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Abstract: LHD (load-haul-dump) vehicles are used extensively in underground mining op-
erations for ore transporting, primarily in tunnels where access is difficult or dangerous. To
ensure underground efficient and safe LHD’s performance, a robust feedback control strategy is
needed. A state estimation based MPC scheme was designed for control purposes, and evaluated
by simulation. The state estimator was developed by testing four approaches, in order to select
the optimal one: the extended Kalman Filter, Particle Filter, Moving Horizon Estimator and
a genetic algorithm based Moving Horizon Estimatior. The simulation shows that non-linear
MPC performs better than linear MPC for path tracking.

Keywords: Model Predictive Control; Nonlinear system control; Nonlinear observer and filter
design; Monte Carlo methods; Genetic algorithms.

1. INTRODUCTION

LHD (load-haul-dump) vehicles are used extensively in
underground mining operation for ore transporting, pri-
marily in tunnels where access is difficult or dangerous. To
ensure underground efficient and safe LHD’s performance,
a robust feedback control strategy is needed.

Model predictive control (MPC) is a widely used control
concept, specially in the process industry. Most popular
MPC applications use black-box linear models obtained
from process data with the disadvantage that these models
do not consider non-linear dynamics. State space based
MPC seems to be an interesting LHD control alternative,
since it can deal with multivariable non-linear dynamics
and explicit constraints. However, the use of a state
space model brings a new problem, the nonlinear state
estimation, that must be successfully solved in a previous
stage.

The most universally accepted state estimator is the
Kalman Filter, due to its proved qualities as an optimal
estimator and predictor for linear systems (Welch and
Bishop, 2004). However, the corresponding nonlinear state
estimator, the Extended Kalman Filter (EKF), can not
claim a comparable success, due mainly to the fact that it
is based on a linear approximation of the system model.

Recently, interest for state estimators based on Monte
Carlo simulation as the so-called Particle Filters (PF) has
reemerged. Also, the Moving Horizon Estimation (MHE)

? This work was supported by Fondecyt Project No. 1050684 and
the Pontificia Universidad Católica de Chile

method has been successfully compared with Extended
Kalman Filtering (Haseltine and Rawlings, 2005) in the
case of chemical reactors state estimation. Since nonlinear
optimization is required the use of Genetic Algorithms
(GA) represents an attractive option for on-line MHE
implementation.

The purpose of this paper is to design a state space
based model predictive control strategy for particular
mining vehicles known as Load-Haul-Dump (LHD). Two
MPC schemes, a linear and a non-linear MPC, have been
compared in order to test their potentials on path tracking.
Since a state estimator is needed, a comparison of four
estimation methods was realized, in order to choose the
optimal one for MPC design.

2. LHD VEHICLES

A LHD (Load-Haul-Dump) is a centrally articulated, four
wheeled vehicle, steered by controlling the angle between
its two constituent sections (Altafini, 1999), (Ridley and
Corke, 2001). Each of the two sections has it own axle,
and the wheels are nor steerable. Thus, an LHD’s control
and path tracking characteristics differ significantly from
those of conventional vehicles such as automobiles.

Figure 1 shows a scheme where the LHD main variables are
specified. A simplified nonlinear model of a LHD, which
only takes into account the cinematic relations among
variables, can be formulated in the state space (Altafini,
1999) as follows:

ẋ1 = u1 cos(θ1)
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Fig. 1. Simplified scheme of a LHD

ẏ1 = u1 sin(θ1)

θ̇1 =
u1 sin(γ) − L0Γ
L0 + L1 cos(γ)

(1)

γ̇ = Γ

In this model, the variables usually measured are the
angles θ1 and γ. The manipulable variables are velocity
u1 and Γ , that is proportional to the applied torque.

3. STATE ESTIMATION

3.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a suboptimal filter
that minimizes the mean error of the state estimation
of the LHD non-linear system given by the followings
equations:

xk+1 = f(xk, uk, wk) (2)
yk = Cxk + vk (3)

In these equations, xk is the state vector of the system,
uk is the vector of the manipulated variables, yk is the
measured output vector, f(·) is the non-linear function
that define the LHD dynamics, C is the output matrix and
wk and vk are the process and measurement disturbances
which we assume characterized by white noise covariance
matrices Q and R, respectively.

