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Abstract: Coulomb friction is inevitable in every mechanical system with contact motion. When
the mechanical system with Coulomb friction is under feedback control, it can destabilize the
system by generating limit cycles. Controlled mechanical systems with ideal Coulomb friction
can be viewed as a particular class of relay feedback systems characterized by the zero DC gain
property and the positivity of the first Markov parameter. This paper elaborates recent results
on sufficient conditions to guarantee the global pointwise stability of such systems. The scope of
analysis has been kept broad so that the results apply to systems with multiple inertia elements
and multiple Coulomb friction sources. To employ the recent advances in the absolute stability
theory, the limiting arguments are adopted to approximate the relay elements to continuous
functions. As a result, a new sufficient condition on the global pointwise stability of the systems
with multiple Coulomb friction sources is derived by extending the existing result with a single
Coulomb friction source when the stiction level is larger than the Coulomb friction level. Also,
it has been shown that the describing function criterion is indeed an exact condition when
the order of the closed-loop system is 3. Simulation results are presented with a flexible joint
mechanism to illustrate the main points.

1. INTRODUCTION

In control of mechanical systems, the Coulomb friction
is an important nonlinearity not only as the source of
tracking error but also as the cause of instability. This
paper focuses on the latter. More specifically, when the
mechanical system with the Coulomb friction is under
feedback control, the closed loop system may asymptoti-
cally converge to a stationary point or generate a nonlinear
oscillation called a limit cycle. The Coulomb friction is a
complicated phenomenon and its characteristics are not
fully understood yet. However, as far as the stability is
concerned, it can be reasonably represented by a sign
function with an extra condition to model the sticking
motion. The sticking motion is a sliding mode which occurs
when the mass element temporarily ceases to move while
other state variables are still dynamically changing.

The stability of mechanical systems with ideal Coulomb
friction has been studied by several researchers (Arm-
strong & Amin, 1994; Olsson & Åström, 2001; Wouw
& Leine, 2004). More recently, it has been shown that
the controlled mechanical systems with multiple ideal
Coulomb friction sources can be generalized to a class of
relay feedback systems (Jeon & Tomizuka, 2008). Stability
analysis of relay feedback systems has a long research his-
tory. Tsypkin (1984) presented a comprehensive report on
the analysis of relay feedback systems using the frequency
response technique. Relay feedback recently regained an
⋆ This work was supported in part by FANUC Inc. Japan

attention due to Åström & Hägglund (1984). Subsequent
studies and further applications of the relay feedback can
be found in Johansson et al. (1999) and the references
therein. Recently, a different methodology called the sur-
face Lyapunov function has been suggested to analyze the
global stability of the limit cycles due to relay feedback
(Gonçalves et al., 2001). These approaches are mainly con-
cerned with the stability of the limit cycle rather than that
of the equilibrium point (or the equilibrium set). Hence,
the analysis typically starts by checking the existence of
a (locally) stable limit cycle, which involves numerical
methods to solve a transcendental equation.

In the relay feedback system drawn from the Coulomb
friction, the point of interest is somewhat different from
that of the conventional relay feedback studies. First
of all, the relay element originating from the Coulomb
friction is an undesirable part of the plant. Therefore,
the main purpose is to design the controller to avoid
the limit cycle generated by this inevitable relay element.
Secondly, the magnitude of the relay (or equivalently, the
Coulomb friction level) is relatively small compared to
other interaction forces. This requires that, in most cases,
the stability conditions need to hold globally. For any
type of relay feedback systems, a necessary and sufficient
condition to guarantee global asymptotic stability is yet
to come. Among a few feasible approaches is the absolute
stability theory. Most recent results can be found in
Mancera & Safonov (2005) and Rantzer (2001).

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2025 10.3182/20080706-5-KR-1001.3628



This paper presents new stability conditions for mechani-
cal systems with Coulomb friction directly drawn from the
recent advances in the absolute stability theory. The paper
is organized as follows. Section 2 explains the background
knowledge. The main analytical results are described in
Section 3. Simulation results follow in Section 4 and,
finally, the conclusions are summarized in Section 5.

