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Abstract: A class of systems influenced by nonlinearly parameterized perturbations is consid-
ered. An estimation scheme is developed whereby exponentially stable estimates of the unknown
parameters can be obtained with an arbitrarily large region of attraction. The method applies
to systems where the states are available for measurement, and perturbations with the property
that an exponentially stable estimate of the unknown parameters can be obtained if the whole
perturbation is known. Compensation for the perturbations in the system equations is considered
for a class of systems which have uniformly globally bounded solutions and for which the origin
is globally asymptotically stable when no perturbations are present. Examples with simulations
are given in order to illustrate the results.
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1. INTRODUCTION

An important issue in control applications is the handling
of unknown perturbations to system equations. Such per-
turbations can be the result of external disturbances or
internal plant changes, such as a configuration change,
system fault or changes in physical plant characteristics.
Frequently, such perturbations can be characterized in
terms of a vector of unknown, constant parameters.

Adaptive control techniques aim to counteract such per-
turbations by introducing estimates of the unknown pa-
rameters and using these to cancel the effect of the pertur-
bations. When the perturbations are linear in the unknown
parameters, design of adaptive control schemes is often
straightforward, and techniques for handling such cases are
well developed (see, e.g., Krstić et al. (1995)). In the case
of nonlinearly parameterized perturbations, the problem
is naturally more complicated, and the range of available
design techniques is more limited. One approach is to use
a gradient algorithm, as in linearly parameterized systems,
which may yield poor results or instability for nonlin-
ear parameterizations. Another common approach is over-
parameterization, whereby extra unknown parameters are
introduced in order to express the perturbation as linear
in the parameters. This increases complexity and may
affect performance by reducing the convergence rate of the
parameter estimates or introducing stricter persistency of
excitation conditions.

To address the problem of nonlinearly parameterized per-
turbations, some techniques have been introduced which
do not resort to approximations. In Fomin et al. (1981);
Ortega (1996), stability and convergence of the controlled
variable is proven for a gradient-type approach for nonlin-
ear parameterizations with a convexity property. In An-
naswamy et al. (1998), the convexity or concavity of some
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parameterizations is exploited by introducing a tuning
function and adaptation based on a min-max optimization
strategy, thus achieving tracking of the controlled variables
to within a desired precision. The approach is extended
to more general nonlinear parameterizations in Loh et al.
(1999).

Other results, such as Bošković (1998); Zhang et al. (2000),
have focused on first-order systems with certain fractional
parameterizations, proving convergence of the controlled
state, but without studying convergence of the parameter
estimates. In Qu (2003), an estimation-based approach
is introduced for a class of higher-order systems with
a matrix fractional parameterization. Here, an auxiliary
estimate of the full perturbation is introduced, which
is used in the estimation of the unknown parameters.
The method achieves global boundedness and ultimate
boundedness to within a desired precision. In Qu et al.
(2006), another approach is presented for more general
nonlinear parameterizations, where, instead of relying on
the certainty equivalence principle, the parameter estimate
used in the control law is biased by an appropriately
chosen vector function. Conditions are given under which
the errors in both the controlled states and the estimated
parameters converge to zero.

Another way of dealing with undesired perturbations can
be found in Chakrabortty and Arcak (2007), where an
estimate of the whole perturbation is produced using a
high-gain approach, and used to counteract the perturba-
tion, thus recovering the performance of the unperturbed
system. The approach considered in this paper has sim-
ilarities to Chakrabortty and Arcak (2007), but it also
exploits available structural information by estimating an
unknown parameter vector in addition to the full perturba-
tion. Among other things, this avoids some of the problems
related to noise that are common in high-gain designs. The
method presented herein also has clear similarities with
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the approaches in Tyukin (2003); Tyukin et al. (2007) in
terms of the general idea, which involves exploiting infor-
mation in the derivatives of the measurements for creating
parameter update laws, without explicit differentiation.

The results presented in this paper assume a relatively
small class of perturbations. Nevertheless, the method
is often highly effective when applicable, especially with
respect to providing fast parameter estimates. This may be
useful for direct compensation or as part of other control
schemes where fast parameter estimates are required.

