
Network Structure and Robustness of

Intracellular Oscillators
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Abstract: Sustained oscillations play a key role in many intracellular functions, such as
circadian time keeping, cell cycle control and calcium signalling. The oscillations are in all cases
driven by feedback interactions taking place in biochemical reaction networks. While a single
feedback loop in principle is sufficient to generate such oscillations, experimental evidence reveal
that more complex network structures, involving multiple feedback loops, underly intracellular
oscillations. One hypothesis frequently set forth is that a multi-loop structure is motivated by the
need for robustness to internal and external perturbations. We here consider robustness analysis
of several recently published models of circadian clocks to determine the role of the underlying
network structure in providing robust stability of the oscillators. The robustness analysis is based
on adding dynamic perturbations to the network interactions, similar to that used in robust
control theory. To elucidate the role of various interactions in providing robust oscillations,
we consider blocking specific interactions. Biologically, this contrasts the often considered gene
knockouts and implies that genes are persistently expressed. We find that different models have
highly different active structures and also differ significantly in their robustness. While some
models essentially rely on a single loop in generating robust oscillations, other models have
more intricate structures in which some loops provide oscillations and other serve to increase
the robustness. Other models again have redundant loops that provide failure tolerance in the
face of large perturbations, such as gene knockouts.

1. INTRODUCTION

Most intracellular oscillators, such as cell cycle controls,
circadian clocks and calcium signalling pathways, have an
underlying network structure consisting of multiple inter-
twined feedback loops. It is not clear why these oscillators
have evolved to such complex network structures, but a
hypothesis frequently set forth is that multiple feedback
loops enhances the robustness of the network, e.g., in the
presence of gene mutations (Cheng et al. (2001); Lee et al.
(2000); Preitner et al. (2002); Ueda et al. (2001); Wagner
(2005)). In this paper we investigate this hypothesis closer
by studying the robustness of several recently published
models of circadian clocks in mouse (Leloup and Gold-
beter (2004)) and Arabodopsis thaliana (Locke et al. (2006,
2005); Zeilinger et al. (2006)).

Robustness, the ability to maintain function in the face
of external and internal environmental changes, is an im-
portant property of biological systems (Kitano (2004)).
In general, robustness can here either mean insensitivity
of function characteristics (robust performance) or the
persistence of a qualitative behavior (robust stability), in
the presence of perturbations. In either case, proper assess-
ment of robustness requires that both the characteristic
behavior of interest as well as the allowable set of perturba-
tions are well defined (Stelling et al. (2004b)). For the case
of oscillators, robust performance concerns the sensitivity
of characteristics such as oscillation period and amplitude
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(Stelling et al. (2004a)), while robust stability concerns
the persistence of oscillations (Wang et al. (2007)). In this
paper we focus on robust stability.

The perturbations typically considered when analyzing the
robustness of biochemical models are almost exclusively
parametric. That is, the set of allowable perturbations
consists of perturbations of the model parameters, such
as reaction rate constants (Hong et al. (2007); Stelling
et al. (2004a); Kim et al. (2006)). Usually, only single
parameter perturbations are considered. In this paper,
we consider perturbations applied directly to the network
interactions. For instance, the considered perturbations
can include perturbing the strength in the regulation
of a gene by a transcription factor, or perturbing the
transport rate of a protein between cytoplasm and nucleus.
We allow the perturbations to be dynamic, and compute
the destabilizing perturbations using results from robust
control theory.

The main aim when applying the proposed robustness
analysis, apart from quantifying the robustness of the
models, is to elucidate the mechanisms providing for the
oscillations and their robustness. In particular, we want
to determine if the complete networks are important for
robust oscillations, or if specific substructures can be
identified. Furthermore, it is of interest to determine if
similar structures are employed in different models. For
this purpose, we employ blocking of specific interactions.
Blocking of interactions between two components imply
that changes in the activity of one the components does
not lead to changes in the activity of the other component,
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and is in contrast to the commonly considered gene knock-
outs in which a component is removed from the network
altogether.

