H∞ FLIGHT CONTROL WITH MASS 
AND MOMENT INERTIA UNCERTAINTIES 

In the section, we will re-formulate this work of our previous 
research (Yang et al., 2000)  by normalizing. Define U, V, W, 
and P, Q, R  be standard notations for linear and angular 
velocities, respectively; xxI , xzI ,..., etc, be the moments of 
inertia of the flight vehicle; m s is the vehicle's mass. xF , yF , 
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zF , and L, M, N are the applied forces and moments, which 
are accessible from the models of gravity, aerodynamics, and 
thrust, while xd , yd , zd , and ld , md , nd  are the applied 
forces and moments resulting from the unmodeled 
aerodynamics or from the unpredictable disturbance such as 
wind gust. The equations of motion relative to a fixed frame 
are shown as follows. 

( )s s x xm U m WQ VR F d= − + + +  (1) 
( )s s y ym V m UR WP F d= − + + +  (2) 
( )s s z zm W m VP UQ F d= − + + +  (3) 

( ) ( ) ( ) ( )2 2
xx xz xy yz yy zz lI P I R PQ I Q PR I R Q I I QR L d= + + − − − + − + +  (4) 

( ) ( ) ( ) ( )2 2
yy xy zy xz zz xx mI Q I P QR I R PQ I P R I I PR M d= + + − − − + − + +  (5) 

( ) ( ) ( ) ( )2 2
zz yz xz yx xx yy nI R I Q PR I P QR I Q P I I PQ N d= + + − − − + − + +  (6)   

Notice that we do not make the assumption of small deviation 
to the symbols. The mass moments of inertia matrix IM and 
cross-product matrix ( )S ω induced by ω =[p q r]T are 
defined as 

( )
0

,     S 0
0

xx xy xz

M xy yy yz

xz yz zz

I I I r q
I I I I r p

I I I q p
ω

⎡ ⎤− − −⎡ ⎤
⎢ ⎥ ⎢ ⎥= − − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦  (7) 

The trim force 
0Σ

u  and moment 
0Ωu can be solved from  

0ωωσσ ωσ ====== dd . (8) 
Hence, the nonlinear equations of motion with mass and 
moment inertia uncertainty with respect to the equilibrium 
point as 

( ) ( ) ( ) ( )1 1
0 s m s mS S m u m dσ σσ σ ω δ δ− −= − Ω + Σ + + + +  (9) 

( ) ( )( )( )1
0M I M I M II S I Iω δ δ δ ω−= + + Ω +       

( ) ( )( ) ( ) ( )1 1 1
M I M I M I M II S I I u I dω ωδ δ ω δ δ− − −− + Ω + + + + +  (10) 

where mδ is the varying mass around ms and Iδ is the varying 
mass moments of inertia matrix around IM. State with 
subscript zero denotes the value at equilibrium point (trim 
condition), and lower-case symbols denote the deviation from 
the equilibrium point. To make the computations of the H∞ 
control force σu  and moment ωu  independent of the 
physical units being used, scaling factors are introduced to 
normalize (nondimensionalize) the equations of motion. The 
normalization process employs sm , /M sI m , and 

0/ /M sI m U  as the reference mass, reference length rg, and 
reference time, respectively. We introduce the following 
dimensionless variables to normalize the equations of motion:  

σ σ= = = Σ = Σ00 0 0 0( / ) ,  ,  ,  g M M Mt r U t I I I U U

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

σ σ

ω ω σ σ

ω ω σ σ ω ω

ω ω

δ δ δ δ ρ ρ

ρ ρ

= Ω = Ω =

= = = =

= = =

2
00 0 0 0

2 2
0 0

2 2 2
0 0 0

/ ,  / ,  / ,

,  ,  ,  ,

,  / ,  

g g s g

s I M I m s m s

s s g s

U r U r u m U r u

u m U u I m m U

m U d m U r d d m U d

The standard state-space form can be obtained by 
normalizing (9) and (10) as follows 

