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Abstract: The process of manufacturing plastic parts by heating polymer sheets and forming them on a mold is called 
thermoforming. The heating stage of the thermoforming process is nonlinear and parameter-varying. The heater 
temperature set-points are usually determined by trial and error. A control design for this system can improve quality, 
reduce scrap and allow for temperature zoning. In this paper, the problem of stability analysis for a thermoforming 
process controlled by a static output feedback controller is addressed. An affine quadratic stability (AQS) test is 
chosen for this analysis. The AQS test requires a number of linear matrix inequalities (LMIs) to hold in order for the 
system to be stable. There is only one varying parameter in the thermoforming oven model, and as a result the number 
of LMIs to be computed is limited to five, which makes the AQS test practical. A parameter-dependent Lyapunov 
function is developed to prove the stability of the system. 

 

1. INTRODUCTION 

Forming operations are used to manufacture parts in several 
different industries, such as aeronautics, automotive, 
electronics, etc. Thermoforming is a process that produces 
hollow tub-shaped parts (Throne, 1996 and Moore et. al, 
2002a). Currently, this process is operated manually and 
through trial and error. Many steps need to be taken to 
achieve accurate control of thermoforming. The model for the 
reheat stage of the thermoforming process is nonlinear 
(Moore et al., 2002b and Gauthier et al., 2005) and has time-
varying parameters. Therefore, one may need to use stability 
analysis techniques that are applicable to systems with time-
varying parameters. Many techniques have been developed by 
different authors. Zames (1966) was amongst the first authors 
to consider the stability of systems with nonlinear time-
varying feedback. The development of parameter-dependent 
Lyapunov functions has also received a lot of attention. A 
parameter-dependent Lyapunov function in the form of 

was considered by Barmish et al. 

(1986), with P defined as
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 are the varying parameters and the 's 
correspond to vertices of a polytope of uncertain matrices 
with vertices A1,…,An. A few years later, Leal et al. (1990) 
considered a Lyapunov matrix P in the form of 

iP

iPθ θ θ
=

= + ∑

0P

θ where corresponds to the 

nominal model of the system and is a first-order 
perturbation of . The criterion developed by Popov (1962) 
is also based on a parameter-varying Lyapunov function. 
Haddad et al. developed a framework for parameter-
dependent Lyapunov function as a less conservative 
refinement of fixed Lyapunov function. This framework can 
be considered as a reinterpretation of classical Popov criterion. 
In the work presented by Gahinet et al. (1996), the authors 

successfully expressed conditions required for affine 
quadratic stability (AQS) of a system in terms of linear matrix 
inequalities (LMIs). In this paper, these conditions form an 
LMI feasibility problem to check the stability of the 
thermoforming system.  

0P

iP

This paper is organized as follows. In Section 2, the problem 
is formulated and the model to be used is introduced. Section 
3 expresses the conditions for AQS in the form of a finite set 
of LMIs. In Section 4, the model is transformed into a form 
that fits the AQS test and a solution for the LMI problem is 
found, implying the system is AQS. Section 5 discusses the 
simulation results which confirm the theoretical finding in 
Section 4. Concluding remarks are given in Section 6. 

2. PROBLEM STATEMENT AND MODELING 

Thermoforming machines are typically composed of an oven 
for sheet reheat and a vacuum or pressure forming station for 
shaping the plastic part. Figure 1 shows the AAA 
thermoforming machine at the Industrial Materials Institute 
(IMI) of the National Research Council of Canada whose 
model was used in this paper. The machine was retrofitted 
with infrared sensors to measure sheet surface temperatures in 
real time. 

 
 

Figure 1: AAA thermoforming machine at NRC-IMI
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An appropriate modeling of the thermoforming reheat process 
is an important step towards stabilization and control. The 
model applied in this paper is based on the model suggested 
by Moore (2002b). In this model, as shown in Figure 2, the 
surface of the plastic sheet is divided into S zones, and the 
thickness is divided into N layers each of which 
corresponding to a node for zone k. Lateral heat transfer 
between adjacent zones is neglected as it is small compared to 
heat propagating perpendicularly to the sheet. Node 1 is 
located at the upper surface of the sheet and node N at the 
lower surface. It is standard to have a node at the center of 
each layer.  
 

