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Abstract: Synchronisation arises in dynamical systems that are composed of a number
of interconnected subsystems. In the paper synchronization in a particular application - a
supermarket refrigeration system - is studied. The temperature control in supermarket display
cases is typically maintained by a number of distributed hysteresis controllers. Synchronization
is then manifested by the opening and closing actions of expansion valves at the same time.
Synchronization is interpreted in this paper as a limit cycle in a state space created by transitions
among piecewise-affine dynamical systems. Stability of the resultant limit cycle is examined by
a Poincaré like map. We show that the synchronisation takes place if the corresponding Poincaré
map is stable.

1. INTRODUCTION

The temperature control in a supermarket refrigeration
system is typically maintained by a number of distributed
hysteresis controllers. A problem that often arises in this
control setup is synchronization. It is manifested by the
opening and closing actions of all the valves at almost
the same time. Consequently, the compressors periodically
have to work more intensely, which results in low efficiency
and increased wear.
Synchronization - or more generally - state agreement,
arises in dynamical systems that are composed of a number
of interconnected subsystems Lin et al. (2005b). State
agreement means that the states of the subsystems are
all equal. It is known in a variety of applications, e.g.
biochemical systems Gunawardena (2003), rendezvous in
multi-agent systems Lin et al. (2005a), consensus in com-
puter science Moases and Rajsbaum (2002) and Tabuada
and Pappas (2002).

Synchronization in a supermarket refrigeration system will
be interpreted as a stable limit cycle in a state space
created by transitions among piecewise-affine dynamical
systems. It will be shown how piecewise-affine systems
living on polyhedra are ”glued” together to form a sin-
gle dynamical system defined on a coherent state space.
Further by enforcing a certain transversality condition on
the constituent systems it will be shown that the stability
of the resultant limit cycle can be examined by a Poincaré
map. The Poincaré map has been used before in Hiskens
(2001) and Hiskens and Reddy (2007) for stability of limit
cycles arising in switched systems. The method developed
in this paper will be applied for analysis of synchronization
in a refrigeration system consisting of two display cases
and a compressor unit.

The paper is organized in the following way. Section 2
describes the control system architecture in a supermarket
refrigeration system and explains the origin of synchro-
nization. In Section 3 a non-linear model is presented and

subsequently a simplified piecewise-affine model is derived.
Section 4 puts forward a method for gluing state spaces of
a switched system together. The method is then applied
to the supermarket refrigeration system. In Section 5 the
synchronization i.e. the resultant limit cycle on the glued
space is analyzed. Section 7 concludes the paper.

2. SYSTEM DESCRIPTION

In a supermarket many of the goods need to be refrigerated
to ensure preservation for consumption. These goods are
normally placed in open refrigerated display cases that are
located in the sales area for self service.
A simplified supermarket refrigeration circuit is shown in
Fig. 1. Compressors comprises the heart of the system. In
majority of supermarkets, the compressors are connected
in parallel. The compressors supply the flow of refriger-
ant by compressing the low pressure refrigerant, which is
drained from the display cases trough the suction mani-
fold. The compressors keep a certain constant pressure in
the suction manifold, thus ensure the desired evaporation
temperature. From the compressors, the refrigerant flows
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Fig. 1. A simplified layout of a typical supermarket refrig-
eration system.
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Fig. 2. Cross section of a refrigerated display case.

to the condenser and then on to the liquid manifold. The
evaporators inside the display cases are connected in paral-
lel to an expansion valve and further to the liquid manifold.
The outlets of the evaporators lead to the suction manifold
thus closing the circuit.
Fig. 2 shows a cross section of an open display case.
The refrigerant is fed into the evaporator located at the
bottom of the display case. Here the refrigerant evaporates
while absorbing heat from the surrounding air circulating
through the evaporator. The resulting air flow creates an
air-curtain at the front of the display case. The air-curtain
is colder than the goods; this leads to a heat transfer from
the goods Q̇goods−air and - as a side effect - from the

surrounding Q̇load to the air-curtain. Inside each display
case a temperature sensor is mounted, which measures
the air temperature close to the goods. This measurement
serves in the control loop as an indirect measure of the
goods’ temperature. Furthermore, an on/off inlet valve is
located at the refrigerant inlet to the evaporator. It is used
to control the temperature in the display case.