1 2( ) ( ) ( ) cx f x g x d g x u= + +  (11) 
where 

( ) ( )( ) ( ) ( ) ( )
σ
ωδ δ δ δ

− −

⎡ ⎤− Ω Σ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥+ + Ω − + Ω + ⎣ ⎦⎢ ⎥⎣ ⎦

0
1 1

0

( ) ( )
( ) ,

0 M I M I M I M I

S S
f x

I S I I S I

( )
( )

δ

δ

−

−

⎡ ⎤
+⎢ ⎥

= = ⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

1
3

1 2 1

1 0
( ) ( )

0

m

M I

I
g x g x

I
. 

Control command weighting is designed such that nonlinear 
H∞ control command can be followed smoothly by flight 
vehicle’s actuator system. Therefore, we specify the output 
signal z to be 

( )⎡ ⎤
= ⎢ ⎥

⎣ ⎦

1
c

E

h x
z

W u
, (12) 

with σ ω= diag( )EW W W . The weightings σW  and ωW  are 
weighting coefficients concerning the trade-off between the 
tracking performance and the control effort assumed to be 
diag(w w w )x y z  and diag(w w w )l m n , respectively.. 
The ultimate flight control purpose here is to track the 
velocity command Σ0  and the body rate command Ω0 , and 
to make the tracking errors σ  and ω  as small as possible. To 
reflect these requirements, we choose the measurement of 
tracking performance 1h  is 

( )
1
2

1
1 1, .
2 2

T T
Mh Iσ ωσ ω ρ σ σ ρ ω ω⎛ ⎞= +⎜ ⎟

⎝ ⎠
  (13) 

σρ  and ωρ  are weighting coefficients to the relative tracking 
performance between σ  and ω . Additionally, the 
attenuation effort required for arbitrary exogenous 
disturbance σ ω= ∈[ ] 2d d d LT T T  will be lower than a specified 

value γ1 . Therefore, the problem of the nonlinear H∞ flight 
control design now can be stated as: find the control cu  such 
that the L2 gain of the system in (9), (10), and (12) is lower 
than γ1 , i.e.,  

( )
( )σ σ ω ω

γ

∞∞

∞ ∞

+
= < ∀ ∈

+

∫∫
∫ ∫

2 2
10 20

1 2

0 0

  
,    

  

cT c
T

E

T T T

h u W u dtz z dt
d L

d d dt d d d d dt
. (14) 

It can be shown that condition (14) is achieved if there exists 
a scalar 1C  function +→: nE R R  with =(0) 0E , satisfying 
the following HJPDI  

γ
−⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + <⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
2

1 1 2 2 1 12
1

1 1 1 0
2 2

T T
T T T

E
E E Ef g g g W g h h
x x x  (15) 

This is a nonlinear first-order second-degree nonlinear partial 
differential inequality in the unknown function σ ω =( , )E  

( , , , , , )E u v w p q r . If such an E function exists, the desired 
nonlinear H∞ controller cu  can be found from 

( ) ( )− ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
2

2
c T

E
Eu x W g x
x

 (16) 

The details of proof can be found, for example, from (Isidori 
et al., 1992 and Van der Schaft et al., 1992). Motivated from 
the linear result, we search for a possible quadratic solution 
for the nonlinear control problem in a linear form:  
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( )
( )

( )
σ

ω

δ σ
σ ω σ ω

ωδ

⎡ ⎤+ ⎡ ⎤⎢ ⎥⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎢ ⎥+ ⎣ ⎦⎢ ⎥⎣ ⎦

31 01,
2 0

mT T

M I

K I
E

K I
, (17) 

where σK  and ωK  are scalar constants to be determined. 
Conducting the partial differentiations with respect to σ and 
ω with the following relations are valid. 