2. PRELIMINARY RESULTS

2.1 Background

f1 fq

JmJ2J1

u1 up

Fig. 1. A controlled mechanical system with multiple
Coulomb friction forces

Figure 1 describes the schematic of the general mechanical
system considered in this paper. Ji’s (i = 1, ..., m) denote
inertia elements which are interconnected to each other
and uj (j = 1, ..., p) is the control action applied to
the corresponding inertia element. Independently from
these control actions, we assume that there exist q(≤ m)
Coulomb friction forces denoted by fk (k = 1, ... q). As
shown in Fig. 1, we assume that each component of u and
f can only be applied to the corresponding inertia element.

A single ideal Coulomb friction model acting on a mechan-
ical system can be written as

f(v) =







−fcsgn(v) if v 6= 0
−ut if v = 0 and |ut| ≤ fs

−fssgn(ut) otherwise
(1)

where v is the velocity at the contact serface, fc is the
magnitude of Coulomb friction and fs(≥ fc) is the stiction
level. Parameter r will be used to denote the ratio of
the stiction force to the Coulomb friction force, i.e., r =
fs/fc ≥ 1, and will be called as the detachment friction
ratio. The total force ut includes all the interaction forces
except for the Coulomb friction as well as the control input
u applied to the corresponding inertia.

The state space realizations of the plant GP (s) and the
controller GK(s) are denoted by

GP (s) =

[

AP BP

CP 0

]

, GK(s) =

[

AK BK

CK DK

]

. (2)

xp(t) ∈ Rnp×1 and xk(t) ∈ Rnk×1 are state vectors for
GP (s) and GK(s) respectively, where np and nk denote
the corresponding system orders. The order of the closed
loop system is denoted by n, i.e., n = np + nk. y is the
measurement output vector of the plant with its order
denoted by ny and v ∈ Rq is the velocity vector associated
with all the Coulomb friction sources. Then the system in
Fig. 1 can be represented by a block diagram shown in
Fig. 2 where u = [u1 · · · , up]

T and f = [f1, · · · , fq]
T .

Accordingly, the input and the output matrices of the
plant can be broken up into two parts as follows.

BP = [Bu Bf ] , CP =

[

Cy

Cv

]

(3)

GK(s)

GP(s)

u
y

v

¡

¡

v

G(s)
f

f

Fig. 2. Block diagram of the closed loop system

The closed-loop system from the friction input to the
velocity output is denoted by the q × q transfer function
matrix G(s). The minimal realization of G(s) will be
represented by closed-loop system matrices denoted by
(A, B, C). More specifically,

G(s) =

[

A B
C 0

]

=





AP + BuDKCy BuCK Bf

BKCy AK 0
Cv 0 0



 . (4)

A is a closed-loop system matrix so it must be Hurwitz.
For simplicity, we will assume that there is no pole-zero
cancelation between GP and GK and also that A has
distinct eigenvalues.

2.2 Representation as a Relay Feedback System

The following Proposition presented by Jeon & Tomizuka
(2008) characterizes the relay feedback system considered
in this paper by capturing the essential features of G(s).

Proposition 1. Assume that the detachment friction ratio
ri = 1 for all i = 1, ..., q. Then the overall interconnected
system in Fig. 2 can be written as the following ideal relay
feedback system without hysteresis.

ẋ = Ax − Bsgn(Cx) (5)

where xT = [xT
p xT

k ], A∈Rn×n, B∈Rn×q, and C∈Rq×n.
Furthermore (A, B, C) satisfies the following conditions.

cibi > 0, cibj = 0 ∀i, j ∈ {1, ..., q}, i 6= j (6a)

CA−1B = 0 (6b)

where ci and bj denote the ith row of C and the jth column
of B respectively.

Proof. The proof follows by choosing the state variables
of the plant as xp = [θ1 θ̇1 θ2 θ̇2 · · · θm θ̇m]T where θi is
the position of the ith inertia element. Refer to Jeon &
Tomizuka (2008) for more details. 2

Proposition 1 leads to a number of important observations.