We start the paper by presenting the method we employ
for robustness analysis and interaction blocking. The cir-
cadian clock models presented in (Leloup and Goldbeter
(2004); Locke et al. (2006, 2005); Zeilinger et al. (2006))
are then analyzed using the proposed method, and their
overall network structures as well as the substructures
active in providing robust oscillations are compared and
discussed.

2. ROBUSTNESS ANALYSIS USING DYNAMIC
NETWORK PERTURBATIONS

We employ concepts from robust control theory to assess
robustness in terms of persistence of a regular periodic
solution. Dynamic perturbations are added directly to
the interactions between the network components, and we
determine the minimal dynamic perturbation that changes
the stability, and hence the qualitative behavior, of the
network. Rather than considering destabilization of the
limit cycle itself, we focus on stability of the underlying
steady-state. In particular, if a perturbation translates
the underlying steady-state into a structurally unstable
equilibrium, corresponding to a Hopf bifurcation point,
then this corresponds to a limit cycle collapsing into the
steady-state. For cases in which the Hopf point is super-
critical, the collapse implies that the limit cycle behavior
disappears. If the Hopf is subcritical, an unstable limit
cycle collapses with the steady-state and the stable limit
cycle will persist, but now coexisting with a stable steady-
state. To eliminate the limit cycle, a nonlinear dynamic
perturbation converting the Hopf into a supercritical one
can be determined. This is not considered here. Most
models of circadian clocks have supercritical Hopf points,
and we will therefore focus on this case here.

Consider a nonlinear ODE model of a biochemical network

ẋ = f(x(t),p) (1)

where x denotes the state variables (activities or concen-
trations of components) and p denotes the model param-
eters. For parameters p∗, steady-states x∗ are obtained
from f(x∗,p∗) = 0. We consider the unstable steady-state,
x∗

uss, underlying the stable oscillations 3 . A linear model
is obtained from linearization of (1) at x∗

uss

∆ẋ = A∆x(t) (2)

where ∆x(t) = x(t)−x∗

uss denotes deviations from steady-
state and A = ∂f

∂x
|x∗

uss
,p∗ is the Jacobian matrix. The off-

diagonal elements of A represent interactions between the
state variables and the diagonal elements are related to
internal dynamics, such as self-degradation.

To analyze the impact of the interactions on the stability
properties, the interactions between the components are
separated from the internal dynamics according to

∆ẋ = Ã∆x(t) + (A − Ã)∆u(t) (3)

3 We here assume that such a state exist, which always holds for

systems with supercritical Hopf bifurcations.

where Ã is a diagonal matrix containing the diagonal of A,
and the effect of other components ∆u(t) is independent of
∆x(t). Eq. (3) will be referred to as the open-loop system.

The open-loop system (3) can be transformed into a
frequency response L(jω) from ∆u to ∆x

L(jω) = (jωI − Ã)−1(A − Ã) (4)

where I is the identity matrix and L(jω) is the response
to a sinusoidal stimuli with frequency ω. Particulary, if
∆u(t) = sin ωt, then ∆x(t) = |L(jw)| sin(ωt + arg L(jω))
in stationarity.

The dynamic interactions between components are recov-
ered by introducing the unity feedback

∆u(t) = ∆x(t) (5)

recovering the original system (2), the closed-loop system.

If there are no autocatalytic effects in the model, the inter-
nal dynamics of the components are stable. This implies
that the diagonal elements of A are strictly negative and
that the open-loop system (3) hence is stable. The insta-
bility of x∗

uss is then a result of the feedback interactions
between the components.

According to the Nyquist stability criteria, the stability
of the linear closed-loop system (2) can be inferred from
the open-loop systems (3). The restriction that the open-
loop system is stable simplifies the generalized Nyquist
stability criteria so that we can conclude that the closed-
loop system is unstable when at least one of the eigenvalue
loci of the frequency response (4) encircles the point +1
in the complex plane (+1 as (5) denote positive feedback).
A more intuitive way of viewing this is that the amplifica-
tion of the open-loop system should be greater than one
(|L(jω)| > 1), when the phase is zero (arg L(jω) = 0), for
the feedback to introduce instability.