ωΤS(ω)=0, ωΤS(IMΩ0)ω=0, and σΤS(Ω0+ω)σ=0 (18) 

Substituting (11), (13), (17) and (18), into (15), we get a 
quadratic form of HJPDI for flight control as 

( ) ( )

( ) ( )
( ) ( )

( ) ( )

σ σ σ σ

ω

σ ω

ω ω ω

ρ δ
γ

δ

δ δ

ρ
γ

−

−

⎡ ⎤⎛ ⎞
+ − + Σ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
⎢ ⎥− Ω +
⎢ ⎥ <⎢ ⎥
⎢ ⎥+ Σ − + Ω
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+ − +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 2
03 32

1

0

0 0

2 2
3 32

1

1 1 1 1 1
4 2 22

1
2 0

1 11
2 2

1 1 1
2 42

m

M I
T

T T
m M I

M

I I W K K S

K S I
x x

K S K I S

I W K I I

 (19) 
An explicit (but only sufficient) condition to meet the above 
inequality is found as  

( )
σ

σ
σ

ρ
ω γ

>
−2 2

12 1/ 1/
K

,, k>1 and σ γ< 1w  (20) 

( ) ( ) ( ) ( )δ δ
γ

ω ω ω

⎛ ⎞
⎜ ⎟⎛ ⎞− Ω + + + Ω + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

−1 1
2 2

2 20 0 3 32
1

K S I I S I w K ITM I M I

( ) ( ) ( )δ
ρ

ρ
γ

σ ω

σ σ σ

+ Σ Σ
+ + <

⎛ ⎞
⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

−

1 1 0
4

12

22 0 0

2 23 32
1

K S S
I

I I w K

Tm
M

 (21) 
where ( )max , ,x y zw w w wσ = and ( )max , ,l m nw w w wω = . 
It is noted that uncertainties exist in the above solutions. To 
remedy this defect, the following procedures are performed. 
Let the ranges of varying mass and moment of inertia are  

m−−Δ ≤ /m smδ ≤ m+Δ  (22) 

I −−Δ ≤ 1
I MIδ − ≤ I +Δ  (23) 

If we define D+ =1+ m+Δ  , D− =1- m−Δ and M + =I+ I +Δ , we 
have D− ≤1+ /m smδ ≤ D+  and I+ 1

I MIδ − ≤ M + . 

If the following inequality is satisfied, inequality (21) will be 
satisfied. 

ρ
γ

ρ
γ

ω ω ωω

σ

σ σ σ

⎛ ⎞
⎜ ⎟Ω + − +⎜ ⎟
⎜ ⎟
⎝ ⎠

Σ Σ
− <

⎛ ⎞
⎜ ⎟+ −⎜ ⎟
⎜ ⎟
⎝ ⎠

−
+

+

−

1 1 1
2 4

0
12

2 20 32
1

2 2 0 0

2 23 32
1

K I M I w K I

K D

I I w K

M M

T  

Then we have 

( ) ( )ω σ
ω

α
γ

−

+ +

⎛ ⎞⎛ ⎞
> − Ω + Ω +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

1
2

0 02 2
1

1 1
M MK I M I M K

w
 (24) 

where 

( ) σ
σ ω

ω
σ σ

σ

α ρ
γ

ρ
γ

+

⎛ ⎞
⎜ ⎟

⎛ ⎞ Σ Σ⎜ ⎟= − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2
0 0

2 2
1 2

2 2
1

1 1 1 4
2 1 12

T

M
K DK I

w
K

w  
As expected, the allowable ranges of σK  and ωK  are 
dependent on the trim conditions Σ0  and Ω0  which implies 
that the derived control law possesses implicitly the gain-
scheduling effect, with controller gain changing with flight 
conditions. After having obtained the solutions of σK  and 

ωK , we can compute the desired control commands (forces 
and moments) from (16) and (17) as following:  

σ σ σ ω ω ω
− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = − = = −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