The EKF algorithm first estimates the state and mea-
surement vectors at time k using the previous information
and the system equations. Along with this, the covariance
matrix Pk is also estimated:

x−k+1 = f(x̂k, uk, 0) (4)

y−k+1 = Cx̂k (5)

P−
k+1 = Ak+1P̂kAT

k+1 + Q (6)

Using the covariance matrix R and the residual covariance
matrix Sk, the Kalman gain Kk is obtained:

Sk+1 = CP−
k+1C

T + R (7)

Kk+1 = P−
k+1C

T S−1
k+1 (8)

Finally, the estimations are corrected using the Kalman
gain and the difference between the estimation and the
measurement:

x̂k+1 = x−k+1 + Kk+1(yk+1 − y−k+1) (9)

ŷk+1 = Cx̂k+1 (10)

P̂k+1 = (I − Kk+1C)P−
k+1 (11)

In the preceding equations, Ak is the linearization of the
non-linear function f(·) around an operating point at time
k:

Ak+1(i, j) =
∂f[i]

∂x[j]
(x̂k, uk, 0) (12)

3.2 Particle Filter

Particle Filters (PF) are also suboptimal filters. They
perform sequential Monte Carlo estimation based on point
mass or particle representation of probability densities
(Arulampalam et al., 2002). The most common method
is Sequential Importance Sampling (SIS), which attempts
to approximate the posterior probability density function
(pdf) of the state p(xk/y1:k) with a set of realizations
xi

k, i = 1 . . . NP , known as particles. y1:k represents the
histogram of y from 1 to k. An approximation of the
distribution is given by:

p̂(xk/y1:k) =
1

Np

Np∑
i=1

δ(xi
k) (13)

Here δ(xi
k) is a Dirac delta in (xi

k). This approximation
can be used to obtain the mean value of the distribution:

E(xk/y1:k) =
∫

xkp(xk/y1:k)dxk ≈ 1
Np

Np∑
i=1

xi
k (14)

However, it is not possible to sample directly from the
posterior distribution p(xk/y1:k). To generate samples, a
known auxiliary distribution q(xk/y1:k) referred to as an
Importance Function must be use, whose only constraint
is that its support include the support of the real distri-
bution. To represent the desired distribution, the samples
must be weighted. The weights w̄(xk) used to correct the
samples are given by:

w̄(xk) =
p(xk/y1:k)
q(xk/y1:k)

(15)

Solving for the distribution p(·) in (15) and then substitute
it into (14) yields:

E(xk/y1:k) =
∫

xkw̄(xk)q(xk/y1:k)dxk ≈ 1
Np

Np∑
i=1

xi
kw̄i

k

w̄i
k = w̄(xi

k) (16)

The samples xi
k are now obtained from the importance

function. If the prior state distribution is used as the
importance function, then the weights satisfy the relation
(Arulampalam et al., 2002):

w̄i
k = w̄i

k−1p(yk/xi
k) (17)

3.3 Moving Horizon Estimation

Consider the system evolution as a Markov process, the
quantity of interest in state estimation becomes the condi-
tional probability density of the state evolution xk, given
the measurements yk:

p
(
x0, x1, · · · , xT |y0, y1, · · · , yT−1

)
(18)
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The optimal state estimation is then a functional L(·) of
the conditional probability density function (18). Typically
L(·) is chosen as the maximum a posteriori Bayesian
(MAP) estimation.

Using the Markov property and assuming normal dis-
tributions for the measurement noise, the disturbances
and the initial state, the probabilistic expression could be
transform into a mathematical programming problem.

Under the precedent assumptions, state estimation be-
comes the following optimization problem (Rao, 2000):

min
x̂0,{ŵ

k}
T−1

k=0

ΦT (x̂0, {ŵk}) (19)

Where:

ΦT (x̂0, {ŵk}) =
T−1∑
k=0

{(yk − Cx̂k)T R−1(yk − Cx̂k)

+ ŵT
k Q−1ŵk}+ (x0 − x̂0)

T Π−1(x0 − x̂0) (20)

subject to:

x̂k+1 = f(x̂k, uk, ŵk) (21)

This is known as the full information problem where
x0 is an estimation of the initial state. The solution
of the optimization problem gives x̂0 and the model
disturbance sequence {ŵk}. The actual state is found by
iterate in the state equation (21). In the full information
problem the horizon length increase with time k, this
makes impracticable an on-line implementation.

