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Abstract: A time delay estimation(TDE) method for MIMO systems, using combined contin-
uous wavelet transform(CWT) and cross correlation method, is proposed. By calculating and
handling the cross correlation between the CWT coefficients of system input and output data,
a series of time delays over scales (frequencies) are calculated and an unbiased estimation is
deduced from them. The TDE method under closed loop case is also studied. The numerical
examples with simulation as well as experimental data verify that the procedure works well.
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1. INTRODUCTION

Time delays exist in most practical systems. For instance,
a range radar emits a narrow-band signal and consequently
receives the delayed reflection to detect the object location;
in chemical processes, a product line built up of capacities
and pipes has a dead time, making the response of the plant
to be slow. Time delays significantly affect the performance
of the control system since they introduce significant phase
lags in the process. There are many methods available for
estimating delays in univariate processes. However there
are relatively few methods for estimating time delays in
multivariate systems under open loop and closed loop
conditions. (See Bjöklund 2003 , Richard 2003 )

Two TDE methods in literature are due to Zheng and
Tjeng (2003) based on signal processing techniques and
Isaksson (2001) based on classical control methods. In
the latter case, not only the delays , but the system
dynamics may also affect the output signal. We focus on
the estimation of the actual delay for MIMO systems.

A method is developed for TDE, based on a combination
of continuous wavelet transform(CWT) and cross corre-
lation. Cross correlation are computed between the CWT
coefficients of the input and output data. Comparison with
other methods is given in the numeric examples. The newly
proposed method gives interesting insight in the meaning
and role of a delay for MIMO systems.

2. TIME DELAY PARAMETRIZATION

A continuous-time model is assumed to describe MIMO
systems. Data with uniformly sampled single rate or non-

uniformly sampled multirate signals are acceptable. A va-
riety of model structures can be chosen, since we consider
a model free method that the TDE algorithm is insensitive
to the system parameterization. Without loss of generality,
a continuous state space model is used to describe the data:

{

ẋ(t) = Ax(t) + Bud(t) + ω(t)

yd(t) = Cx(t) + Dud(t) + v(t)
(1)

where time delays are parameterized by input delay and
output delay vectors, defined as follows:

du = [du
1 du

2 · · · du
q ],

dy = [dy
1 dy

2 · · · dy
p ].

More clearly, the delayed data are defined as

ud(t) = [u1(t − du
1 ) u2(t − du

2 ) · · · uq(t − du
q )],

yd(t) = [y1(t + dy
1) y2(t + dy

2) · · · up(t + dy
p)].

The physical meanings are clearly evident: the input/output
delay vectors split the whole delay into two parts that
are contributed by the inputs and outputs respectively.
For example, the (i, j)th element of the delay matrix ∆
denotes the delay from jth input to ith output with input
and output delay contributions given by:

∆ij = dy
i + du

j

In the frequency domain, the corresponding transfer func-
tion will be:

hd
ij(s) = h0

ij(s)e
−s∆ij ,

where the transfer function hd(s) is decomposed into a
delay free factor h0(s), and pure delay term.
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3. REVISITING THE CLASSICAL DELAY
ESTIMATE METHODS

The SISO pure delay estimation problem can be consid-
ered as follows:

{

x1(t) = s(t) + n1(t)

x2(t) = αs(t − D) + n2(t)
,

The correlation between the emitted signal x1 and the
received x2 is given by:

Rx1,x2(τ) = E[x1(t)x2(t − τ)].

With the assumption of ergodicity, The correlation of x1(t)
and x2(t) is approximated by

R̂x1,x2(τ) = lim
T→∞

1

2T

∫ T

−T

x1(t)x2(t − τ)dt,

where [−T, T ] is the observation interval. While x2(t) is
proportional to x1(t), regardless of the noise, the cross
correlation is also proportional to the autocorrelation of
x1(t):

R̂x1,x2(τ) = αRx1(τ − D).
The autocorrelation has the property that Rx(τ) ≤ Rx(0)
for all τ . So one can find the maximum and obtain the
delay by locating its abscissa value at τ − D = 0, which
solves the problem in SISO case.