2. NOTATION AND DEFINITIONS

Conventional notation is used to denote estimates and
error variables, meaning that for some quantity z, ẑ
represents its estimate and z̃ = z − ẑ is an error variable.
For a vector z, zi denotes its i’th element. The norm
operator ‖ · ‖ denotes the Euclidian norm for vectors and
the induced Euclidian norm for matrices. The minimum
eigenvalue of a matrix A is denoted λmin(A). We denote
by R≥0 and R>0 the non-negative and the positive real
numbers. For two sets E,F ⊂ R

n, we write (E − F ) :=
{z1 − z2 ∈ R

n | z1 ∈ E, z2 ∈ F}. Throughout this paper,
when considering systems on the form

ż = F (t, z), (1)

we implicitly assume that F : R≥0 ×R
n → R

n is piecewise
continuous in t and locally Lipschitz continuous in z,
uniformly in t, on R≥0×R

n. We denote by z(t) the solution
of (1), initialized at time t = t0 with initial condition
z = z(t0). In this paper, we make use of the abbreviations
ugb (uniform global boundedness) and ugas (uniform
global asymptotic stability). For definitions of these and
related terms, we refer to Khalil (2002).

3. PROBLEM FORMULATION

Starting with any general system, we consider systems
which, by the appropriate state transformations and choice
of control law, can be expressed in the following form:

ẋ = f(t, x) + B(t, x) (g(t, x, θ) + v(t, x)) , (2)

where x ∈ R
n are measured states and θ ∈ R

p is a
vector of unknown, constant parameters. The functions
f : R≥0 ×R

n → R
n, B : R≥0 × R

n → R
n×m and v : R≥0 ×

R
n → R

m can be evaluated from available measurements,
and g : R≥0×R

n×R
p → R

m is continuously differentiable
with respect to θ and can be evaluated if θ is known.

We first consider the problem of designing an estimator
for the unknown parameter vector θ. We then consider
the case when available control inputs can be used to
create a system transformable to the form of (2) with

v(t, x) = −g(t, x, θ̂), where θ̂ represents a parameter
estimate. We derive stability results for this system based
on the convergence properties of the parameter estimation

error, which is defined as θ̃ := θ − θ̂.

3.1 Restriction of Parameters

In most practical circumstances, it is known from physical
considerations that θ is restricted to some bounded set of
values. This is a significant advantage when it comes to
satisfying the assumptions made later in this paper. To

simplify the exposition, we therefore assume throughout
this paper that the set of possible parameters is indeed
bounded. In designing update laws for parameter esti-
mates, we will also assume that a parameter projection
can be implemented in a manner similar to that described
in Krstić et al. (1995), restricting the parameter estimates
to a compact, convex set Θ ⊂ R

p (defined slightly larger
than the set of possible parameter values). For the sake
of brevity, we shall include the projection in the examples
given throughout the paper only as a generic additive term
p.t. in the differential equations, and largely ignore the
term in the following analysis. We only note here that
the analysis is compatible with the use of a projection
term, with only minor modifications (e.g., to bounds and
constants).

4. PARAMETER ESTIMATION

In this section, we present a method for estimating the
unknown parameter vector θ when x(t) is bounded. For
ease of notation, we introduce φ := B(t, x)g(t, x, θ), which
represents the full unknown perturbation in (2).

4.1 Estimation of θ from φ

The estimation scheme is based on generating an estimate

of φ. This estimate will be denoted φ̂, and it will in turn be
used to estimate θ. For this to work, there needs to exist
an update law

˙̂
θ = uθ(t, x, φ̂, θ̂), (3)

which, if φ were known (i.e., φ̂ = φ), would provide an
unbiased asymptotic estimate of θ. This is the subject of
the following assumption. We emphasize that we do not
assume that φ is in fact known.

Assumption 1. For each compact set K ⊂ R
n, there exists

a continuously differentiable function Vu : R≥0×(Θ−Θ) →
R≥0 and positive constants a1, a2, a3 and a4 such that for

all (t, x, φ, θ̂) ∈ R≥0 × K × R
n × Θ,

a1‖θ̃‖
2 ≤ Vu(t, θ̃) ≤ a2‖θ̃‖

2, (4)

∂Vu

∂t
(t, θ̃) −

∂Vu

∂θ̃
(t, θ̃)uθ(t, x, φ, θ̂) ≤ −a3‖θ̃‖

2, (5)
∥

∥

∥

∥

∂Vu

∂θ̃
(t, θ̃)

∥

∥

∥

∥

≤ a4‖θ̃‖. (6)

Furthermore, the update law (3) ensures that if θ̂(t0) ∈ Θ,

then for all t ≥ t0, θ̂(t) ∈ Θ.