2 2,   

c c
x

c c c c
y

cc
z

f u l p
u f W K v u m W K q

w n rf

, (25) 

Note that σK  and ωK are scales, so they will be in 
dimension by using  σ σ= 0 /s gK m U K r  and ω =K  

ω0s gm U r K . However, it is possible that choosing proper 
values of σK  and ωK in the solution sets (20) and (24) will 
obtain an acceptable performance 1h  without consuming a 
significant control effort cu . It is worth noting that the 
linearity assumed here is only limited to the way generating 
aero data, i.e., linear interpolation between the given discrete 
aero data points. This linear interpolation of aero data is 
unavoidable, since real aero data given by wind tunnel tests is 
discrete. There may exist some fitting errors by using 
piecewise linear interpolation, but the global aerodynamic 
model is still nonlinear, and the nonlinear equations of 
motion in Eqs.(9) and (10) cover all the flight envelope of the 
vehicle. On the contrary, in the conventional linearized model, 
aero data are assumed to be fixed at some trim point, and no 
aero data interpolation is required. 

3. CONTROL SURFACES INVERSE ALGORITHM AND 
ITS APPLICATION RANGE TO STABILITY  

The desired force and moment command [ ]c c T c T Tu u uσ ω=  to 
attenuate the disturbance for the closed-loop six degrees-of-
freedom motion system have been obtained from (25). As 
mentioned earlier, since general flight vehicle has only five 
or less control surfaces, it is not possible to exactly 
implement the nonlinear H∞ command cu which has six 
independent components. The question of stability using 
control surfaces remains to be verified.  
Let bu  be the force and moment generated by flight 
vehicle’s control surfaces, and bu = c

uuρ , where 1uρ ≤ is 
called loss rate. Let the control input is bu  now, it is easy to 
derive that the nonlinear H∞ flight control system becomes:  
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( ) ( ) ( )
( )

ρ

ρ
ρ

= + +

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

1 2

1 1:
, <1

c
u

uc
u E

x f x g x d g x u
G h x

z
W u  (26) 

However, what is the range of uρ that the nonlinear H∞  flight 
control system using control surfaces still guarantees 
robustness and stability? Let the new L2 gain for the system 

1G is γ . Substituting cu  defined in (16) and system defined 
in (26). It can be shown that condition (14) is achieved if 
there exists a scalar 1C  function +→: nE R R  with =(0) 0E , 
satisfying the following HJPDI  

( ) ( )( )
( ) ( )( )

( ) ( ) ( )

ω σ

ρ ρ
γ

ρ ρσ ω ω ω σ σ
σ

δ δ
ω

ω δ δ

−

−

−

⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∂⎛ ⎞+ − Ω + Σ + +⎜ ⎟∂⎝ ⎠
⎛ ⎞+ + Ω⎜ ⎟∂⎛ ⎞+ <⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎜ ⎟− + Ω +
⎝ ⎠

2 2
1 1 2 22

0

1
0

1

1 1
2 2

4 4

0

T
T T

u u E

T
T T

T
M I M I

M I M I

E Eg g g W g
x x

E S S

I S IE

I S I

 (27) 

To ensure the negativeness of HJPDI (27) for arbitrary 
σ ω ≠, 0 , we get the quadratic form of (27) with the matrix 
elements defined as 

⎡ ⎤
<⎢ ⎥

⎣ ⎦

11 12

12 22

0T
T

M M
x x

M M
 

σ σ σρ ρ ρ
γ

−⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2 2 2
11 3 32

1 1 1 ,
4 22

u uM I I W K  (28) 

( ) ( )σ δ= + Σ012
1 1 ,
2 mM K S  

( ) ( ) ( ) ( )ω ω

ω ω ω

δ δ

ρ ρ ρ
γ

−

= − Ω + − + Ω

⎛ ⎞⎛ ⎞+ + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

022 0

2 2 2
3 32

1 1
2 2

1 1 1 .
2 42

T
M I M I

u u M

M K S I K I S

I W K I I

(29) 