Consider the MIMO model in eqn. (1), where in general
different delays may exist between distinctly emitted and
received signals:

yi(t) =

q
∑

k=1

∫

∞

−∞

h0
ik(t − s)e−s∆ikuk(s)ds + vi(t).

For the MIMO case there is no unique maximum corre-
lation due to the effect of other system dynamics on the
process output of interest. By simple derivation, we have
the following equation:

R̂uj ,yi
(τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(s)R̂uj ,uk

(∆ik+s+τ)ds+R̂uj ,vi
(τ)

(2)
The following assumptions on the model are needed to
further simplify this model:

A1. All inputs are uncorrelated with each other;
A2. All inputs are uncorrelated with each output noise
vi(t);
A3. h0

ij(t) is a finite impulse response: ∀ ε > 0, ∃ th < ∞
that |h0

ij(t)| < ε when t > th.(The duration th of a system
is define as the minimum value of th.)

Lemma 1. Under the above stated assumptions(A1, A2
and A3 ), eqn. (2) can be simplified to:

R̂uj ,yi
(τ)

.
= (h0

ij ∗ R̂uj
)(−τ − ∆ij)|[0,th] (3)

where “∗” denotes the convolution operation, and [0, th]
defines the convolution interval. Here th also depends on
the channel index i and j, and is omitted for simplicity
here and in the ensuing text unless necessary for clarity.
Furthermore, the following assumption can be made prac-
tically:

A4. The estimation of time delay according to the maxi-
mum value of eqn. (3) is bounded by:

∆ij ≤ ∆̂ij ≤ ∆ij + th. (4)

This is important to ensure that our theory can be devel-
oped.

However, the delay estimate for MIMO systems can only
be implemented when th is estimated separately. Therefore
analysis in the frequency domain is needed to obtain this
estimation. For a specific system, the transfer function
and its duration th are fixed. However if we extract from
h0(t) part of its frequency spectrum by a band-pass filter,
then the filtered h0

f (t) will have a different duration,
corresponding to the band frequency. From a series of such
analysis, the transfer function is decomposed into a set of
filtered transfer functions.

Let hd(t) be filtered by an ideal narrow band filter Fb(ω),
with the center frequency ω0 and band width ∆ω. The
time response of the filtered transfer function hd

f (t) in the
frequency domain is given by:

hd
f (ω)|ω0 =

{

hd(ω), |ω − ω0| < ∆ω/2, ∆ω > 0

0, otherwise.

since thf is filtered by a narrow band filter, its impulse re-
sponse consists of only parts of h0(t) with frequencies near
ω, therefore thf , the duration of h0

f (t) under assumption
of ideal narrow band is given by:

thf |ω0

.
=

∣

∣

∣

∣

arg[hd(ω0)]

ω0

∣

∣

∣

∣

− τ = −arg[h0(ω0)]

ω0
.

Since arg[h0(ω)] is bounded, it follows that when ω0 → ∞:

lim
ω0→∞

thf |ω0
= 0 (5)

According to assumption A4, it asymptotically suppresses
the effect of system dynamics leading to an explicit delay
values.

However this can never be implemented by Fourier trans-
form, which loses all the time domain information, since
it is impractical to take transform at infinite frequencies.
This is the reason for introducing wavelet transform, which
preserves time domain information while analyzing the
signal in the frequency domain.

4. USING CWT: CORRELATION ANALYSIS IN
TIME-FREQUENCY DOMAIN

Based on the preceding analysis, wavelet transform is
used to decompose the input and output data, in time
and frequency domains. The CWT coefficients appear to
be pseudo pure delay signals, which means that only a
time delay (phase lag) exists between the input/output
coefficients. We then change scales (i.e. time) to vary the
effect of the system dynamics on the correlation, which
gives information of the true delay. This eases the TDE
task, and delay estimation with an improved precision is
obtained.