1. The system in (5) is a switched affine system with a
set of q switching hyperplanes

Ei := {x|cix = 0}, i ∈ {1, ..., q} (7)

which are orthogonal to each other.
2. The equilibrium set of (5) is a polytope in Rq

{xe} :=

{

q
∑

i=1

ηiA
−1bi

∣

∣

∣

∣

∣

|ηi| ≤ 1

}

(8)

and it lies on Ei for all i.
3. There exists a sliding mode in Ei represented as

Si :={x |x ∈ Ei, | ciAx| ≤ cibi} , i ∈ {1, ..., q}. (9)

The trajectory of x(t) on these sliding modes is
governed by the Filippov solution (Filippov, 1988)

ẋ = PσAx − Bσcsgn
(

Cσcx
)

(10)
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where Pσ is a projection matrix defined by

Pσ := I −
∑

i∈σ

bici

cibi

= I − Bσ(CσBσ)−1Cσ . (11)

σ(t)⊆{1, ..., q} denotes the index set at time t such
that cix(t) = 0, ∀i∈σ(t) and σc(t) = {1, ..., q}−σ(t).
As subscripts, they indicate the submatrices of B (or
C) that are formed by collecting the columns (or the
rows) indexed by the corresponding set. For example,
if σ(t) = {1, 3}, then Bσ = [b1 b3]. The corresponding
matrix will vanish if the set (σ or σc) is empty.

4. For ri > 1, the sliding region Si in (9) simply extends
to the corresponding switch plane, i.e.,

S̃i :={x |x ∈ Ei, | ciAx| ≤ ricibi} (12)

and the system dynamics can be modified as

ẋ = PσAx − Bσcsgn
(

Cσcx
)

for x(t)∈
⋂

i∈σ(t)

S̃i (13)

5. Denoting the (i, j) entry of G(s) as Gij(s), Gii(s) is
relative degree one and Gij(s) has at least one zero at
the origin for all i, j. Also, the roots of the numerator
of Gii(s) belong to the spectrum of PσA for σ = {i}.

6. It is enough to consider that CB = I for the stability
analysis since sgn(cix) = sgn(kcix) for any k > 0.

3. GLOBAL STABILITY CONDITIONS

3.1 Stability Definition for Equilibrium Set

This paper is intended to elaborate global stability condi-
tions for the system in (13) by exploring available theoret-
ical results. Especially, we are concerned in the switched
systems with equilibrium sets, so the stability will be
termed in the context of the pointwise global stability.

Definition 1. (Yakubovich et al., 2004) The equilibrium
set {xe} is pointwise globally stable, if it is globally asymp-
totically stable and every solution tends to a stationary
vector in {xe} as t → +∞.

One example of systems that are asymptotically stable but
not pointwise stable is the single mass system with an ideal
PID (proportional-integral-derivative) controller when the
detachment friction ratio r = 1 (Jeon & Tomizuka, 2008).

3.2 Stability Results from Switched System Model

The stability of switched systems such as (10) or (13) is
often studied by looking at the dynamics on each partition
space separately and searching for useful relations at state
transitions (Gonçalves et al., 2001; Liberzon, 2003). The
following lemma in Jeon & Tomizuka (2008) explains how
the instability of any sliding mode is related to the global
stability of the whole system. In this paper, the stable
sliding mode of a transfer function is defined such that all
the roots of its numerator lie in the left-half plane except
for the single zero at the origin.

Lemma 1. If the PσA in (13) has an unstable eigenvalue
for any nonempty σ (i.e., any nonempty element of the
power set of {1, ..., q}), then {xe} is not Lyapunov stable.

Proof. The existence of such σ, say σu, means that
⋂

i∈σu
S̃i is the unstable region in the state space. The

proof follows from the fact that this unstable region always
overlaps with the small neighborhood of {xe}. 2

In switched affine systems, the vector field is a piecewise
continuous function. Therefore, the piecewise quadratic
Lyapunov function is often considered as a suitable Lya-
punov function. Using such a piecewise quadratic Lya-
punov function, it was shown by Jeon & Tomizuka (2008)
that the pointwise global stability can be guaranteed for
the system in (10) by the existence of an appropriate
multiplier transfer function matrix of the PI (proportional-
integral) type. In fact, a complimentary condition using
the PD (proportional-derivative) type multiplier had been
proposed by Barabanov (See Yakubovich et al. (2004)).
These two conditions can be combined as follows.