Satisfying Assumption 1 Assumption 1 guarantees that
the origin of the error dynamics

˙̃
θ = −uθ(t, x, φ, θ − θ̃),

which occurs if φ̂ = φ, is uniformly exponentially stable
with (Θ − Θ) contained in the region of attraction. In
essence, this amounts to being able to solve the inverse
problem of finding θ given φ = B(t, x)g(t, x, θ) with expo-
nential convergence rate, using some method described as

a differential equation for θ̂. We will not state exact con-
ditions for when it is possible to satisfy this assumption.
Rather, we will describe an approach based on a numerical
search for the solution, and give several examples of its
applicability. We simultaneously point out, however, that
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there are other possible approaches for satisfying Assump-
tion 1, e.g., based fully or partially on exponential attrac-
tion to an algebraic solution of the inversion problem.

The idea is to look for some function M(t, x) which is such
that

θ̃TM(t, x)B(t, x)(g(t, x, θ) − g(t, x, θ̂)) ≥ θ̃TP (t, x)θ̃, (7)

where P (t, x) is positive semidefinite, and to use an update
function similar to

uθ(t, x, φ, θ̂) = kθM(t, x)(φ − B(t, x)g(t, x, θ̂)) + p.t., (8)

where kθ is a positive scalar gain. The types of pertur-
bations for which this is possible can be described as
monotonic in a generalized sense.

If P (t, x) is positive definite (uniformly in t), it is imme-
diately clear that (8) satisfies Assumption 1, using the

Lyapunov function Vu(t, θ̃) = 1
2 θ̃Tθ̃ (and assuming that the

projection term does not contribute in a positive direction
in the time derivative). The following example illustrates
this case.

Example 1. Consider the perturbation B(t, x)g(t, x, θ) =
g(θ) = [θ1, θ

2
1 + θ2]

T, with Θ = [−10, 10]× [−10, 10]. Using
the mean value theorem, we find that

g(θ) − g(θ̂) =

[

1 0
2θ̄1 1

]

θ̃

where θ̄1 is a value between θ1 and θ̂1. Selecting M(t, x) =
M = diag (KM , 1) therefore yields

θ̃TM(g(θ) − g(θ̂)) = θ̃T

[

KM 0
2θ̄1 1

]

θ̃.

Using the fact that |θ̄1| ≤ 10 (because both θ and θ̂ are
contained in Θ), it is easily confirmed that the matrix in
the above expression is positive definite if KM is chosen
sufficiently large.

If P (t, x) is positive definite as in Example 1, it implies
that the inversion problem can be solved arbitrarily fast
by increasing the gain in (8). In many cases, this is not
possible, but it may still be possible to satisfy Assumption
1 via a positive semidefinite P (t, x). This case is more
complicated, as it is necessary to investigate whether
P (t, x) is persistently exciting; that is, whether there exist
T > 0 and ε > 0 such that for all t ∈ R≥0,

∫ t+T

t

P (τ, x(τ)) dτ ≥ εI > 0. (9)

If this inequality holds, it is often possible to use a
Lyapunov function candidate (lfc) on the following form:

Vu(t, θ̃) =
1

2
θ̃Tθ̃ − µθ̃T

∫ ∞

t

et−τP (τ, x(τ)) dτ θ̃, (10)

where µ > 0 is a small constant. This is illustrated by the
following example.

Example 2. Consider the perturbation B(t, x)g(t, x, θ) =
g(t, θ) = sin(t)[θ1, θ

2
1 +θ2]

T, with Θ = [−10, 10]×[−10, 10].
Using the same argument as in the last example, we see
that by selecting M(t, x) = M(t) = sin(t)diag (KM , 1)
and choosing KM sufficiently large, (7) is satisfied with
P (t, x) = P (t) = c sin2(t) for some constant c > 0.
Moreover, with T chosen as any positive number, we have
∫ t+T

t
sin2(τ) dτ ≥ ε > 0 (uniformly in t, for some number

ε). We therefore use M(t) in the update function (8), and

the lfc from (10). We first note that
(

1
2 − cµ

)