4.1 Continuous wavelet transform

The wavelet mother function ψ(t) satisfies the admissibil-
ity condition and it is defined as:

ψa,b(t) =
1√
a
ψ(

t − b

a
),
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with the scale and shift parameter a, b. So the CWT of
f(t) is defined as its inner product with ψa,b :

Wf(t)(a, b) =

∫

∞

−∞

f(t)ψa,b(t)dt,

where the superscript “∗” denotes the complex conjugate.
To change a and b in ψa,b is equivalent to stretch (or com-
press) and slide ψ(t) along the time axis. The result can be
shown in a 2-D shifting-scaling (similar to time-frequency)
graphic, showing the local frequency components in the
signal.

Take the ’Morlet’ function for an example, which is defined

by ψmorl(t) = 1/
√

2π · e(−t2/2)ejω0t and ψ̂morl(ω) =

1/
√

2π · H(ω)e(ω−ω0)
2/2 in time and frequency domain

respectively. H(ω) is the unit Heaviside function. The
original input/output is then decomposed, as if being
band-pass filtered by the wavelet:

h0
f (ω)|ω0 =

{

h0(ω)e−(ω−ω0)
2/2, |ω − ω0| < δ/2, δ > 0

0, otherwise.

Although the frequency band of wavelet is not narrow
enough, the series of transforms corresponding to different
scales (frequencies) will still show the trend where the true
th supposed to lie. For example, the property self similarity
given by Tabaru (1997a) forms one of the method.

The inverse transform (see eqn. (6)) given (Daubechies,
1992) will be used to explain the functionality of our
algorithm later in this paper.

f(t) = C−1
ψ

∫

∞

−∞

∫

∞

−∞

dadb

a2
Wf(t)(a, b)ψa,b (6)

4.2 Correlation analysis based on wavelet transform

If we collect all of Wuj(t)(a, b) with a0 as the ψa0,b(t)-
filtered signal, and take b as the time index, we can
get correlations of wavelet filtered signal as follows (See
derivation in Appendix B.):

R[Wuj(t)(a0,b),Wyi(t)(a0,b)](τ)

=

q
∑

k=1

∫

∞

−∞

h0
ik(r)R[Wuj(t)(a0,b),Wuk(t)(a0,b)](r + τ + ∆ik)dr.

Denote RW (x, y, t) = R[Wx(a0,b),Wy(a0,b)](t) and RW (x, t) =
RWx(a0,b)(t) so the above equation becomes:

RW (uj , yi, τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(r)RW (uj , uk, r+ τ +∆ik)dr.

This is a sum of q SISO cases, analogous to eqn. (2),
hence it can have more than one peak indicating delays in
different channels. Assumption A1 is practically a strong
condition, since redundant signals often appear in the data
collection. As the data are all decomposed by wavelets,
only the noncorrelation of the wavelet coefficients are
necessary. The following assumption is then considered to
replace assumption A1 :

A5.(replace A1): Assume that the inputs vary and are
sustained for sufficiently long periods so that their CWT
coefficients at part of the scales are uncorrelated.

In data preprocessing, only data segments with enough
excitation are chosen from the sampled data set (Isaksson,
2001). Since a series of delay estimations are obtained
with respect to different scales, only part of the CWT
coefficients have to be uncorrelated. This will be a weaker
condition than to require that all uk and uj uncorrelated
in A1.

Then the above result of delay estimation still holds based
on assumption A5 :

RW (uj , yi, τ)
.
= (h0

ij,W ∗ RW (uj))(−τ − ∆ij)|[0,thW ] (7)

where thW is the duration of h0
ij,W (t), filtered h0

ij(t), by

the wavelet ψa0,b(t).

When we view the equation in the frequency domain, it
is clear that Wuj(t)(a0, b) and Wyi(t)(a0, b) will both have
the same narrow band centered at ω = ω0/a0. Recall the
relationship in assumption A4 and eqn. (7), where we have
the delay estimate for each scale such that:

∆ij ≤ ∆̂ij(a0) ≤ ∆ij + thW (a0, b) (8)

Based on eqn. (5) and the fact a0 → 0 ⇒ ω0/a0 → ∞,
it results in thW (a0, b) → 0, hence leads to our most
important conclusion:

Theorem 1. Assuming that the spectrum of each input
varies enough with time, we then have

a0 → 0 ⇒ ∆̂ij → ∆ij (9)

Remark 1. Data with enough excitation are needed to
satisfy the assumption for this theorem. As can be seen
from further analysis, non-stationary signals may give a
better result.