Plastic sheet
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Figure 2: Depiction of zones, nodes and layers 

 
The radiant energy absorption is modeled and added to 
Moore’s model to obtain the model discussed by Gauthier et 
al. (2005). For a plastic sheet with five layers, the model for 
zone i is given by: 
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In this model, i
jx  is the temperature of the jth node on the ith 

zone in degrees Celsius, h is the convection factor, and 

 are, respectively, the ambient air temperatures of the 

top and bottom of the plastic sheet. 

top
T∞

bottom
T∞

iTF and 
iBF  are parameters 

dependent on the view factors between the top heaters and the 
zones, and the bottom heaters and the zones, respectively. 

and 
TjST

B jST are the temperatures of the jth top and bottom 

heaters, respectively. Parameters a, b and cj depend on the 
characteristics of the plastic sheet, including physical 
dimensions, conductivity and emissivity.  
The objective here is to control the temperatures of the heaters 
in a way that the node temperatures converge to a set of 

desired trajectories. Among the parameters defined in the 
model, the parameter a is a varying parameter which will 
attract most of our attention. This parameter is defined as: 

1

p

a
C xρ

=
Δ

                           (2) 

 
in which ρ , Cp and xΔ  are the density, specific heat capacity 
and the distance between corresponding nodes on two 
adjacent layers, respectively. The values of all of the 
parameters are expressed in SI units in Table 1. The specific 
heat capacity, Cp, varies with temperature of the plastic sheet. 
Therefore, the control design has to consider the parameter 
varying aspect of the system as well. An effective control 
cannot be designed without having some guarantee about the 
stability of the system. An affine quadratic stability test is 
used to analyze the stability of the closed-loop process. This 
test is discussed in the next section. 

 
Table 1: The values of the thermoforming 

process parameters 
Parameter Value 

H 6 
B 30 
c1 0.1871×10-8 

c2 0.3498×10-8 
c3 0.3197×10-8 
c4 0.2922×10-8 
c5 0.2671×10-8 
ρ  950 
xΔ  0.003 

 

3. AFFINE QUADRATIC STABILITY (AQS) 

Following the work of Gahinet et al. (1996), let us consider 
the following parameter-varying system: 

0( ) ( ) ( ),     (0)x t A x t x xθ= = ,                         (3) 

where t is the time, x is the state vector, x0 is the initial value 
of the state vector, A is the state matrix and θ  is the varying 
parameter vector defined as follows: 

1 2[ , ,..., ] K
Kθ θ θ θ= ∈ ,                         (4) 

 
where K is the number of varying parameters in the system. 
The state matrix ( )A θ  is affinely dependent on the 
parameters iθ : 

1 1 2 2( ) ... K KA A A Aθ θ θ θ= + + +                          (5) 
 
 where 1 2, ,..., KA A A are known fixed matrices. Each 

rameter ipa θ  is assumed to be bounded in the interval defined 
below: 

iθ [ ,  ]i iθ θ∈              (6) 
 
where iθ and iθ are known lower and upper bounds for iθ . 
The rate of variation for iθ  is well defined and satisfies: 

[ ,  ]i i iθ υ υ∈ ,             (7) 
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where  0  i iυ υ≤ < are known lower and upper bounds for θ . 
The upper and lower bounds on the parameters define a 
hyper-rectangle (or parameter box) whose vertices are defined 
by the following set: 

( ) { }{ }1 2: , ,..., : ,  K i i iV ω ω ω ω θ θ= ∈           (8) 

 
Similarly, the vertices of the parameter box for iθ  are given in 
the set: 

( ) { }{ 1 2: , ,..., : ,  K i i iR }τ τ τ τ υ υ= ∈            (9) 
 
Next, affine quadratic stability (AQS) for this system can be 
defined. 
 
Definition (AQS)- The linear system 

0( ) ( ( )) ( ),     (0)x t A t x t x xθ= =           (10)  
 
is affinely quadratically stable if there exist K+1 symmetric 
matrices P0, P1, …, PK such that: 
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hold for all admissible trajectories of the parameter vector 
1 2 Kθ θ θ θ=  that satisfy (6) and (7). 

According to Theorem 3.2 in Gahinet et al. (1996), if we let  

1 1
mean

  
: ,...,

2 2
K Kθ θ θ θ

θ
⎛ ⎞+ +
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⎝ ⎠

,          (12) 

then the system (10) is affinely quadratically stable if A( meanθ ) 
is stable and there exist K+1 symmetric matrices P0, P1, …, PK  
such that 

1 1 2 2( ) : ... K KP P P Pθ θ θ θ= + + +           (13) 

satisfies 

0T
i i i iA P P A+ ≥  for i=1,2,…,K,          (14) 

and 

0( , ) : ( ) ( ) ( ) ( ) ( ) 0TL A P P A P Pω τ ω ω ω ω τ= + + − <            (15) 

for all ( , ) V Rω τ ∈ × . 