Theorem 1. If there exists a T = diag (τ1, · · · , τq) � 0
such that either of the following two conditions is met,

(I + sT )G(s) is positive real (PR) (14a)
(

I +
1

s
T

)

G(s) is strictly positive real (SPR) (14b)

then {xe} of (10) is pointwise globally stable.

Proof. The condition (14a) can be found in Yakubovich
et al. (2004). Refer to Jeon & Tomizuka (2008) for the
proof of the condition (14b). 2

In fact, the condition (14a) is not restricted to (10) but
can also be applied to (13) (i.e., for ri > 0). However, the
condition (14b) is valid only for (10). The conditions in
(14) are derived from the switched affine system models.
In fact, they are encompassed by a larger class of stability
conditions known as the stability multipliers which came
from a different approach called the absolute stability.

3.3 Stability Results from Continuous Approximations

The idea of using the stability multipliers has long been
studied in the realm of the absolute stability theory. The
absolute stability problem is limited to systems with a
unique equilibrium point. Hence, it cannot be directly
applied to the systems in (10) or (13). One way to get
around this problem is to approximate the ideal relay
to the saturation function as shown in Fig. 3(a) and let
ǫ approach 0. As suggested by Rantzer (2001), the case
with the non-unity detachment friction ratio (ri > 1) can
also be replaced by a continuous function φi for the ith

Coulomb friction source as shown in Fig. 3(b) with ǫ → 0:

φi(vi)

{

= vi/ǫ if |vi| ≤ ǫri

∈ [1, ri] sgn(vi) otherwise
(15)

For later purpose, φi is assumed to be Lipschitz. Refer to
Tsypkin (1984) and Rantzer (2001) for more details on the
justification of these approximations. Also, by the limiting
arguments, it is easy to check that the system equilibrium
changes from the origin to the set {xe} as ǫ tends to zero.

As mentioned above, the general absolute stability condi-
tions are explained in the name of the stability multipliers.
Initially, it was formulated by Borockett & Willems (1965)
and Zames & Falb (1968) for the SISO (single input and
single output) nonlinearity. The main idea is to find a
suitable multiplier to render both the linear part and the
nonlinear part passive so that the global stability directly
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Fig. 3. Approximated nonlinear functions

follows from the passivity theorem. The stability multipli-
ers recently drew a new attention in an effort to general-
ize them to MIMO (multiple input and multiple output)
nonlinearities. Mancera & Safonov (2005) presented the
largest class of stability multipliers for the repeated MIMO
monotone nonlinearities. These conditions are, however,
derived for the monotone nonlinearities. Hence, they are
valid only for the standard relay element with ri = 1
as shown in (10). This drawback has been removed by
Rantzer (2001) who used the continuous approximation
function shown in Fig. 3(b) and applied the stability theo-
rem formulated by the integral quadratic constraint (IQC)
(Megretsky & Rantzer, 1997). However, Rantzer (2001)
only considered the case with a single Coulomb friction
force. The following Theorem is the main result of this
paper, which is a direct extension of the result by Rantzer
(2001) to multiple Coulomb friction sources.

Theorem 2. Suppose each Coulomb friction is represented
by fi(t) = φi(vi(t)) with the Lipschitz function φ defined
in (15). Consider a q×q transfer function matrix H(s), the
inverse Laplace transform of which, is represented by h(t)
and its (i, j) entry denoted by hij(t), i.e.,

H(s) =

∫ ∞

∞

e−ts







h11(t) · · · h1q(t)
...

. . .
...

hq1(t) · · · hqq(t)






dt (16)

Also, consider a symmetric constant matrix Γ ∈ Rq×q with
its (i, j) entry denoted by Γij . If there exists a multiplier
M(s) := Γ + H(s) such that, for all i ∈ {1, ..., q},

Γii

rmax

−

q
∑

j=1, j 6=i

|Γij |≥max

{

q
∑

k=1

‖hik‖L1
,

q
∑

k=1

‖hki‖L1

}

(17a)

M(s)G(s) is positive real (PR) (17b)

where rmax = max{r1, ..., rq}, then the equilibrium set
{xe} of the system in (13) is pointwise globally stable.