According to (20), we assume  

( )
σ

σ
σ

ρ

γ
=

−2 2
12 1/ 1/

K k
w

, k>1 and σ γ< 1w  (30) 

Substituting (30) into (28), M11<0 is satisfied if  

σ σ
σ

γ
ρ ρ

γ
− −

>
− − +2 2 2

2 2 2 2
1

1
1 12 u uw w

k w k

 

Since the denominator of the above equation is required to be 
positive, we can get the range of ρu to be 

σ σ
ρ

γ γ− −− − + < < + − +2 2 2 2 2 2 2 2
1 1

1 1 1 11 1 1 1u
k k w k k w  (31) 

The left term can be verified that it is always positive under 
the condition σ γ< 1w .   

Another condition 1
22 12 11 12 0TM M M M−− < can be proved to be 

valid, if the following inequality exists: 

ω ω ω ω ωρ ρ ρ
γ

− −
+

⎛ ⎞
− + + Ω +⎜ ⎟⎜ ⎟

⎝ ⎠

2 2 2 2
02

1 1 12
2 4u u M Mw w K K I M I  

ρ ρ ρ
γ

σ

σ σ σ σ

Σ Σ
− <

⎛ ⎞
⎜ ⎟+ − +
⎜ ⎟
⎝ ⎠

+

− −
0

12 2

2 2 0 0

2 2 2 2
2

K D

w w K

T

u u

 (32) 

Similarly, having ωK shown in (24), we assume  

( ) ( )ω σ
ω

α
γ

−

+ +
⎛ ⎞ ⎛ ⎞

= − Ω + Ω +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

1
2

0 02 2
1

1 1
M MK k I M I M K

w (33) 
k>1,

ω
γ<

1
w  , and 

 

( ) σ
σ ω

ω
σ σ

σ

α ρ
γ

ρ
γ

+

⎛ ⎞
⎜ ⎟

⎛ ⎞ Σ Σ⎜ ⎟= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2
0 0

2 2
1 2

2 2
1

1 1 1 4
2 1 12

T

M
K DK I

w
K

w  
Substituting ωK  defined in (33) into (32), we have 

 
( )

ω ω

ω

ρ ρ
γ

γ

+− −
Ω⎛ ⎞

− + −⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟−
⎜ ⎟
⎝ ⎠

2
0

2 2 2 2
2 2

2 2
1

12
1 1

M
u u

I M
w w k

w

 

( ) ( )σ

ω ω

ω

α
ρ ρ

γ

γ

+ +
− −

Ω Ω +⎛ ⎞
+ − + −⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟−⎜ ⎟
⎝ ⎠

2
0 0

2 2 2 2
2 2

2 2
1

12
1 1

M M
u u

I M I M K
w w k

w

ω
ω ω ω

ω

ρ
ρ ρ ρ

γ

γ
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The following variables are necessary: 

σσ
σ

σσ σ σ
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γ
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γ
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The range of uρ  make (34) to be satisfied can be obtained as 

(1) α1/α2≧k 
2 2

1 1 1 1
2 2 2 2 2 2

2 2 1 2 2 1

1 11 1 1 1u
w w

k k k k
ω ωα α α αρ

α α γ α α γ
− − + < < + − +

 (35) 
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We have new L2 gain as follows: 