Inequalities expressed by (14) ensure the multi-convexity 
which reduces the problem of finding an affine parameter-
dependent Lyapunov function to an LMI problem. Therefore, 
the derivative of the Lyapunov function with respect to time is 
only tested on a finite number of points, i.e., the vertices of 
the parameter boxes, indicated by (15). When (14) and (15) 
are feasible, a Lyapunov function for the system is given by: 

( , ) : ( )TV x x P xθ θ= .                       (16) 

In the next section, it is described how the AQS test can be 
applied to the thermoforming process. 

4. AQS FOR THE THERMOFORMING PROCESS 

In the previous section the AQS test was explained. However, 
the thermoforming oven model described in (1) does not have 
the form of the system given in (3). Therefore, we need to do 
some adjustments and consider some assumptions to be able 
to use the AQS test for sheet reheat. If we assume that the 
effect of the ambient air temperature is negligible and that the 
radiant energy does not pass through layers, the following 
model is obtained: 
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      (17) 
Fortunately, the nonlinear part of the model is not significant 
and linearizing the nonlinear part around some equilibrium 
point can express the behavior of the model for a rather large 
class of equilibrium points. Linearizing this model results in 
the following linear state-space system: 
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where i
jeqx is the equilibrium point for the temperature of the 

jth node of the ith zone, and  
 

i i i
j j jeqx x xΔ = − ,            (19) 
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Now, let us assume that the first and last states are available 
for static output feedback control. These states correspond to 
the top and bottom layer temperatures of zone i, respectively, 
which are measurable using infrared sensors on the AAA 
machine. An output feedback gain matrix K has been 
designed and tested experimentally as: 
 

1

2

3

4

5

-  

i

i

i

i

i

x

x

u K x

x

x

⎡ ⎤Δ
⎢ ⎥
Δ⎢ ⎥

⎢ ⎥= Δ⎢ ⎥
⎢ ⎥Δ
⎢ ⎥
⎢ ⎥Δ⎣ ⎦

,            (21) 

 
where 
 

1

2

0 0 0 0
0 0 0 0
k

K
k

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
.           (22) 

 
where Thus, the closed-loop state equations 
can be expressed as follows: 
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Since in this thermoforming process model there is only one 
varying parameter a, the vector θ  in (4) reduces to the scalar 
a. Referring to (2), the original varying parameter is Cp, which 
causes the parameter a to vary. Therefore, the interval limits 

introduced in (6) and (7) should be defined for the parameter 
a according to expected variations in Cp. Based on our 
experience these limits for high-density polyethylene (HDPE) 
are as: 
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Consequently, the ranges of variation of parameter a and its 
derivative can be obtained as follows: 
 

min max

max min

[ , ]

[ , ]d d

a a a

a a a

,

,

∈

∈
            (26) 

 
where: 
 

5
min

4
max

4
min

4
max

4.6784 10 ,

2.3392 10 ,

5.8480 10 ,

5.8480 10 .

d

d

a

a

a

a

−

−

−

−

= ×

= ×

= − ×

= ×

                  (27) 

 
The vertices of the corresponding parameter boxes, for the 
parameter a and its derivative, are defined as: 
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Now that a linear model is obtained, we transform its state 
equations to the standard form required in the previous 
section. Equation (23) can now be written as: 
 

( )i ix A a xΔ = Δ ,            (29) 
 
where: 
 

1

2

3

4

5

,  

i

i

i i

i

i

x

x

x x

x

x

⎡ ⎤Δ
⎢ ⎥
Δ⎢ ⎥

⎢ ⎥Δ = Δ⎢ ⎥
⎢ ⎥Δ
⎢ ⎥
⎢ ⎥Δ⎣ ⎦

 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

43



3
1 1

1

3
1 5

2

2( )
8 2 0 0 0

2 0 0
( ) 0 2 0

0 0 2
2( )

0 0 0 2 8

i

i

i
T eq

i
B eq

h b
c F x b

k
b b b

A a a b b b
b b b

h b
b c F x

k

⎡ ⎤− + −⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥
⎢ ⎥−
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥− + −⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

   (30) 