As is the case for the SISO nonlinearity (Rantzer, 2001),
the proof of Theorem 2 hinges on the following result
established by Megretsky & Rantzer (1997).

Theorem 3. Let G(s) = C(sI − A)−1B ∈ RHℓ×m
∞ (i.e.,

stable and real rational) and φ : Rℓ→Rm is a bounded
causal operator. The feedback system ẋ = Ax−Bφ(Cx) is
exponentially stable if there exists a measurable Hermitian
valued function Π(jω) : jR → C(ℓ+m)×(ℓ+m) such that

∫ ∞

−∞

[

v̂(jω)

f̂(jω)

]∗

Π(jω)

[

v̂(jω)

f̂(jω)

]

dω ≥ 0 (18a)

[

G(jω)
I

]∗

Π(jω)

[

G(jω)
I

]

≻ 0, ∀ω ∈ R (18b)

where f = φ(v) with any square integrable f and v. The
superscript * denotes the conjugate transpose and • ≻ 0
means that the matrix is positive definite.

Proof of Theorem 2. The condition (17b) implies (18b)
with the choice of

Π(jω) =

[

0 Γ + H∗(jω)
Γ + H(jω) ǫI

]

for ǫ > 0. (19)

So we only need to show that (18a) also holds. Denoting
h̄(t) as the time reversal of h(t) (i.e., h̄(t) = h(−t)), the
ith entry of the convolution (h̄∗f)i(t) is bounded as

|(h̄ ∗ f)i(t)| ≤ rmax

q
∑

j=1

‖hij(t)‖L1
. (20)

Also, note that |fi(t)| ≥ 1 when vi(t) 6= ǫfi(t) (see Fig.
3(b)). Hence, we can show using (17a) that

(v(t) − ǫf(t))T (

Γf(t) + (h̄ ∗ f)(t)
)

≥ 0. (21)

By definition,

‖Hij(s)‖∞ ≤ ‖hij(t)‖L1
(22)

which implies Γ + 1
2 (H(jω) + H(jω)∗) ≻ 0, ∀ω ∈ R.

Therefore,

∫ ∞

−∞

[

v̂(jω)

f̂(jω)

]∗

Π(jω)

[

v̂(jω)

f̂(jω)

]

dω

≥

∫ ∞

−∞

Re
{

v̂(jω)∗ (Γ + H(jω)∗) f̂(jω)
}

dω

≥

∫ ∞

−∞

Re
{(

v̂(jω) − ǫf̂(jω)
)∗

(Γ + H(jω)∗) f̂(jω)
}

dω

≥ 2π

∫ ∞

−∞

(v(t) − ǫf(t))
T (

Γf(t) + (h̄ ∗ f)(t)
)

dt ≥ 0

and the condition (18a) is satisfied. 2

Note that the multiplier M(s) is PR by itself.

3.4 Relation to Hurwitz Condition: SISO Case

In the early stages of the absolute stability problem, a
great deal of effort was devoted to formulating the absolute
stability condition in terms of the Hurwitz condition of the
linear system part. This led to such famous conjectures as
the Aizerman’s conjecture and the Kalman’s conjecture.
Although both of them turned out to be wrong in general,
they are proven to be true at least up to a certain order.
The Aizerman’s conjecture is true for n ≤ 2 and the
Kalman’s conjecture is true for n ≤ 3 (Lozano et al., 2000).
In fact, the lowest possible order of G(s) with a non-trivial
sliding mode is n = 3. For n = 3, it is easy to check that the
Nyquist plot of G(s) does not intersect the negative real
axis if its sliding mode is stable (Jeon & Tomizuka, 2008).
This is equivalent to the Hurwitz condition of A − kBC
for all k ≥ 0, which satisfies the Kalman’s conjecture for
the sector-bounded nonlinearity with its slope k ∈ (0, ∞).
Therefore, by combining the limiting argument and the
validity of the Kalman’s conjecture for the 3rd order
system, we can draw the following conclusion.