‖θ̃‖2 ≤

Vu(t, θ̃) ≤ 1
2‖θ̃‖

2. Hence, Vu is positive definite if we choose
µ < 1/(2c). Taking the time derivative (not considering
the projection term) yields

V̇u(t, θ̃) ≤ −

(

1 − 2cµ

∫ ∞

t

et−τ sin2(τ) dτ

)

· kθ θ̃
TM(t)(g(t, θ) − g(t, θ̂))

+ cµ sin2(t)θ̃Tθ̃ − cµ

∫ ∞

t

et−τ sin2(τ) dτ θ̃Tθ̃

≤ −(kθ − 2kθcµ − µ)c sin2(t)‖θ̃‖2 − cµe−T ε‖θ̃‖2.

It follows that the time derivative is negative definite
provided µ < kθ/(1 + 2ckθ).

4.2 Estimator

We now introduce the full estimator for the unknown
parameter vector:

ż = −Kφ

(

f(t, x) + B(t, x)v(t, x) + φ̂
)

− B(t, x)
∂g

∂θ
(t, x, θ̂)uθ(t, x, φ̂, θ̂), (11a)

φ̂ = z + Kφx + B(t, x)g(t, x, θ̂), (11b)

˙̂
θ = uθ(t, x, φ̂, θ̂), (11c)

where Kφ is a positive definite gain matrix. The full
estimator can be considered to consist of two parts: one is
an estimate of φ described by (11a), (11b), and the other
is the update law from Section 4.1, where the perturbation

φ has been replaced with the estimate φ̂.

In order to study the properties of the estimator, we
consider the dynamics of the errors φ̃ and θ̃. Taking the

time derivative of φ̃ = φ − φ̂, we may write

˙̃
φ =

∂

∂t
(B(t, x)g(t, x, θ)) +

∂

∂x
(B(t, x)g(t, x, θ)) ẋ

+ Kφ

(

f(t, x) + B(t, x)v(t, x) + φ̂
)

+ B(t, x)
∂g

∂θ
(t, x, θ̂)uθ(t, x, φ̂, θ̂) − Kφẋ

−
∂

∂t
(B(t, x)g(t, x, θ̂)) −

∂

∂x
(B(t, x)g(t, x, θ̂))ẋ

− B(t, x)
∂g

∂θ
(t, x, θ̂)uθ(t, x, φ̂, θ̂).

At this point, it is convenient to define the function

d(t, x, θ̃) :=
∂

∂t

(

B(t, x)g(t, x, θ) − B(t, x)g(t, x, θ̂)
)

+
∂

∂x

(

B(t, x)g(t, x, θ) − B(t, x)g(t, x, θ̂)
)

ẋ.

This can be seen as the time derivative of B(t, x)(g(t, x, θ)−

g(t, x, θ̂)) when θ̂ is kept constant. Using this function and
the fact that ẋ−f(t, x)−B(t, x)v(t, x) = φ, we may rewrite
the above expression and write the error dynamics of the
estimator as

˙̃
φ = −Kφφ̃ + d(t, x, θ̃), (12a)

˙̃
θ = −uθ(t, x, φ, θ̂) +

(

uθ(t, x, φ, θ̂) − uθ(t, x, φ̂, θ̂)
)

. (12b)

For convenience, we define the error variable ξ := [φ̃T, θ̃T]T

and the set Ξ := R
n × (Θ − Θ).

To state our results on the estimation of θ, we need some
further assumptions.
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Assumption 2. For all (t, x, θ̃) ∈ R≥0 ×R
n × (Θ−Θ), the

function d(t, x, θ̃) is well-defined, and for each compact set
K ⊂ R

n, there exist numbers L1 > 0 and L2 > 0 such that
for all (t, x, θ̃) ∈ R≥0 ×K × (Θ−Θ), ‖d(t, x, θ̃)‖ ≤ L1‖θ̃‖;

and for all (t, x, φ, φ̂, θ̂) ∈ R≥0 × K × R
n × R

n × Θ,

‖u(t, x, φ, θ̂) − u(t, x, φ̂, θ̂)‖ ≤ L2‖φ̃‖.

The next lemma states the basic result on estimation of θ.