2.1 Traditional Control

The control systems used in today’s supermarket refriger-
ation systems are decentralized. Each of the display cases
is equipped with a temperature controller and a superheat
controller that governs the filling level of the evaporator.
The compressor rack is equipped with a suction pressure
controller, and the condenser - with a condenser pressure
controller. Furthermore, various supervisory controllers
may be used to adjust the set-points. In this paper, we
will only consider the display case temperature and the
compressor controllers. The display case temperature is
controlled by a hysteresis controller that opens and closes
the inlet valve. This means that when the temperature
Tair reaches a certain upper temperature bound the valve
is opened and Tair decreases until the lower temperature
bound is reached and the valve is closed again.
In the supermarket many of the display cases are of alike
design and they are working under uniform conditions. As
a result, the inlet valves of the display cases are switched
with very similar switching frequencies. The valves have a
tendency to synchronize leading to periodic high and low
flow of evaporated refrigerant into the suction manifold
thus creating large variations in the suction pressure.
Turning on and off the compressors in the compressor rack
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Fig. 3. Effects of synchronization using the traditional
control

controls the suction pressure. To avoid excessive compres-
sor switching, a dead band around the reference of the
suction pressure is commonly used. When the pressure
exceeds the upper bound, one or more additional com-
pressors are turned on to reduce the pressure, and vice
versa when the pressure falls below the lower bound. In
this way, moderate changes in the suction pressure do not
initiate a compressor switching. Nevertheless, pronounced
synchronization effects lead to frequent compressor switch-
ings causing large fluctuations in the suction pressure and
a high wear of the compressors. Fig. 3 shows a simulation
illustrating the effects of synchronization.

3. MODELING

The model of the supermarket refrigeration system is com-
posed of individual models of the display cases, the suction
manifold, the compressor rack, the condensing unit. The
main emphasis in this paper is laid on the suction manifold
and the display cases such that the dynamics relevant for
controlling the compressors and display cases are captured.
The compressor dynamic is typically much faster than the
rest of system and hence not included.

3.1 Non-linear hybrid model

The nonlinear hybrid model presented here is a summary
of the model presented in Larsen et al. (2007).
The state of the combined model of a supermarket refrig-
eration system consists of the suction pressure Psuc, and
for each display case four states - the goods temperature
Tgood, the air temperature Tair, the wall temperature (of
the evaporator) Twall, and the mass of refrigerant in the
evaporator Mr. The input to the model is the volume
flow produced by the compressors V̇comp, and the state
of the inlet valve (closed or opened, δ ∈ {0, 1}). The
system is affected by two disturbances - the heat load from
the surroundings Q̇load, and ṁr,const which is a constant
mass flow into the manifold giving rise to un-modeled
refrigerated entities.
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dTgoods,i

dt
= −

Q̇goods−air,i

Mgoods,i Cpgoods,i

(1)

dTwall,i

dt
=

Q̇air−wall,i − Q̇e,i

Mwall,i Cpwall,i

(2)

dTair,i

dt
=

Q̇goods−air,i + Q̇load,i − Q̇air−wall,i

Mair Cpair,i

(3)

dMr

dt
=























Mr,max,i − Mr,i

τfill,i

if δi = 1

−
Q̇e,i

∆hlg

if δi = 0 ∧ Mr,i > 0

0 if δi = 0 ∧ Mr,i = 0

(4)

dPsuc

dt
=

ṁin−suc + ṁr,const − V̇comp · ρsuc

Vsuc ·
dρsuc

dPsuc

(5)

where i denotes the i’th display case and Q̇ denotes a heat
flux and the subscript the media in between which the heat
is flowing. Furthermore

Q̇goods−air,i =UAgoods−air,i(Tgoods,i − Tair,i) (6)

Q̇air−wall,i =UAair−wall,i(Tair,i − Twall,i) (7)

Q̇e,i =UAwall−ref,i(Mr,i)(Twall,i − Te)
(8)

UAwall−ref,i(Mr,i) =UAwall−ref,max,i

Mr,i

Mr,max,i

(9)

˙msuc,in =
n

∑

i=1

Q̇e,i

∆hlg

(10)

V̇comp =

q
∑

i=1

compi ·
1

100
· ηvol · Vsl (11)

where n is the number of display cases and q is the
number of discrete compressor entities. UA is the overall
heat transfer coefficient with the subscript denoting the
media between which the heat is transferred. M denotes
the mass, and Cp the heat capacity, where the subscript
indicates the media.
The model contains some non-linear refrigerant specific
functions of the suction pressure:

• ∆hlg, which is the enthalpy difference across the
evaporator

• ρsuc, which is the density of the refrigerant
• dρsuc

dPsuc
, which is the pressure derivative of the refriger-

ant density
• Te, which is the evaporation temperature

In Larsen et al. (2007) a detailed description of these
functions is given, and in Appendix A the values of the
system parameters are provided.