Lemma 2. When n = 3, the equilibrium set {xe} of the
system in (10) is pointwise globally stable if G(s) has
stable sliding mode.
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Note that the stable sliding mode is also essential to
guarantee the (local) pointwise stability (Tsypkin, 1984).
This Lemma only holds for the case with the unity
detachment friction ratio (i.e., r = 1) since the slope
of the nonlinearity must belong to the sector (0, ∞). In
the stability analysis of systems with nonlinearities, the
approximate methods such as the describing function can
be erroneous not only in predicting the limit cycles but also
in assuring the stability. Refer to Engelberg (2002) and
Lozano et al. (2000) for the respective counterexamples.
However, Lemma 2 implies that the describing function is
indeed an exact condition to guarantee the stability of the
system in (10) with the lowest possible order to hold the
non-trivial sliding mode (i.e., as long as n = 3).

4. EXAMPLE

To confirm the main result in the previous section, simula-
tion studies are performed considering a single link flexible
joint mechanism shown in Fig. 4. It is a two-mass-spring
system with a transmission gear. The plant parameters are
obtained from the experimental setup studied in Jeon &
Tomizuka (2008) and they are listed in Table 1 with their
denotations. The system equations are written as

Jmθ̈m + bmθ̇m = −
kj

N

(

θm

N
− θℓ

)

+ u + fm(θ̇m) (23a)

Jℓθ̈ℓ + bℓθ̇ℓ = kj

(

θm

N
− θℓ

)

+ fℓ(θ̇ℓ). (23b)

The subscript m denotes the motor side quantities and
the subscript ℓ the load side quantities. θ and θ̇ represent
position and velocity, respectively.

Link

Harmonic 

drive gear

Motor

;

;

kj
N

Jm bm; fm

µm; µ̇m
¿ = ktu

J`
µ` µ̇`

b` f`

Fig. 4. Schematic of a single link flexible joint mechanism

Table 1. System parameters

Para. Denotation Value Unit

N gear ratio 50
Jm motor inertia 1.087×10−4 [kgm2]
Jℓ load inertia 1.019 [kgm2]
kj spring const. 28000 [Nm/rad]
kt motor torque const. 1.309×10−1 [Nm/V]
bm motor damping 0.9 × 10−3 [Nms/rad]
bℓ load damping 1.5 [Nms/rad]
fc

m motor Coulomb fric. level 0.0618 [Nm]
fc

ℓ
load Coulomb fric. level 2.06 [Nm]

rm motor detach. fric. ratio 1.5
rℓ load detach. fric. ratio 1.5

Consider that the motor position and the motor veloc-

ity are measured, i.e., y =
[

θm θ̇m

]T
= Cyxp(t) and

that the system is under state feedback control with an

vf

h
µm µ̇m

iT

K
Gob(s)

GP(s)

u y

¡ h
µ̂`

ˆ̇µ`

iT

Fig. 5. Observer-based state feedback control

asymptotic observer as shown in Fig. 5. After choosing
xp = [θm θ̇m θℓ θ̇ℓ]

T as the plant state vector, a reduced

order observer is designed to estimate θℓ and θ̇ℓ. Observer
is designed to have the closed-loop poles at 45 Hz with
0.45 damping ratio. With the observer fixed, three dif-
ferent state feedback gains, K1, K2 and K3, are selected
to see the effect of Coulomb friction. Table 2 shows the
desired closed-loop poles for the reduced-order observer
and controllers. K1, K2 and K3 place the desired closed-
loop poles (i.e. the eigenvalues of AP − BP K) at (7, 10)
Hz, (13, 14) Hz and (15, 16) Hz respectively with 0.707
damping ratio. The closed-loop transfer function matrices
from f to v under feedback gains, K1, K2, and K3, will be
denoted by G1(s), G2(s), and G3(s) respectively.