Considering the objective function ΦT (·), we may re-
arrange the terms by breaking the time interval into two
parts as follows:

ΦT (x̂0, {ŵk}) =
T−1∑

k=T−N

{(yk − Cx̂k)T R−1(yk − Cx̂k) +

ŵT
k Q−1ŵk}+

T−N−1∑
k=0

{(yk − Cx̂k)T R−1(yk − Cx̂k)(22)

+ ŵT
k Q−1ŵk}+ (x0 − x̂0)

T Π−1(x0 − x̂0)

The first term on the right depends only on the variables
values at time T − N so we can reformulate the problem
as follows:

min
x

T−N
,{ŵ

k}
T−1

k=T−N

T−1∑
k=T−N

{(yk − Cx̂k)T R−1(yk − Cx̂k) +

ŵT
k Q−1ŵk}+ ZT−N (xT−N ) (23)

subject to equation (21), where N is known as the fixed
horizon length.

The function Z(·) is known as the arrival cost function
and represent the effect of the previous data on the state
xT−N . The formulation (23) is the basis of MHE.

Selecting the arrival cost penalty function properly MHE
can approximate the full information problem, with
processing time advantages.

Unfortunately an algebraic expression for arrival cost does
not exist when the system is non linear or when constraints
are present. One strategy for approximating the arrival
cost function is to take a first order Taylor approximation,
yielding in an EKF covariance update formula (Rao, 2000).

Other strategies for approximating the arrival cost func-
tion have been studied recently (Tenny, 2002), (Haseltine,
2005).

3.4 Genetic Algorithm based Moving Horizon Estimation

Genetic algorithms are a family of computational models
inspired by evolution. These algorithms encode a potential
solution to a specific problem on a simple chromosome-like
data structure and apply recombination operators to these
structures (Michalewicz, 1996).

The GA chosen for the present application has the follow-
ing characteristics:

(a) Individuals or chromosomes are encoded with real
numbers (Michalewicz, 1996).

(b) A ranking operation (Baker, 1987) assigns each in-
dividual z a natural number in accordance with its
minimization criteria value J(z). Thus each individ-
ual has a new criteria value J1(z) corresponding to
its order number.

(c) A selection operation known as Stochastic Universal
Sampling (SUS) (Baker, 1987) is carried out that
ensures the survival probability p(zi) of an individual
zi will be given by the equation:

p(zi) =
J1(zi)∑Nind

j=1 J1(zj)
(24)

where Nind is the number of individuals.
(d) Chromosome crossover is performed, with probability

pc, using an intermediate recombination operator
defined by the following transformation:

z′1 = α1z1 + (1 − α1)z2

z′2 = α2z2 + (1 − α2)z1 (25)

α1 , α2 ∈ [0, 1]
(e) The mutation of a chromosome randomly selected

with probability pm is obtained by changing a maxi-
mum of 20% of its genes.

3.5 Comparative Evaluation of State Estimators

The comparison of the estimators involves a trajectory
composed of a straight-line segment and a curved segment
in different scenarios. For a simulation horizon of t = 50 s
in a MATLAB environment.

Each scenario is characterized by variations in the follow-
ing parameters with respect to the nominal situation:

(a) Covariance of process noise (QP ) and measurement
noise (RP ) for the model generating the data. The
nominal values are given in the following matrices:

QP =


10−3 0 0 0

0 10−3 0 0
0 0 10−5 0
0 0 0 10−5


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Fig. 2. State estimation, black: real state, green: EKF
estimation, red: MHE estimation, blue: PF estima-
tion; (a): non-direct observable state x; (b): direct
observable state θ.

RP =
(

10−1 0
0 10−3

)
(b) To represent the effects of changes in the dispersion of

process and measurement noise, the nominal covari-
ance matrices are scaled by the parameter α, which
may take the following values: 0.1, 1 or 10.

(c) For EKF and MHE design in dispersion test, we
assume that the values of matrices Q and R are known
and equal to those for the model generating the data.