As seen in Eq. (4) the system has a hybrid nature as the
inputs to the system are discrete - opening/closing of inlet
valves and start/stop of the compressors in the compressor
rig.

3.2 Simplified model

In order to obtain an adequate set of equations for ana-
lyzing synchronization in accordance with Section 5, the
system equations (1) to (11) are additionally simplified to a

second order (for each display case) affine switched system.

The simplification relies on the following assumptions:

(1) The heat capacity of the goods is large, thus the
temperature of the goods in a display case is constant
and equal Tg0.

(2) The heat capacity of the air is small.
(3) The evaporator is instantly filled (emptied) when the

inlet valve is opened (closed).
(4) The mass flow out of the display case when the valve

is open is constant and equal ṁ0.
(5) The evaporation temperature Te and the density ρsuc

of the refrigerant in the suction manifold are affine
functions of suction pressure Psuc,

Te = aT Psuc + bT and ρsuc = aρPsuc + bρ.

See eq.(A.1) and (A.2) for the parameters.

(6) The gradient dρsuc

dPsuc
≡ dρsuc0

dPsuc0
is constant.

(7) The compressor delivers a constant volume flow

V̇comp.

(8) The heat load Q̇load on the display cases is constant.

Based on these assumption the dynamics of the air temper-
ature Tair,i in the ith display case is described by following
set of equations

dTair,i

dt
=

Q̇goods−air,i + Q̇load,i − δiQ̇e,max,i
(

1 +
UAgoods−air,i

UAair−wall,i

)

Mwall,iCpwall,i

with

(12)

Twall,i =Tair,i −
Q̇goods−air,i + Q̇load,i

UAair−wall,i

, (13)

Q̇goods−air,i =UAgoods−air,i(Tg0,i − Tair,i), (14)

Q̇e,max,i =UAwall−ref,max,i(Twall,i − aT Psuc − bT ),
(15)

where δi ∈ {0, 1}, δi = 1 indicates that the inlet valve to
the ith display case is open.

The suction manifold dynamics is governed by the expres-
sion

dPsuc

dt
=

∑n
i δiṁ0,i + ṁr,const − V̇comp(aρPsuc + bρ)

Vsuc ·
dρsuc0

dPsuc0

.

(16)

Hereby the non-linear hybrid system has been reduced to
a second order affine system with discrete inputs.

4. SPACE GLUING

Synchronization in a supermarket refrigeration system will
be interpreted as a limit cycle in a state space created by
gluing certain polyhedra together. The gluing algorithm
is defined by transitions among piecewise-affine dynamical
systems. Stability of the resultant limit cycle is examined
by the Poincaré map. The next section applies this method
for examining synchronization in a refrigeration system
consisting of two display cases and a compressor unit.
To motivate this approach, we will start by studying the
simulation of the simplified model consisting of 2 display
cases, depicted in Fig. 4. The lower graph shows that
the two display cases start working synchronously after
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Fig. 4. Simulation of the simplified model, showing the
synchronization as a stable limit cycle.

3000 sec. It is seen in the upper part of Fig. 4 that the
synchronization is manifested by a closed orbit - a limit
cycle - near the diagonal line ̺ = {(Tair,1, Tair,2)| Tair,1 =
Tair,2}. Perfect synchronisation of the two display cases
takes place when the stable limit cycle coincides with ̺.