To determine the smallest perturbation that will change
the qualitative network behavior, i.e., the smallest pertur-
bation required to stabilize x∗

uss, we add dynamic pertur-
bations to the model strucure. In the frequency domain,
a dynamic perturbation is represented by a complex num-
ber at each frequency. The complex perturbations can be
translated into differential equations in the time domain,
and these can then be added as perturbations in the non-
linear model (1). A dynamic perturbation can represent
e.g., a neglected intermediate reaction step, a time delay
or diffusion. Addition of perturbations to the network
structure can be made in numerous ways. In each case,
the robustness analysis aims at determining the smallest
size, in a norm sense, of the applied dynamic perturbation
that will change the stability of the network. Below we
discuss how different structural perturbations can be used
to quantify the overall robustness, determine specific net-
work fragilities and elucidate the impact of substructures
within the network.

2.1 Overall robustness

The overall robustness of the network is quantified by
perturbing the activities, or concentrations, of all com-
ponents simultaneously. With relative perturbations, this
corresponds to perturbing the feedback in (5) according to

∆up = (I + ∆I)∆u (6)
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where ∆I is an n×n diagonal complex valued perturbation
matrix with diagonal elements ∆i (i = 1, ..., n) and n is
the number of state variables. The smallest size relative
perturbation ∆I that will move one eigenlocus of (4) to
+1 at a given frequency will have magnitude

1

µ
= σ̄(∆I(jω)) (7)

where µ is the structured singular value and σ̄(∆I(jω))
denotes the maximum singular value of the perturbation
matrix ∆I , i.e., the magnitude of the largest element
of ∆I

4 . The perturbation ∆I(jω) can be interpreted as
a global effect on the dynamics of the system, e.g., a
temperature change.

2.2 Robustness to changes in single components

Addition of a relative perturbation to the direct effect of
a single component on all other network components pro-
vides information on how the network handles changes in
the properties of individual components. The perturbation
to the feedback (5) is in this case added according to

∆up,i = (1 + ∆i)∆ui; ∆up,k = ∆uk; k 6= i (8)

The minimal relative perturbation changing the qualita-
tive behavior is given by 1

µi

= |∆i|, where ∆i can be

interpreted as a global change in the dynamics of the i:th
component, e.g., as a result of a gene mutation.

2.3 Robustness to specific pairwise interactions

Addition of a perturbation to the direct interaction be-
tween two components provides more detailed insight into
how different parts of the network handle perturbations,
and can be used to determine specific network fragilities.
This corresponds to adding a relative dynamic perturba-
tion ∆ik to a single element of Lik

Lp,ik(jω) = Lik(jω)(1 + ∆ik(jω)); k 6= i (9)

The minimal relative perturbation of the pairwise direct
interaction between component k and component i chang-
ing the qualitative behavior is given by 1

µik

= |∆ik|, where

∆ik is a perturbation of the effect of component k on i.

Apart from quantifying robustness, the structured pertur-
bations above can also be used to determine components
and interactions important for the function in question.
For instance, if a small relative perturbation of the dynam-
ics of a single component changes the qualitative behavior
of the network, this component can be assumed to be an
important part of the mechanism underlying the oscilla-
tions. Also, individual and pairwise interactions with a µ-
value less than one can be removed without affecting the
stability of the network, and can hence be assumed to be
of little importance for the existence of network function
(but may be important for robustness or for other specific
properties of the function). Note that we by “removing” do
not imply complete removal of the biochemical component,
but that the interactions are blocked.
4 It is necessary to verify that the perturbation moves the encircling

locus, and not some other locus, to +1. Otherwise, the computed

perturbation size is only a lower bound.
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Fig. 1. A. The network underlying circadian oscillations
in mice (Leloup et al., 2004). States and interactions
determined to be important for the oscillations are
highlighted (parameter set 1). Dashed lines shows
interactions important for the robustness. B. Simu-
lations of circadian oscillations in Per mRNA con-
centration with full model (solid) and Per-loop only
(dashed).