(d) For sensitive analysis the values of matrices Q and
R for the design of EKF and MHE are modified
as follows Q = αQQP and R = αRRP . As in the
previous point, the parameters αQ and αR may take
the following values: 0.1, 1 or 10.

(e) Number of particles in the Particle Filter. For this
parameter the following value were used: NP = 1200.

(f) Initial distribution of the filter particles. Normal
distribution: mean 0, standard deviation 0.2.

(g) Horizon length. A fixed horizon of N = 10 were used
for moving horizon estimation.

(h) Genetic algorithm parameters. The following parame-
ters were chosen using trial and error for the genetic
simulation: Nind = 20, pc = 0.8, pm = 0.4, δ = 0.1.

The quantitative indicator used to compare the estimators
is the root mean square error (RMSE).

Figure 2 shows the estimation of non-direct observable
state x and the direct observable state θ when α = 1.

Table 1 shows that EKF performs a better estimation
for the non direct observable state x in all covariance

Table 1: State estimation errors de-
pending on covariances.

x(m) θ(rad)
α RMSE RMSE

EKF 0.1 0.072 0.010
1 0.200 0.042
10 1.320 0.090

PF 0.1 0.440 0.024
1 0.520 0.042
10 2.630 0.110

MHE 0.1 0.161 0.022
1 0.290 0.037
10 2.120 0.120

MHE-GA 0.1 0.168 0.022
1 0.360 0.042
10 2.550 0.140

scenarios. The four estimators perform very similar results
for the estimation of θ when the parameter α goes from 1
to 10. The estimation of PF, MHE and GA based MHE for
the position x was poor at the same situation. However,
for the direct observable state θ and α=1, MHE performs
a better estimation.

Tables 2, 3, 4 present the results of the sensibility test.
Both estimators perform worser when parameters αQ and
αR takes non nominal values. EKF performs, generally,
better than MHE especially for the non direct observable
state x. However, MHE performs better than EKF when
αQ = αR.

Table 2: State estimation errors for the
sensibility analysis with αQ = 0.1.

x(m) θ(rad)
αR RMSE RMSE

EKF 0.1 0.341 0.047
1 0.415 0.045
10 0.448 0.066

MHE 0.1 0.307 0.044
1 0.965 0.126
10 0.741 0.059

Table 3: State estimation errors for the
sensibility analysis with αQ = 1.

x(m) θ(rad)
αR RMSE RMSE

EKF 0.1 0.545 0.053
1 0.200 0.042
10 0.363 0.037

MHE 0.1 0.505 0.059
1 0.290 0.037
10 1.457 0.123

Table 4: State estimation errors for the
sensibility analysis with αQ = 10.

x(m) θ(rad)
αR RMSE RMSE

EKF 0.1 0.236 0.062
1 0.204 0.047
10 0.405 0.042

MHE 0.1 0.298 0.071
1 0.225 0.050
10 0.353 0.037

4. MODEL PREDICTIVE CONTROL

MPC is designed as solving on-line a finite horizon open-
loop optimization problem subject to system dynamics
and constraints involving states and controls.
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The LHD dynamic model in the state space is given by:
xk+1 = f(xk, uk, 0) (26)

yk = Cxk (27)

MPC searches for the optimal control sequence that is
solution of the following optimization problem (Camacho
and Bordons, 2004):

min
{uk}Nu

k=1

N2∑
j=N1

δ(j)
[
ŷt+j − yref t+j

]2 +(28)

Nu∑
j=1

λ∆(j) [∆ut+j−1]
2 +

Nu∑
j=1

λu(j)
[
ut+j−1 − uref t+j−1

]2
subject to equations (26), (27), where Nu is the control
horizon, N1 and N2 are the prediction horizon limits, δ(j)
is the reference deviation cost at time t+j, λu is the control
deviation cost and λ∆(j) is the incremental control cost at
time t + j − 1.