Being less specific for a while, let us consider an au-
tonomous switched system, consisting of a finite family F
of dynamical systems each living on a polyhedron P . The
transition between two systems takes place autonomously
on the crossing of a system trajectory with a face F of the
corresponding polyhedron. A limit cycle - arises if after
several transitions the trajectory of the switched system - a
composition Φ of the flow maps - returns to the same point,
say p. Suppose that p is on a facet 1 F of a polyhedron in
F and the transversality condition:

• each vector field of F points in (out) of the corre-
sponding polyhedron on the in-coming facet, whereas
out (in) on the out-coming facet;

is fulfilled, then the fixed point p of the map Φ is locally
stable if all eigenvalues of differential DΦ(p) belong to
the open unit disk. The mentioned transversality condi-

1 a facet is a face of co-dimension 1

Fig. 5. The polyhedron P1 is glued to the polyhedron P2

by identifying points of the facet K1 with the points
of the facet K2.

tion basically rules out the possibility of chattering or
gazing along a face and allows the use standard methods
known from smooth (non-hybrid) systems, for a detailed
discussion the reader is referred to Wisniewski and Larsen
(2008).

Before we discuss how to analyze the map Φ, we will
describe the idea of gluing the spaces on which the affine
systems live on together. This defines a complex - a
high dimensional mosaic of the polyhedra. We start by
considering a transition between a smooth vector field
ξ1 : P1 → R

n and ξ2 : P2 → R
n on a facet F1 ∈ Pn−1

1 . We
assume that a reset map R : F1 → F2, with F2 a facet of
P2, is a diffeomorphism. Now we can glue the polyhedron
P1 and P2 together by identifying F1 with F2 via the reset
map R : F1 → F2

P1 ⊔R P2 ≡ P1 ⊔ P2/ ∼,

where the equivalence relation ∼ identifies x ∈ K1 with
R(x) ∈ K2, and ⊔ stands for the disjoint union, P1 ⊔
P2 = P1 ×{1} ∪P2 ×{2}. In other words, a neighborhood
of F1 (which is now identified with F2) in the set P1 ⊔R P2

is the union of an open neighborhood of F1 in P1 and an
open neighborhood of F2 in P2. The situation is depicted in
Fig. 5. We assume the transversality condition is fulfilled
and define the flow map as a composition of the flow
maps of the individual systems comprising the switched
system. The space of a switched system is a disjoint union
of polyhedra, whose facets are identified by the reset maps

X =
⊔

P∈F

P/ ∼

∼ is the equivalence relation that for each reset map
R : F → F ′ ∈ R identifies x ∈ F with R(x) ∈ F ′, where
F , F ′ are facets of P , P ′ both in F , respectively; see Fig. 5.

We turn to the hysteresis controlled refrigeration system
described in Section 3, it is an autonomous switched
system consisting of four dynamical systems ξi : B → R

2,
i = 1, .., 4, one for each combination of the positions
(on/off) of the inlet valves δ1, δ2. B = [Tair, Tair] ×

[Tair, Tair] × R is the polyhedron B = P1 = P2 = P3 = P4

that the flow lives on, and the vector fields ξi are given
by Eq. (12). The reset maps are in this case simply the
identity maps on the 4 facets of B.
The state-space of the refrigeration system is then defined
by gluing the polyhedra P1, P2, P3 and P4 together along
the facets specified by the transitions. The result is a single
state space homeomorphic to a band as in Fig. 6.
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Fig. 6. The state space of the refrigeration system the
product of a band with R. In all Figures R is sup-
pressed

5. SYNCHRONIZATION ANALYSIS

In the previous section we have motivated the approach
of creating a single coherent state space by gluing the
polyhedra Pi, i = 1, ..., 4 together. We have stated without
proof that the glued space is homeomorphic to a band.
In this section we will utilize this property to study a
Poincarè map. The basic idea is to analyze stability of
a candidate for a limit cycle found by e.g. simulation. A
possible candidate could be perceived if simulation shows
that the trajectory γ of the switched system after several
transitions returns to a neighborhood of the starting point
p at the the face of a polyhedron in F . We study a
composition Φ of the flow maps comprising the trajectory
γ. If all the eigenvalues of differential DΦ(p) belong to
an open unit disk the limit cycle is stable. We will here
describe a method for finding differential DΦ(p) without
explicitly computing the Poincarè map.

We start by stating following proposition which gives us
an important intermediate result to eventually compute
differential DΦ(p).