  
Since θ =a, Equation (5) becomes: 
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Next, in order to analyze the stability of this system, we must 
find the Lyapunov matrix P(a). The Lyapunov function 
corresponding to P(a) has the form: 

( , ) : ( )i iTV x a x P a xΔ = Δ Δ            (33) 
where 

0 1( )P a P aP= +  .            (34) 
 
Considering the structure of the A matrix in the model, the set 
of LMIs (14) and (15) can be written as follows: 

0     0,1T
i i i iA P P A i+ ≥ =  ,          (35) 

2
1 0 0 1 1 1 1 1 1( , ) : ( ) ( ) 0T TL A P P A A P P A Pω τ ω ω τ= + + + + , 

( ), aV Rω τ ∈ × .            (36) 
 
P0 and P1 are the symmetric matrices to be found as the 
solutions of this LMI problem. The two inequalities in (35) 
ensure the multi-convexity. Since A0=0, the inequality related 
to i=0, holds trivially. As can be seen in (36), the derivative 
of the Lyapunov function with respect to time, L, is only 
considered on the vertices of the parameter boxes,  and . 
As introduced in (28), four vertices exist, resulting in four 
inequalities in (36). Therefore, the problem of finding an 
affine parameter-dependent Lyapunov function is reduced to 
five LMIs defined by (35) and (36). Using the LMI toolbox of 
MATLAB, the following P0 and P1 can be obtained: 

aV aR

0

186.4818 251.9727 191.3607 145.3557 51.1843
251.9727 655.2064 528.8390 409.7752 145.3557
191.3607 528.8390 667.6532 528.8390 191.3607
145.3557 409.7752 528.8390 655.2064 251.9727
51.1843 145.3557 191.3607 251.9727 186.481

P = ,

8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1

0.0302 0.0409 0.0310 0.0236 0.0083
0.0409 0.1063 0.0858 0.0665 0.0236

= .0.0310 0.0858 0.1083 0.0858 0.0310
0.0236 0.0665 0.0858 0.1063 0.0409
0.0083 0.0236 0.0310 0.0409 0.0302

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (34) 

These symmetric matrices satisfy the LMIs (35) and (36). 
Therefore, the LMI problem is feasible and the system is AQS. 
The next section discusses some of the simulation results 
which confirm the stability of the system. 
 

5. SIMULATION RESULTS 

In the thermoforming reheat process, each plastic sheet first 
enters the oven. The sheet is heated to a particular temperature 
and is then sent to the thermoforming station. The desired 
trajectory for the temperatures at the two nodes on the top and 
bottom surfaces of the sheet is a ramp function leveling off 
after achieving a desired final value. Figure 3 shows this 
desired trajectory. Figure 4 demonstrates the temperatures of 
the nodes on the five layers of the plastic sheet. The curves 
show temperature trajectories for different constant as well as 
varying values for parameter Cp. In the case that Cp varies 
during simulation (dashed curve), it is assumed that when 
temperature increases to the glass transition temperature 
(150oC), Cp will increase from 1500 to 7500. If the 
temperature increases more, Cp decreases. It can be seen that 
the surface temperatures follow the desired trajectory in all 
scenarios, considered for the varying parameter Cp. Finally, 
Figure 5 shows the error between the desired value and the 
actual temperature on the node of the first layer. These curves 
consistently confirm the robust stability of the system with 
respect to variations in the parameter Cp. 
 

6. CONCLUSION 

In this paper, the problem of stability analysis of a feedback- 
controlled thermoforming sheet reheat process was addressed. 
Since most thermoforming processes are not currently 
operated autonomously, stability analysis can be considered 
as an important step towards automatic control of such 
systems. The nonlinearity and parameter-varying nature of 
these processes makes this analysis more difficult. Searching 
for a parameter-dependent Lyapunov function was chosen as 
a strategy to test the stability of the system. This methodology 
suggests a number of linear matrix inequalities to check the 
stability of the system. In models that possess a large number 
of varying parameters this approach may be hard to apply. 
However, the thermoforming model applied in this paper is 
dependent on only one varying parameter. Therefore, it can be 
considered as a suitable application of this approach. 
Simulation results were also provided to support the 
theoretical findings. 
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Figure 3: The desired trajectory for the surface temperatures Figure 5: The error between the temperature of the first layer 

node and the desired trajectory  
Solid Curve: For three different values of the parameter Cp 

(1500, 4500, 7500) 
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Dashed Curve: For Cp rising from 1500 to 7500 during the 
first 500 seconds. 
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