Lemma 1. Suppose Assumptions 1 and 2 hold and that for
all t ∈ R≥0, ‖x(t)‖ is uniformly bounded. Then there exists
k′ > 0 such that if Kφ is chosen such that λmin(Kφ) > k′,
then the origin of (12) is uniformly exponentially stable
with Ξ contained in the region of attraction.

Proof. Assumption 1 ensures that if θ̂(t0) ∈ Θ, then

θ̂(t) ∈ Θ. It follows that no trajectory of the estimator
error dynamics can escape Ξ. The uniform boundedness of
x(t) implies that x(t) ∈ K, where K ⊂ R

n is compact. We
may therefore make use of the inequalities from Assump-
tions 1 and 2 corresponding to x(t) ∈ K. Define the lfc

Vp(t, ξ) := Vu(t, θ̃)+ 1
2 φ̃Tφ̃, where Vu is the Lyapunov func-

tion from Assumption 1. We investigate its time derivative
on Ξ. Using the inequalities from Assumptions 1 and 2, we
may write

V̇p(t, ξ) ≤ −
[

‖φ̃‖ ‖θ̃‖
]

Q

[

‖φ̃‖

‖θ̃‖

]

,

where

Q =







λmin(Kφ) −
1

2
(a4L2 + L1)

−
1

2
(a4L2 + L1) a3






.

The matrix Q is positive definite provided its leading
principal minors are positive. The first-order leading prin-
cipal minor is λmin(Kφ) > 0 and the second-order leading
principal minor, or determinant, is a3λmin(Kφ)− 1

4 (a4L2+

L1)
2, which is made positive by choosing λmin(Kφ) > k′ :=

(a4L2 + L1)
2/ (4a3). We therefore have

V̇p(t, ξ) ≤ −λmin(Q)‖ξ‖2 ≤ −(λmin(Q)/c)Vp(t, ξ),

where c := max{a2,
1
2}. As in the proof of Khalil (2002, Th.

4.10), we may now invoke the comparison lemma to prove
that there exist positive constants ke and λ such that for all
ξ(t0) ∈ Ξ, and for all t ≥ t0, ‖ξ(t)‖ ≤ ke‖ξ(t0)‖e

−λ(t−t0).

5. CLOSED-LOOP COMPENSATION

We now consider how the estimation scheme from the
previous section can be used to compensate for the per-
turbation in (2). Suppose that the control inputs available
in the original system can be chosen to yield a system on
the following form:

ẋ = f(t, x) + B(t, x)
(

g(t, x, θ) − g(t, x, θ̂)
)

. (13)

Here, v(t, x) in (2) is equal to −g(t, x, θ̂). To state our
result for this system, we need another assumption, con-
cerning the behavior of the solutions of (13), both with
and without perturbations.

Assumption 3. The function f(t, x) is continuously differ-
entiable on R≥0 × R

n; the origin of the nominal system

ẋ = f(t, x) is ugas; for any trajectory θ̂(t) ∈ Θ, the
solutions x(t) of the perturbed system (13) are ugb; and

for each compact K there exists a class K function γ such

that for all (t, x, θ̂) ∈ R≥0 × K × Θ,

‖B(t, x)(g(t, x, θ) − g(t, x, θ̂))‖ ≤ γ(‖θ̃‖). (14)

Theorem 2. Suppose that Assumptions 1–3 hold. Then
for each compact neighborhood K ′ ⊂ R

2n of the origin,
there exist k′ > 0 such that if Kφ is chosen such that
λmin(Kφ) > k′, then the origin of (13), (12) is uniformly
asymptotically stable with K ′ × (Θ−Θ) contained in the
region of attraction.

Proof. This proof is based on the proof of Panteley and
Loŕıa (2001, Lemma 2). The properties from Assumption
3 of the unperturbed system imply by Panteley and Loŕıa
(2001, Prop. 1) the existence of a Lyapunov function
Vx(t, x); class K∞ functions α1 and α2; and a class K
function α4 such that for all (t, x) ∈ R≥0 × R

n,

α1(‖x‖) ≤ Vx(t, x) ≤ α2(‖x‖),

∂Vx

∂t
(t, x) +

∂Vx

∂x
(t, x)f(t, x) ≤ −Vx(t, x),

∥

∥

∥

∥

∂Vx

∂x
(t, x)

∥

∥

∥

∥

≤ α4(‖x‖).