All computations of the structured singular value in gen-
eral only provide lower and upper bounds. However, we
here consider scalar or diagonal complex perturbations and
then these bounds are in general relatively tight. For all
examples below, the lower and upper bound overlap so
that we obtain an exact value for µ, and hence the smallest
destabilizing perturbation, in all cases.

2.4 Blocking of interactions

Blocking of interactions are correspond to applying ∆ik =
−1 to the network structure. This corresponds to removal
of the direct effect of component k on i. For a gene i regu-
lated by a transcription factor k, the perturbation ∆ik =
−1 would thus correspond to constitutive (constant) ex-
pression of the gene and contrast complete removal of the
component, i.e., a knockout mutation. Knockout muta-
tions have been used extensively and successfully to gain
insight into biomolecular systems. Complete removal of a
component, however, disrupts the network and the dynam-
ics of the original system can not be investigated. Removal
of gene regulation, together with knockdown approaches
using RNAi and molecular genetic screens for mutations
affecting the dynamics (Pomerening et al. (2005); Sato
et al. (2006)), all leave the underlying network intact and
are examples of dynamic perturbations to the structure of
the system.

3. CIRCADIAN OSCILLATIONS IN MAMMALS AND
PLANTS

We here apply the robustness analysis outlined above
to four recently proposed models of circadian clocks in
mammals and plants. The aim is to quantify the robustness
and determine the subnetwork structures underlying the
circadian oscillations and their robustness.

3.1 Circadian Oscillations in Mice

A model for the gene regulatory network responsible for
circadian oscillations in mammals is proposed in (Leloup
and Goldbeter (2003, 2004)). The model includes a total
of five genes and their products. However, only three of
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Fig. 2. Mammalian oscillations, parameter set 1: A. The structured singular value µ for the overall network (solid), for
the loop involving only the Per-gene (dashed), and for the Per-loop interacting with Bmal1 protein in cytoplasm
(dash-dot). B. Structured singular value µi for perturbation of individual components. C. Structured singular value
µik for perturbation of specific pairwise direct interactions.

the genes are considered to be directly involved in gener-
ating the oscillations, while two genes are assumed to be
constantly expressed. The network corresponding to the
three active genes, Cry, Per and Bmal1, involves 16 states
and is illustrated in Fig. 1A. The states correspond to the
concentrations of the gene mRNAs and the various pro-
teins and protein complexes. Leloup et al. (2004) consider
4 different parameter sets. We here analyze the model with
parameter sets 1 and 2 in Leloup and Goldbeter (2004).

Parameter set 1: The overall robustness measure µ (7)
of the network is shown in Fig. 2A. As can be seen, the
robustness measure µ peaks at about 9 around the fre-
quency ω = 0.33, corresponding to the circadian frequency.
This implies that the network can tolerate up to 11%
simultaneous variations in all concentrations without loos-
ing the oscillations. Thus, the network can be considered
reasonably robust.

Fig. 2B shows the results of the robustness analysis for
perturbations of individual components. The results show
that the interactions involving all components except
1, 4, 8, 9, 14, who all have µi > 1, can be removed without
loosing the circadian oscillations. This suggests that the
oscillations are generated by interactions between 5 com-
ponents, out of a total of 16. This is also supported by the
robustness analysis for specific pairwise interactions in Fig.
2C, showing that the loop 1−4−8−9−14−1, corresponding
to the Per-gene loop, is critical for the oscillations. Figure
1B shows simulations of the oscillations in Per mRNA
concentration for the full network and the network with
only the 5-component Per-loop active, i.e., with all other
interactions blocked. The simulation supports the result
from the robustness analysis. The generation of the oscil-
lations appears to be confined to a small subnetwork of
the overall network.