ω
α α

γ ρ ρ
α α γ

ω> − + − +
1/ 2

2
2 1 1

2 2 22 2
1

w
w

k k
uu

 (36) 
(2) α1/α2<k 

2 2 2 2
1 1

1 1 1 11 1 1 1uk w k k w kω ω

ρ
γ γ− −− − + < < + − +

 (37) 
New L2 gain is 

ω
γ ρ ρ

γω
> − + − +

−
1 1/ 22

2 2
1

w
k w k

uu

 (38) 
The range of loss rate uρ  guarantee the robustness and 
stability for system (26) with nonlinear H∞ control command 
implemented by control surfaces. It is noticed that the new L2 
gain γ is increased when 1uρ < .This fact implies that the 
disturbance attenuation effect is less than the theoretically 
predicted value when aerodynamics are taken into account. 
Although it is unavoidable for any controller design that the 
performance is degraded caused by finite actuator ability, 
proper selections of γ1 and tuning Ks in (35) still retains the 
robustness properties of the nonlinear H∞ controller . 
It is well known that control surfaces are limited by their time 
delay and saturation. We have to design a prefilter, Ks, to 
implement cu and avoid control surface saturation. The 
mechanism of determining the best deflection angles of the 
control surfaces such that bu  can be as close as possible to 

c
sK u  is called Control Surface Inverse Algorithm (CSIA). 

The algorithm is based on the minimization of the following 
command tracking error  

( ) ( )= − −error

Tc b c b
s sJ K u u K u u

, (39)  
Let bu  be expressed as an abbreviated form:  

*bu u Aδ= + . (40) 
The optimal control surface deflection δ opt  minimizing 

the command tracking error errorJ  in (39) can be found by 
Moore-Penrose inverse formula as  

δ − ∗= −opt 1( ) ( )T T c
sA A A K u u . (41) 

If A is invertible, which implies that the flight vehicle has six 
control surfaces, the tracking error errorJ  can be made exactly 
equal to zero by using the least-square solution δ opt  from 
(41). If the number of control surface is lower than six, A  is 
not invertible and the nonlinear H∞ control command can not 
be tracked exactly by the vehicle’s aerodynamic control 
surfaces. In this case, δ opt  represents the best control surface 
deflection minimizing errorJ .  The algorithm can be referred 
to (Kung et al., 2002). However, the range of prefilter Ks to 
make CSIA still guarantees robustness and stability will be 
derived. 

Let the control input is bu  now, the nonlinear H∞ flight 
control system (26) becomes: 

( ) ( ) ( )
( ) ( ) ( ) ( )δ

= + +

= + + +

1 2

* opt
1 2

bx f x g x d g x u

f x g x d g x u A
 (42) 

Substituting δ opt in  (41) into  (42), we have 

( ) ( ) ( )( )
( )

−

−

= + + −

+

1 *
1

1
2

( )

( )

T T

T T c
s

x f x g x d I A A A A u

g x A A A A K u
 (43) 

It is noticed that the property =1 2g g from (11) is applied. 

Let ( )−= + − 1 *
1 ( )T Td d I A A A A u , the above equation (43) can 

be re-written as 
( ) ( ) ( ) −= + + 1

1 1 2 ( )T T c
sx f x g x d g x A A A A K u  (44) 

Let prefilter Ks be designed as   
=s s sK k W  (45) 

where ks is a constant and Ws is a weighting matrix. It is clear 
that −1( )T T

sA A A A W is equal or less than its maximum 
eigenvalue and is equal or greater than its minimum 
eigenvalue. Let the range of ks be design as follows: 
 (1) α1/α2≧k 

( )
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2 2 2

2 2 1

211 1 1
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2 2 1
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 (46) 
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−

⎛ ⎞
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⎝ ⎠

 (47) 

Since the control ρ c
uu  is valid for all disturbances d∈ L2 

with uρ  in the range of (35) or (37), it is valid for d1, too. 
Because the range of ks is set in (46) or (47), the G2 system 
from (44), 

( ) ( ) ( )
( )

ρ

−

−

= + +

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

1
1 1 2

2 1
1

( )
:

, <1
( )

T T c
s

uT T c
s E

x f x g x d g x A A A A K u
G h x

z
A A A A K W u

, (48) 

will satisfy the following L2 gain requirement. 