Let R > 0 be chosen large enough that B := {(x, ξ) |
‖(x, ξ)‖ ≤ R} ⊃ K ′ × (Θ − Θ). If (x(t0), ξ(t0)) ∈ B and

θ̂(t0) ∈ Θ, this implies that ‖x(t0)‖ ≤ R, and from the
ugb property from Assumption 3, we therefore know that
for all t ≥ t0, x(t) is uniformly bounded. Let therefore
λmin(Kφ) be chosen large enough to ensure exponential
stability of the estimator according to Lemma 1.

By the exponential stability property of (12), we know that
‖ξ(t)‖ ≤ ke‖ξ(t0)‖e

−λ(t−t0). Combining this with the ugb

property of (13), we also know that for each 0 < r ≤ R
there exists c(r) > 0 such that if ‖(x(t0), ξ(t0))‖ ≤ r and

θ̂(t0) ∈ Θ, then ‖(x(t), ξ(t))‖ ≤ c(r).

Define v(t) = Vx(t, x(t)). We then have v̇(t) ≤ −v(t) +
α4(c(r))β(r, t− t0), where β(r, t− t0) := γ(kere

−λ(t−t0)) is
a class KL function by Khalil (2002, Lemma 4.2). Let τ0 ≥
t0. Multiplying by et−τ0 on both sides and rearranging, we
have for all t ≥ τ0,

d

dt

(

v(t)et−τ0

)

≤ α4(c(r))β(r, t − t0)e
t−τ0 .

Integrating from τ0 to t on both sides and multiplying by
e−(t−τ0), we have

v(t) ≤ v(τ0)e
−(t−τ0)

+ α4(c(r))

∫ t

τ0

e−(t−s)β(r, s − t0) ds,
(15)

which means that

v(t) ≤ v(t0) + α4(c(r))β(r, 0)
(

1 − e−(t−t0)
)

≤ γ′(r),

where γ′(r) := α2(r) + α4(c(r))β(r, 0). Hence, ‖x(t)‖ ≤
α−1

1 (γ′(r)), and α−1
1 ◦ γ′(r) is a class K∞ function. To-

gether with the exponential stability property of the origin
of (12), this implies that the origin of the whole system
(13), (12) is uniformly stable.

For some arbitrary ε > 0, define T1 large enough that that
α4(c(r))β(r, T1) ≤ ε/2. From (15), we have for all t ≥ t0 +
T1, v(t) ≤ v(t0+T1)e

−(t−t0−T1)+ ε
2 . Let T2 ≥ T1 be chosen

large enough that γ′(r)e−(T2−t0−T1) ≤ ε/2. Inserting the
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inequality v(t) ≤ γ′(r), we then have, for all t ≥ t0 + T2,
v(t) ≤ γ′(r)e−(T2−t0−T1) + ε/2, which furthermore implies
v(t) ≤ ε. Hence, for all t ≥ t0 +T2, ‖x(t)‖ ≤ α−1

1 (ε). Since
α−1

1 (ε) can be chosen arbitrarily small by decreasing ε and
(12) is uniformly exponentially stable with Ξ contained in
the region of attraction, the whole system (13), (12) is
therefore uniformly asymptotically stable with K ′ × (Θ −
Θ) contained in the region of attraction.

6. SIMULATION EXAMPLES

Example 3. Consider the system

ẋ = −x + esin(t)θ + u,

where θ ∈ [θmin, θmax] (i.e., f(t, x) = f(x) = −x, B(t, x) =
1, and g(t, x, θ) = g(t, θ) = esin(t)θ). We wish to use u to

cancel the perturbation, and let u = −esin(t)θ̂. The first
step is to design an update law to estimate θ from the full
perturbation. As in Example 1, we use the mean value

theorem to find that esin(t)θ − esin(t)θ̂ = sin(t)esin(t)θ̄ θ̃,

where θ̄ is a value between θ and θ̂. Hence, the choice
of M(t, x) = M(t) = sin(t) satisfies (7) with P (t, x) =

P (t) = sin2(t)e−θ′

, where θ′ := maxθ∈Θ |θ|. We therefore
let

uθ(t, x, φ̂, θ̂) = kθ sin(t)(φ̂ − esin(t)θ̂) + p.t.