Proposition 1. Let P be a polyhedron, ξ : P → R
n be

a vector field. Let K1,K2 ∈ Pn−1 and their supporting
hyperplanes 2 be Hi = {x ∈ R

n| 〈x,Ni〉 = αi} (i =
1, 2). Suppose there are τ > 0 and p ∈ K1 such that
q ≡ φξ(p, τ) ∈ K2 (i.e. τ is the time between 2 successive
transitions). Then there are an open neighborhood U of p
in H1 and a smooth map h : U → R such that

(1) h(p) = τ ,
(2) φξ(x, h(x)) ∈ H2 for any x ∈ U,
(3) and φξ · (id, h) is a diffeomorphism from U onto an

open set of H2.

Furthermore, the differential of Dh at the point p is

Dh(p) = −
1

〈ξ(q), N2〉
NT

2 Dφξ
τ

∣

∣

H1
(p), (17)

where φξ
t

∣

∣

∣

H1

is the restriction of the flow map φξ
τ to H1.

2

Proof of the proposition follows directly form Sec. 3.1
in Palis and de Melo (1982). Note that the differential
of the flow map φξ

τ in Eq. (17) is to be calculated with
respect to the coordinates of the hyperplane H1

In particular if ξ is affine, ξ(x) = Ax + b then the
differential according to proposition 2 becomes

Dh(p) = −
1

NT
2 (AeAτp + b)

NT
2 eAτB, (18)

2
H is a supporting hyperplane for a facet F if and only if F ⊂ H.

where the isomorphism L : R
n−1 → H1 is given by

L(x) = Bx + p.

We study the map

Ψ ≡ φξ ◦ (j, h) : U → H2,

where U ⊂ H1 and j : U → R
n stands for the inclusion

(for a point p ∈ U , j(p) is the same point but seen in R
n),

takes the starting point of the flow line on F1 and maps it
to the end point on F2. A subsequent map takes the end
point on F2 and maps it to a point on F3.

Since Hi (i = 1, 2) is a hyperplane, there is an affine
map Li : R

n → R
n, say Li(x) = Bix + ci, such that

Li(Hi) = {0} × R
n−1. We represent the map Ψ in the

local coordinates

Ψ′ ≡ π̃ ◦ L2 ◦ Ψ ◦ L−1
1 ◦ ĩ,

where ĩ : R
n−1 → R

n, given by (x1, ..., xn−1) 7→
(0, x1, ..., xn−1) is the inclusion, and π̃ : R

n → R
n−1,

(x1, x2, ..., xn) 7→ (x2, ..., xn) is the projection.

We apply the chain rule to calculate the differential of Ψ′

at a point p

DΨ′(p) = π̃B2

(

Dφξ
τ (p) + ξ(q)Dh(p)

)

B−1
1 ĩ,

where q = φξ
τ (p), which according to proposition 2 is

equivalent to

DΨ′(p) = π̃B2

(

id −
ξ(q)NT

2

ξT(q)N2

)

Dφξ
τ (p)B−1

1 ĩ, (19)

where id stands for the identity matrix.
Hereby we are able to compute DΦ(p) by iterative use of
Eq. (19).

6. APPLICATION ON SIMPLE SUPERMARKET
REFRIGERATION SYSTEM

In this section we apply the method developed in Sections
4 and 5 for analysis of synchronization in a supermarket
refrigeration system, i.e. we study stability of the limit
cycle depicted in Fig. 4.
As mentioned in Section 4 the state space of a supermarket
refrigeration system is B = [Tair, Tair] × [Tair, Tair] × R,
where in the particular example studied in this section
Tair = 0 and Tair = 5. The polyhedron B is defined as the
intersection of the four half-spaces

H+
(δ1,δ2)

≡ {x ∈ R
3|

〈

N(δ1,δ2), x
〉

≥ α(δ1,δ2)},

with (δ1, δ2 ∈ {0, 1}), where N(0,0) = [1 0 0]T, N(0,1) =

[0 −1 0]
T
, N(1,1) = [1 0 0]T, N(1,0) = [0 1 0]T, α(0,0) =

α(1,0) = Tair and α(0,1) = α(1,1) = Tair.

The supermarket refrigeration system consists of four
affine dynamical systems

ξ(δ1,δ2) : B → R
3, x 7→ A(δ1,δ2)x + a(δ1,δ2),

given by Eq. (12).