Remark 2. It will be noticed that the wavelet transform is
not available at or too close to a0 = 0, due to noise cor-
ruption and numerical computation. Then this limitation
is circumvented by a deduction from estimation at some
higher scales.

Visually, the algorithm begins with the cross correlation
between CWT coefficients of input/output data, in a series
of scales. A 2-D correlation is obtained, where we search
at each scale for several peak values (maximum and sub-
maximum), whose location will most possibly refer to the
delay (We use classical correlation TDE method to identify
them). Therefore more than one candidate value for each
scale is chosen, which is shown graphically with respect
to scale (see fig. 1, the correlation of 4th input and first
output of a MIMO system. Details about the concerned
system are described in subsection 5.1). We can see that
the delay candidates appear as almost straight lines! In
addition, with the scale decreasing, they point to the true
time delay.

Such figures give the estimation of one element in the delay
matrix. In most cases, not all elements are well estimated.
Some of the delays are allowed to be listed as missing.
According to eqn. (2), we can calculate input delay and
output delay vectors by LS solution as follows:
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Fig. 1. Possible delay values from correlation. (Middle of
the three dash lines (red): true delay; upper (blue) dash
line: result from classical correlation TDE method;
lower (black) dash line: specified lower bound for
estimation (upper bound invisible); dark (magenta)
stars: max correlation for each scale; light (cyan) star:
sub-max correlations for each scale; thin (and blue)
lines: straight line fitting; pentagon: final estimation.)



















d̂u
1 + d̂y

1 = ∆̂11

d̂u
2 + d̂y

1 = ∆̂12

...(missing equations)

d̂u
q + d̂y

p = ∆̂pq

The delay matrix will be reconstructed with the estimated

values: d̂u
1 , · · · , d̂u

q , d̂y
1, · · · , d̂y

p.

4.3 Comparison with existing method

Tabaru (1997a, b) also applied wavelet transform and cross
correlation. Both of his proposed methods share the same
idea of taking wavelet transform on the correlation of input
and output data. These two methods are compared here.

It is hard to tell which solution is the better from the
frequency analysis, according to the Wiener-Khintchine
equation

RW (uj , yi, τ) =

∫

∞

−∞

SW (uj , yi, ω)ejωτdω,

where SW (uj , yi, ω) = S[Wuj(t)(a,b),Wyi(t)(a,b)](ω). So it is

found that

RW (uj , yi, τ) =

∫

∞

−∞

(ψ̂a,b(ω))2Suj ,yi
(ω)ejωτdω.

Compared with Tabaru’s algorithm (while denoting that
WR(uj , yi, τ) = WR[uj(t),yi(t)](τ)(a, b)):

WR(uj , yi, τ) =

∫

∞

−∞

ψ̂a,b(ω)Suj ,yi
(ω)ejωτdω,

the two have nearly the same frequency spectrum, Since

(ψ̂a,b(ω))2 and ψ̂a,b(ω) are both Gaussian with different
parameters. So why should the former have a better

performance, according to our numerical example (see
numeric examples below)?

This can be explained by the local and global properties.
The correlation is a global function that ignores the time
varying property, and the wavelet function is well aware of
that. We can see that our method calculates the correlation
from the wavelet decomposed signals:

RW (uj , yi, τ) = lim
T→∞

1

2T

∫ T

−T

Wuj(t)(a0, b)Wyi(t)(a0, b−τ)db

(10)
while in Tabaru’s method, correlation is carried out before
wavelet transform:

WR(uj , yi, τ) =

∫

∞

−∞

R[uj(t),yi(t)](τ) · 1√
a0

ψ∗(
τ − b

a0
)dτ.