It is easily confirmed that the Lyapunov function (10) can
be used in the same manner as in Example 2. We now
check that the conditions of Assumption 2 hold. We have

that d(t, x, θ̃) = (θesin(t)θ − θ̂esin(t)θ̂) cos(t). Again using

the mean value theorem, we find that |d(t, x, θ̃)| ≤ (1 +

θ′)eθ′

|θ̃|. We also see that

|uθ(t, x, φ, θ̂) − u(t, x, φ̂, θ̂)| = kθ| sin(t)φ̃| ≤ kθ|φ̃|.
1

Moving to Assumption 3, it is straightforward to see that
the nominal, unperturbed system ẋ = −x is ugas and

that the perturbed system is ugb (because θ and θ̂ are

restricted to Θ). Finally, (14) holds with γ(s) = eθ′

s.

Having confirmed that the assumptions hold, we imple-
ment the full estimator from (11). After canceling terms,
this results in the following estimator:

ż = −Kφ(Kφ + kθ sin2(t)esin(t)θ̂ − 1)x

− (Kφ + kθ sin2(t)esin(t)θ̂)z − sin(t)esin(t)θ̂(p.t.),

˙̂
θ = kθ sin(t)(z + Kφx) + p.t.

We simulate this system with θmax = −10 and θmax =
10, letting θ vary in steps between −2 and 4 to get
an impression of the response. We use the estimator
parameters Kφ = 10, kθ = 3. The results can be seen
in Figure 1, where, for the sake of comparison, we have
also plotted the response using a gradient algorithm (i.e.,
˙̂
θ = Γ sin(t)esin(t)θ̂x) with gain Γ = 1. Noise has been
added to the measurement of the state x used in both
algorithms. The noise is added with sample time 0.001,
and has variance 1. The parameter projection is not active
at any point in the simulation.

1 In checking the condition on uθ from Assumption 2, we have not
included any consideration of the projection term. This term does
not destroy the property of uθ in question; however, the proof of this
is omitted due to space constraints.
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Fig. 1. Simulation results for Example 3

Example 4. In our final example, we consider the problem
of estimating the unknown parameters of a deadzone
nonlinearity. Consider the system

ẋ = −x3 + dz(δ),

where δ represents some known time-varying input to the
equation and dz(·) is a deadzone nonlinearity described by

dz(δ) =







mlδ + mlbl, δ < −bl;

0 −bl ≤ δ ≤ br;

mrδ − mrbr, δ > br.

The positive constants ml and mr are unknown slopes
in the left and right linear regions of the deadzone, and
the positive constants bl and br represent unknown break
points for the deadzone. We will estimate the constants
ml, mr, b′l := mlbl and b′r := mrbr (from which bl = b′l/ml

and br = b′r/mr can be calculated) and define the vector
θ := [ml, b

′
l,mr, b

′
r]

T. As before, the main problem is
finding an update law for estimating the parameters if
the full perturbation φ = dz(δ) is known. To solve this
problem, we first suppose that we know that δ < −bl,
i.e., that δ is in the left linear region of the deadzone.
The problem then reduces to estimating a bias (b′l) and a
scaling (ml). In this case, the choice of

˙̂ml = kθ1
δ(φ − m̂lδ − b̂′l),

˙̂
b′l = kθ2

(φ − m̂lδ − b̂′l)

leads to the error dynamics

˙̃ml = −kθ1
δ(φ − m̂lδ − b̂′l) = −kθ1

δ(m̃lδ + b̃′l),

˙̃
b′l = −kθ2

(φ − m̂lδ − b̂′l) = −kθ2
(m̃lδ + b̃′l).

(We will later replace φ by φ̂.) For this second-order
system, we apply a slight variation of the lfc from (10):

Vu(t, θ̃1,2) =
1

2
θ̃T

1,2K
−1
θ θ̃1,2 − µθ̃T

1,2

∫ ∞

t

et−τP (τ) dτ θ̃1,2,
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where θ̃1,2 = [m̃l, b̃
′
l]

T, Kθ = diag (kθ1
, kθ2

) and P (t) =
[

δ2 δ
δ 1

]

. We suppose that δ is uniformly bounded and that
(9) holds. This is a standard persistency of excitation
condition, requiring variation in δ in the left linear region
of the deadzone. The time derivative of the lfc is then

V̇u(t, θ̃1,2) = −(1 − µ)(δm̃l + b̃′l)
2

− µθ̃T

1,2

∫ ∞

t

et−τP (τ) dτ θ̃1,2

+ 2µθ̃T

1,2

∫ ∞

t

et−τP (τ) dτ Kθ[δ, 1]T(δm̃l + b̃′l)

≤ −(1 − µ)|δm̃l + b̃l|
2 − µe−T ε‖θ̃1,2‖

2

+ 2µMP MM‖Kθ‖‖θ̃1,2‖|δm̃l + b̃l|,

where MP and MM are bounds on ‖P (t)‖ and ‖[δ, 1]T‖.
The last expression is a quadratic expression, which is
negative definite provided µ is chosen sufficiently small.