The limit cycle is defined by the points
(

p(δ1,δ2), T(δ1,δ2)

)

∈
H(δ1,δ2) × R+ with
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p(0,1) = φ
ξ(0,0)

T(0,0)
(p(0,0)) = [4.90 5.00 0.10]T, T(0,0) = 252.57;

p(1,1) = φ
ξ(0,1)

T(0,1)
(p(0,1)) = [5.00 4.63 0.33]T, T(0,1) = 6.67;

p(1,0) = φ
ξ(1,1)

T(1,1)
(p(1,1)) = [0.04 0.00 1.21]T, T(1,1) = 438.90;

p(0,0) = φ
ξ(1,0)

T(1,0)
(p(1,0)) = [0.00 0.16 0.99], T(1,0) = 6.67,

which has been found by simulation of the refrigeration
system.

A Poincaré map is the following composition

Φ ≡ ψ(1,0) ◦ ψ(1,1) ◦ ψ(0,1) ◦ ψ(0,0),

where ψ(δ1,δ2) ≡ φξ(δ1,δ2) ◦ (j(δ1,δ2), h(δ1,δ2)) and the maps
j(δ1,δ2) and h(δ1,δ2) are defined in Proposition 2. The
derivative of Φ at p(0,0) is

DΦ(p(0,0)) = (20)

Dψ(1,0)(p(1,0))Dψ(1,1)(p(1,1))Dψ(0,1)(p(0,1))Dψ(0,0)(p(0,0)),

where Dψ(δ1,δ2) is given by Eq. (19), for instance

Dψ(0,0)(p(0,0)) =
[

1 0 0
0 0 1

]

([

1 0 0
0 1 0
0 0 1

]

−
ξ(0,0)(p(0,1))N

T
(0,1))

ξT
(0,0)(p(0,1))N(0,1))

)

eA(0,0)T(0,0)

[

0 0
1 0
0 1

]

.

Now evaluating each Dψ(δ1,δ2) for a proper combinations
of δ1, δ2 ∈ {0, 1} and the system parameters in Appendix A
the eigenvalues of DΦ(p(0,0)) are computed,

eig
(

DΦ(p(0,0)

)

= {0.66, 0.00}.

Each eigenvalue belongs to the open unit disk, hence the
closed orbit with transitions at the points p(0,1), p(1,1), p(1,0)

and p(0,0) is a stable limit cycle.

7. CONCLUSION

A method for analyzing limit cycles arising in autonomous
switched systems was proposed. It was shown how to
glue the state spaces of the switched systems to get a
single coherent space. It was demonstrated that by rel-
atively simple computation, stability of the Poincaré map
is determined. The method applies generally to switched
non-linear systems as long as the transversality condition
is fulfilled. However, explicit solution was provided for
switched affine systems.
The method was applied for a simplified model of a su-
permarkets refrigeration consisting of two display cases
and a compressor unit. The approach developed in this
paper shows that a limit cycle generated by interaction of
distributed hysteresis controllers is stable, thus synchroni-
sation in the supermarket refrigeration system takes place.
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Appendix A. REFRIGERANT PROPERTIES AND
SIMULATION PARAMETERS

A number of refrigerant depended properties is used in
the model described in Section 3. These properties can be
either computed by using the freeware software package
”RefEqns” for Matlab (Skovrup (2000)) or estimated as
follows. The refrigerant R134a is employed. The first order
approximations of the evaporation temperature Te and the
density ρsuc in the vicinity of Psuc0 = 1.5bar are

Te =16.2 · Psuc − 41.9, (A.1)

ρsuc =4.6 · Psuc + 0.4. (A.2)

In the model described in Section 3 the following param-
eters are used:
Display cases

UAwall−ref,max 500 J
s·K

Mair 50 kg
Mgoods 200 kg Cp,air 1000 J

kg·K

Cp,goods 1000 J
kg·K

Mr,max 1 kg

UAgoods−air 300 J
s·K

τfill 40 s
Mwall 260 kg TSH 10 K
Cp,wall 385 J

kg·K
Tg0 3.5 oC

UAair−wall 500 J
s·K

ṁ0 1.0 kg/s
dρsuc0

dPsuc0
4.6 kg

m3bar

The same parameters are used for all display cases.
Compressor

Vsl 0.08 m3

s
ηvol 0.81 −

Suction manifold

Vsuc 5.00 m3

Air temperature control

T air 0.00 oC T air 5.00 oC

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3670