To examine if the remaining network plays a role in pro-
viding robustness of the oscillations, we recomputed the
overall robustness measure (7) with only the 5 component
Per-loop active. As can be seen from Figure 2A, the µ-
value increases to 11, and hence the remainder of the net-
work contributes somewhat to the robustness. From Fig.
2B we see that the one component apart from the Per-loop
components with the largest impact on the oscillations
is component 12 (BMAL1-protein in cytoplasm). As seen
from Fig. 2A, including this component in addition to the
Per-loop improves the robustness to the degree that the re-
sulting 6-component subnetwork has robustness essentially

equal to the overall 16-component network. The structure
corresponding to the 6-state network is highlighted in Fig.
1A.

Parameter set 2: For parameter set 2, the overall robust-
ness in terms of the µ-value is shown in Fig. 3B. The
µ-value for the complete network now peaks at a value
about 22, and hence the network with parameter set 2 is
significantly less robust than with parameter set 1. Ro-
bustness analysis for perturbations in single components
reveals that components 12 and 3 now are important in
addition to the Per-loop components 1, 4, 8, 9, 14. This
corresponds to the substructure highlighted in Figure 3A.
In this case, the Per-loop in addition to component 12 are
required to generate the oscillations, while the Bmal1-loop
involving components 14− 3− 12 improves robustness. As
can be seen from Fig. 3B, the Bmal1-loop increases the
robustness by a factor close to 2 and represent the only
network interactions apart from the Per-loop that provide
for the robustness.

3.2 Circadian Oscillations in Arabidopsis

Significant efforts have been put into identify the genes
that underly circadian oscillations in the plant Arabidopsis
thaliana. Locke et al. (2005) proposed a model involving 4
genes, two of which are still unidentified. Recently, Locke
et al. (2006) and Zeilinger et al. (2006) refined this model
by adding one and two genes, respectively. It is important
to stress that the refinement and tuning of these models
have mainly been directed by experimental observations
concerning various properties, such as phase differences, in
the circadian oscillator. We here focus on the robustness of
these models, and unravel the subnetwork structures that
underly the oscillations and their robustness.

Locke model 1 (2005): Originally this model was proposed
as a two-loop model with 4 genes, and a total of 13
components (Fig. 4A). The overall robustness in terms of
µ is shown in Fig. 4B. The µ-value peaks at around 46,
close to the circadian frequency. Thus, the network can
only tolerate about 2% simultaneous (worst-case) variation
in the component activities before loosing the circadian
oscillations, and is hence significantly less robust than the
mammalian model above. From the robustness analysis
with perturbations of single components we find that all
components, except component 13, are critical for the
oscillations. As can be seen from Fig. 4A, the component
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interactions form a single negative feedback loop with
a parallell path between component 3, a transcription
factor, and component 4, a gene. In terms of specific
interactions, we find that all interactions are required for
oscillations, with the exception of the effect of component
3 on component 2 and the effect of component 6 on
component 10. The latter interaction does however have a
significant impact on the robustness, but in a negative way.
As seen from Fig. 4B, removing this interaction improves
the robustness almost by a factor 2.

The analysis of the robustness with respect to perturba-
tions of specific interactions also reveals that the most frag-
ile connection is the effect of component 8 on component
9, corresponding to the transport of the unknown gene
X protein product from cytoplasm to nucleus. A relative
perturbation of 13% in this interaction at the circadian
frequency is sufficient to remove the oscillations.