We now have an update law and a Lyapunov function in
the case when δ is in the left linear region of the deadzone.
Similarly, we can design an update law and Lyapunov
function for the case when δ is in the right linear region of
the deadzone. Noting that φ < 0 implies that δ is in the
left linear region and φ > 0 implies that it is in the right
linear region, we now take these the two separate update
laws and create a complete one as follows:

˙̂ml = (φ < 0)kθ1
δ(φ − m̂lδ − b̂′l) + p.t.1,

˙̂
b′l = (φ < 0)kθ2

(φ − m̂lδ − b̂′l) + p.t.2,

˙̂mr = (φ > 0)kθ3
δ(φ − m̂rδ + b̂′r) + p.t.3,

˙̂
b′r = −(φ > 0)kθ4

(φ − m̂rδ + b̂′r) + p.t.4,

where (φ < 0) and (φ > 0) are logical expressions
evaluating to 1 (true) or 0 (false). A Lyapunov function
is formed by taking the sum of the two separate Lya-
punov functions found for the left and right linear regions,
where P (τ) is multiplied by (φ < 0) in the Lyapunov
function for the left linear region and by (φ > 0) for
the right linear region. The resulting persistency of ex-
citation condition, ensuring exponential stability of the
full error dynamics requires variation in δ, in both the
left and right linear regions. In checking the conditions
of Assumption 2, we see that the discontinuity of the
logical expressions (φ < 0) and (φ > 0) creates a problem
with the second condition. This is circumvented without
altering the basic stability results by replacing all occur-
rences of the expressions with − 2

π
min{0, arctan(φ/ε′)}

and 2
π

max{0, arctan(φ/ε′)}, where ε′ is some small, posi-
tive number. Another problem is that the deadzone nonlin-
earity violates some of our conditions at the break points,
where it is not differentiable. This effectively creates a
disturbance which we choose to ignore, and justify this
by noting that the deadzone nonlinearity can be approx-
imated by a smoother function. We implement the full
estimator and simulate the system letting δ = 5 sin(t),
ml = 1.15, bl = 0.2, mr = 0.85 and br = 0.3. We use the
constants Kφ = 10 and kθ1

= kθ3
= 0.3, kθ2

= kθ4
= 0.15,

and ε′ = 0.1. The results can be seen in Figure 2. It is
clear that the parameters converge to their correct values,
although this takes a considerable amount of time. This is
a consequence of estimating four variables from one signal.
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Fig. 2. Simulation results for Example 4. Solid lines:
estimates; dotted lines: actual parameters

If δ represents a control signal, it is possible to compen-
sate for the deadzone nonlinearity by using a deadzone
inverse. Such compensation with adaptation of deadzone
parameters has previously been investigated (e.g., Recker
and Kokotović (1991); Tao and Kokotović (1994)).
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M. Krstić, I. Kanellakopoulos, and P. Kokotović. Nonlinear and
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G. Tao and P. V. Kokotović. Adaptive control of plants with

unknown dead-zones. IEEE Trans. Automat. Contr., 39(1):59–
68, 1994.

I. Yu. Tyukin. Adaptation algorithms in finite form for nonlinear
dynamic objects. Automation and Remote Control, 64(6):951–
974, 2003.

I. Yu. Tyukin, D. V. Prokhorov, and C. van Leeuwen. Adaptation
and parameter estimation in systems with unstable target dynam-
ics and nonlinear parametrization. IEEE Trans. Automat. Contr.,
52(9):1543–1559, 2007.

T. Zhang, S. S. Ge, C. C. Hang, and T. Y. Chai. Adaptive control of
first-order systems with nonlinear parameterization. IEEE Trans.

Automat. Contr., 45(8):1512–1516, 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11183