Table 2. Closed-loop poles for Gob(s) and K

Design target Desired closed-loop pole locations

Observer Gob(s) −127.2 ± 225.5j

K1 −31.10 ± 31.10j, −44.43 ± 44.43j

Controller K2 −57.76 ± 57.76j, −62.20 ± 62.20j

K3 −66.64 ± 66.64j, −71.09 ± 71.09j

Note that there exist two separate Coulomb friction
sources (i.e., q = 2), one at the motor side and the other
at the load side. The motor side Coulomb friction will be
indexed by 1 and the load side by 2. To check the stability
of the closed-loop system, we can start with the necessary
condition given in Lemma 1. For G2(s) and G3(s), it can
be easily checked that the system matrix PσA is stable for
any index set σ ⊆ {1, 2} (See (13)). However, the feedback
gain K1 causes PσA to have two unstable eigenvalues at
20.54±114.60j for σ = 2. So, we can conclude from Lemma
1 that G1(s) is not Lyapunov stable. It is also confirmed by
the simulation results which revealed a limit cycle as shown
in Fig. 6. Upper plot is the motor velocity and the lower
plot is the load velocity. The sticking motion is observed
in the limit cycle of the motor velocity.

θ̇ m
(r

a
d
/
s)

Time (sec)

θ̇ ℓ
(r

a
d
/
s)

0 0.2 0.4 0.6
-0.1

0

0.1
-5

0

5

Fig. 6. Closed-loop velocity responses under K1

The next step is to check if any result in the previous
section can determine the stability of G2(s) and G3(s).
Either by applying the Kalman-Yakubovich-Popov (KYP)
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lemma or by checking the eigenvalues of ReG3(jω), we
can verify that G3(jω) is PR and its global stability is
guaranteed. What is left is whether G2(s) is stable or not.
We can first check the conditions in Theorem 1. Using
the KYP lemma, (14a) and (14b) can be formulated as
the feasibility problem of the semi-definite programming
(SDP). Using the SDP solver SeDuMi (Sturm, 1998), both
(14a) and (14b) are shown to be infeasible for G2(s).

Unlike other conditions, it is not straightforward to check
if there exists a multiplier to satisfy the condition in
Theorem 2. Since G3(s) is PR, we can choose a multiplier
M(s) as

M(s) = G3(s)G2(s)
−1. (24)

After subsequent pole-zero cancelations, M(s) becomes

M(s) =

[

1 0
0 1

]

+

[

H11(s) H12(s)
H21(s) H22(s)

]

(25)

where

H21(s) ∼=
−8327.2(s + 127.83)(s2 + 12.848s + 8312.9)

det(sI − AP + BP K3)(s2 + 66.035s + 15263)

H11(s) =
NJℓ

kj

(

s2 +
bℓ

Jℓ

s +
kj

Jℓ

)

H21(s), H12(s) = H22(s) = 0.

Then, taking the inverse Laplace transforms of Hij(s), the
corresponding L1 norms of hij(t) are calculated as

‖h11(t)‖L1

∼= 0.5510, ‖h21(t)‖L1

∼= 0.0146 (27)

According to Theorem 2, the global stability is guaranteed
for the systems with Coulomb friction with the detach-
ment friction ratio rmax ≤ 1/ (‖h11(t)‖L1

+ ‖h21(t)‖L1
) =

1.768. So, the stability of G2(s) is validated, and is also
confirmed by the simulation results in Fig. 7.
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Fig. 7. Closed-loop velocity responses under K2

5. CONCLUDING REMARKS

In this paper, the controlled mechanical systems with ideal
Coulomb friction were studied as a particular class of relay
feedback systems. In contrast to the typical relay feedback
studies, the stability conditions need to hold globally in the
mechanical systems with Coulomb friction. Compared to
the conventional results, the analysis emphasized the mul-
tiple Coulomb friction sources with non-unity detachment
friction ratio. In addition to the recently found stability
conditions, a new MIMO stability condition was intro-
duced by extending the existing condition for the single
Coulomb friction source. The describing function criterion
was shown to be an exact condition when the order of the
system is 3 (i.e., the smallest order to hold the non-trivial
sliding mode). The validity of main stability conditions
were illustrated with simulation results implementing a

single link flexible joint mechanism. Stability multiplier
method may still be conservative for the relay feedback
systems in the sense that it holds for a wide range of sector-
bounded nonlinearities. Also, the systematic way to check
the existence of such multiplier is a challenge.
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