4.1 Linear MPC

Consider the non-linear model (26), (27) and the reference
trajectory given by:

x∗k+1 = f(x∗k, u∗k, 0) (29)
y∗k+1 = Cx∗k (30)

x∗, u∗ are the knowns optimal states and optimal control,
that generates the trajectory (29), (30). Let we consider:

x = x∗ + x1 and u = u∗ + u1 (31)

Where x1 and u1 represents deviations from the optimal
values x∗ and u∗. Then taking a first order Taylor expan-
sion of (29) we obtain a time variant linear model of the
form:

x1
k+1 = Akx1

k + Bku1
k (32)

yk = Cx1
k (33)

The particular cost function is given by:

J(N2, Nu) =
N2∑
j=1

δ [ŷk+j − yrefk+j ]
2

+
Nu∑
j=1

λ [∆uk+j−1]
2 (34)

MPC outputs are obtained by minimizing the deviations
x1 with minimum extra control effort u1.

The system outputs can be predicted as follows:

yk+1 = C(Akxk + Bkuk−1 + Bk∆uk)

yk+2 = C(Ak+1Akxk + (Ak+1Bk + Bk+1)uk−1

+ (Ak+1Bk + Bk+1)∆uk + Bk+1∆uk+1) (35)
...

...

We could write (35) in matrix form:
Yk+1 = Ψxk + Φuk−1 + Θ∆uk (36)

Where:

Θ =



CBk · · ·
C(AkBk + Bk+1) · · ·

...
. . .

k+N2−1∑
i=k

C
i∏

j=k+1

AjB2k+N2−1−i · · ·

· · · 0
· · · 0
. . .

...

· · ·
k+N2−Nu∑

i=k

C
k+i∏

j=k+1

AjB2k+N2−1−i

 (37)

Ψ =



CAk

C
k+1∏
j=k

Aj

...

C

k+N2−1∏
j=k

Aj


(38)

Φ =



CBk
k+1∑
i=k

C
i∏

j=k+1

AjB2k+1−i

...
k+N2−1∑

i=k

C

i∏
j=k+1

AjB2k+N2−1−i


(39)

In the absence of constraints we can use the Maciejowsky
equation (Camacho and Bordons, 2004), for time-invariant
linear systems written in matrix form, to find a close
solution for the optimal control sequence:

∆uk = (ΘT Θ + λI)−1ΘT (yrefk − Ψx̂k − Φuk−1) (40)

4.2 Non-Linear MPC

Non-linear MPC is giving by solving on-line the mini-
mization problem given by (26), (27), (28). Generally, this
results in a non-convex non-linear optimization, which is
difficult to solve because of the excessive computational
requirements and multiple suboptimal local minima.

Non-linear optimization techniques or evolution based
algorithms could be use to find the non-linear MPC
outputs (Michalewicz, 1996).

4.3 Comparative Evaluation of State Estimation based
Predictive Controllers

Both controller strategies were programmed in Simulink
using an EKF as state estimator due his good results in
the state estimation test. All simulations were executed in
Simulink for a simulation horizon of t = 35 s.

Figure 3 shows the obtained LHD path tracking using
the receding horizon control principle in three different
scenarios: open loop, linear MPC and non-linear MPC, for
following control and predictive horizons: Nu = N2 = 5.
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Table 5 shows the root mean square error in the coor-
dinates x, y and the mean euclidean norm of the error
vector.

Clearly, non-linear controller performs better than the
linear MPC. However, the computational cost is higher,
indeed, the non-linear MPC takes 12 times more time to
run the simulation.

Table 5: Path tracking error for MPC schemes.

x(m) y(m) Norm(m)
RMSE RMSE Mean

Open Loop 2.73 2.33 3.25

Linear MPC 2.08 1.77 2.44

Non-Linear MPC 0.93 0.24 0.85

5. CONCLUSIONS AND FUTURE RESEARCH

In our study EKF performs, generally, better than MHE,
PF and GA based MHE, especially for estimating the
non direct observable state x. PF produces the worst
results in estimation. However, it should be noted that we
assumed that the disturbances are normally distributed,
which represent an advantage for EKF and MHE.

Sensitivity test shows that EKF and MHE perform de-
pends on the knowledge of the covariance matrices, which
should not be the case in a real application.

GA seems to be an attractive alternative for on-line state
estimation, since the results were very similar to the
obtained with classical optimization methods.

Referring to the control schemes, linear MPC responds in
between the non-linear control and the open loop scenario,
with shorter processing time. However, the non-linear
MPC presents smaller errors.

In the next future, we will test the four estimators using a
more realistic LHD model, including explicit constraints,
and non-Gaussian disturbances.
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