γ

∞

∞ < ∀ ∈∫
∫

20
1 2

1 10

 
,    

 

T

T

z z dt
d L

d d dt
 (49) 

To complement the time delays of control surfaces, it is 
usually required that the range of ks is smaller than  (46) or 
(47).  

4. CONTROLLER VALIDATION IN LYNX HELICOPTER 

In this section the nonlinear H∞ flight controller and the 
control surface inverse algorithm developed in the previous 
sections will be validated by a nonlinear simulator for Lynx 
helicopter within the Matlab environment.  To find the 
control force and moment from (25), we need the mass and 
moments of inertia for Lynx helicopter: ms=4313.7 kg, 
Ixx=2767.1 kg·m2, Iyy=13904.5 kg·m2, Izz=12208.8 kg·m2, and 
Ixz=2034.8 kg·m2. The helicopter is hovering and the trim 
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condition is set toΣ0=[U0 V0 W0]T=[0 0 0]T(ft/sec), and Ω0=[P0 
Q0 R0]T=[0 0 0]T (rad/sec) at altitude=100 m. The upper 
bound of the L2-gain is selected to γ=2, the weighting 
coefficients ρσ and ρω are all set to 1. Control surface 
movement is governed by actuator ability. With reference to 
Takahashi (1994), we take UH-60 to be our actuator model. 
The main and tail rotor collective pitch are limited between 
[ 00 25.2325.6 ]. The allowable intervals for longitudinal and 
lateral cyclic pitch are [ 00 147.8− ] and [ 00 87− ], 
respectively.  
To illustrate that the convergence of the nonlinear H ∞  
helicopter control system with actuator constraints is not 
merely local, we perturb the six DOF nonlinear motion to an 
initial condition far from trim condition, and then verify its 
convergence. Initial Perturbed Condition: Σ0=[U0 V0 
W0]T=[20 20 20]T(ft/sec), and Ω0=[P0 Q0 R0]T=[0.5 0.5 0.5]T 

(rad/sec). The upper bound of the L2 gain in (14) is selected 
to γ1 =2. To think about /m smδ = 1.2, δI=IM× δm/ms=1.2, D+

= 
1+

m+Δ =2.2，and M +
= I3+ 

I +Δ =2.2I3，we have Cσ=1.3，

Cω=1.3 ， and maximum eigenvalue=-0.12. The initial 
condition is very far from the equilibrium states. As in Fig.1, 
it serves to explain this stability property, where these states 
converge with steady state error. The steady-state error 
mainly comes from vertical velocity. It reveals that the 
control ability in vertical velocity is not very well. The 
drawback can be overcome by adjusting the prefilter 
parameters and weighting matrix. On the other hand, the 
responses still show good convergence for large initial 
perturbation which implies that theoretically guaranteed 
properties of the nonlinear H∞ controller has been somewhat 
sacrificed during the control law implementation process. 
Control variable deflection θ0, θ1s, θ1c, θ0T histories shown in 
Fig. 2. It can be found that saturations happened on θ0, θ1c,  
and θ0T. It means that the control ability will be lost over the 
uncertainties /m smδ = 1.2 and δI=IM×  δm/ms=1.2.  

5. CONCLUSIONS 

In this paper, the feasibility of actual implementing nonlinear 
H∞ flight control command for general flight vehicle with six 
degree-of- freedom motions with mass and moment inertia 
uncertainties is presented. Control surface inverse algorithm 
to convert the nonlinear H∞ control law to actual movements 
of control surface is developed and the application range is 
derived and proved. The stability of nonlinear H∞ control is 
confirmed in the Lynx helicopter simulation. The theoretical 
results are proved and this paper gives one of useful methods 
to deal with the actual implementation of nonlinear H∞ 
command for general flight vehicles with six degree-of-
freedom motions. 
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Fig. 1. δm/ms= 1.2 state responses

Fig. 2. δm/ms= 1.2 control surfaces responses
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