Locke model 2 (2006): This model is essentially a direct
extension of the previous model, in which one more gene
has been added to provide for another feedback loop. The
main purpose of this extra loop is, according to Locke et al.
(2006), to predict the oscillations that has been observed
experimentally when the main gene LHY (component 1
in both models) has been knocked out. Thus, the extra
gene loop is supposed to provide a redundant mechanism
for generating circadian oscillations. The modified network
structure with 16 states is shown in Fig. 5A. Figure 5B
shows the overall robustness in terms of µ. Note that the
computed µ in this case only provides an upper bound,
or lower bound on the size of the required perturbation,
since in this case there are two eigenvalue loci of the open-
loop system (4) that encircles the +1 point in the complex
plane. A perturbation that stabilizes the steady-state must
exceed the perturbation computed using µ, and hence the
µ-value is an upper bound in this case. Since the maximum
µ-value in Fig. 5B is 35 we can thus conclude that this
network is more robust than the one in Locke et al. (2005).

A robustness analysis with perturbations of single compo-
nents and interactions confirms that there are two distinct
subnetworks in the model that each provide circadian
oscillations. See also Fig. 5A. When both subnetworks are
in function, the oscillations will entrain due to the weak
connections that exist between the two subsystems. If one
of the subnetworks is perturbed so that the correspond-
ing oscillations disappear, then the circadian oscillations
will persist. Figure 5B show that we need to perturb
interactions in both subnetworks to remove the circadian
oscillations. Thus, the network contains redundancy which
provide for failure tolerance.

Zeilinger model (2006): Similar to Locke et al. (2006),
Zeilinger et al. (2006) extend the model proposed in Locke
et al. (2005) by adding extra genes. In this case, two genes
are added to yield a network with a total of 19 states. We
here analyze the final tuning of the model presented in
Zeilinger et al. (2006), called model C. The corresponding
network structure is shown in Fig. 6A. Note that although
the basis for this model is similar to the previous model,
the structure appears to be quite different. The overall
robustness in terms of µ is shown in Fig. 6B. The peak-
value of µ is 910 around the circadian frequency, indicating
that the network is highly fragile to some perturbation.
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Robustness analysis for perturbations in individual com-
ponents and interactions reveal that the only components
that are active in providing the oscillations, as well as
their robustness, are the 6 components related to the two
genes TOC1 and Y (Fig. 6A). The identified subnetwork
corresponds to a single feedback loop with local feedback
between the proteins in the cytoplasm and nucleus. Ro-
bustness analysis for specific interactions reveals that the
network is highly fragile with respect to changes in these
latter local feedback loops. For instance, a relative change
of less than 0.4% in the effect of protein in nucleus on pro-
tein in cytoplasm will completely remove all oscillations.

4. CONCLUSIONS

Sustained oscillations play a key role in many intracellular
functions. Such oscillations can in principle be generated
by a single feedback loop. However, the biochemical net-
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works underlying oscillatory functions in the cell typically
involve a number of intertwined feedback loops. A common
hypothesis is that the complex structure is motivated by
the need for robustness to external and internal pertur-
bations. In this paper we propose a method for robust
stability analysis of networks providing sustained oscilla-
tions. The method is based on adding relative dynamic
perturbations to the interactions between the network
components, and then computing the smallest size pertur-
bation that changes the behavior in a qualitative sense. By
adding perturbations in a strategic fashion to the various
components and interactions of the network, the role of
specific interactions and subnetworks in generating the
oscillations can be determined. Furthermore, by employing
a method termed interaction blocking, we can determine
the interactions and substructures that provide robustness
of the oscillations.

The proposed analysis method is applied to four recently
proposed models of circadian oscillations in mammals and
plants. The results reveal that for most models, only a
relatively small active substructure of the overall bio-
chemical network accounts for the oscillations and their
robustness. Furthermore, the active substructures differ
significantly between different models. In some models, a
single negative feedback loop provides for the oscillations,
while other have several intertwined loops in which some
loops generate oscillations while other serve to improve ro-
bustness. Other models again have redundant mechanisms
that provide for circadian oscillations and hence have a
built-in failure tolerance, e.g., to gene knockouts.

An important purpose of the paper is to demonstrate the
usefulness of the proposed analysis method to determine
the overall robustness, and detect important substruc-
tures, of models for sustained intracellular oscillations. A
potential use of the proposed method is in tuning models
for robustness, so that they reflect the robustness observed
in biological systems.
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