In the correlation

R[uj(t),yi(t−τ)](τ) = lim
T→∞

1

2T

∫ T

−T

u(t)y(t − τ)dt,

we recall the inverse CWT in eqn. (6)

R[uj(t),yi(t−τ)](τ) = lim
T→∞

1

2T

∫ T

−T

(

C−1
ψ

∫

∞

−∞

∫

∞

−∞

Wu(t)(a, b)

ψa,b dadb

a2

)

y(t − τ)dt,

and found the following relationship by exchanging the
integration order:

R[uj(t),yi(t−τ)](τ) = C−1
ψ

∫

∞

−∞

∫

∞

−∞

(

lim
T→∞

1

2T

∫ T

−T

Wu(t)(a, b)

y(t − τ)dt

)

ψa,b dadb

a2
,

from which Tabaru’s method is interpreted as

WR(uj , yi, τ) = lim
T→∞

1

2T

∫ T

−T

Wu(t)(a0, b)y(t − τ)dt(11)

Then the difference is clarified by comparing eqs. (10)
and (11). Since y(t − τ) has not been decomposed in
the latter case, the correlation in Tabaru’s method is
“contaminated” by the system dynamics while our method
is not. Therefore a better result is expected from our
method.

4.4 Closed loop case

In practical cases, closed loop systems are more likely to
be considered. The transfer function of the controller is
defined as Hc(s) in s-domain without delay. So the closed
loop system can be expressed as follows:

y(s) = (I + H(s)Hc(s))−1H(s)Hc(s)r(s),

where r(s) is the reference input vector. And the controller
output vector e(t) is defined as:

e(t) = Hc(t) ∗ (r(t) − y(t)),

y(t) and e(t) have the same relationship as the open loop
system:

y(t) = H(t) ∗ e(t).
The time delays are estimated in the same manner. How-
ever, since e(t) is now correlated with y(t), eqn. (7) will
change accordingly:
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RW (ej , yi, τ) =

p
∑

k=1

RW (hc
jk(t) ∗ rk(t), yi, τ)

−
p

∑

k=1

RW (hc
jk(t) ∗ yk(t), yi, τ),

In a closed loop system y(t) will follow r(t), so uncorrela-
tion of different yi(t) is assumed because rk(t) is uncorre-
lated with each other. Similarly, yi(t) and rk(t) in different
channels are considered as uncorrelated. As a result, the
above equation is reduced to two main terms:

RW (ej , yi, τ)
.
= RW (hc

ji(t) ∗ ri(t), yi, τ)

− RW (hc
ji(t) ∗ yi(t), yi, τ).

The second term will degrade the precision of the estima-
tion, which is determined by the strength of the feedback
link. Therefore the algorithm is applicable in the closed
loop case, but will not yield as good results compared with
the open loop case, as is shown in the simulation in the
next section.

5. SIMULATION AND EXPERIMENTAL EXAMPLES

We illustrate the applicability of the proposed methods,
with data from numerical simulation and a laboratory
experiment. Both open loop and closed loop results are
shown. The results are verified from knowledge of the true
parameters and/or simulation.

5.1 Simulation example

In order to show the effect of the wavelet method, we
apply the algorithm to a simulated system, which is a
3rd order state space system consisting of 4 inputs and
3 outputs. The settling times of all of the subsystems’
impulse responses are less than 20s. The total simulation
time is 400s. The input delay and output delay vectors are
set as du =[4.43 5.24 3.54 4.27]s and dy =[5.22 3.37 7.43]s
respectively. Therefore the true delay matrix is constructed
from the two vectors as:

∆ =

[

9.65 10.46 8.76 9.49
7.80 8.61 6.91 7.64
11.86 12.67 10.97 11.70

]

A cluster of sinusoidal waves with frequencies restricted
in [0, 5]rad/s generate the input signals, discretized to
T=0.02s. At t=200s, a change of frequency spectrum
occurs.

CWT is carried out on every input and output in scales
from 10 to 65, and delay estimation is obtained from
each channel from the maximum correlation and linear
regression (refer to fig. 1).

∆̂ =

[

9.64 10.42 8.72 9.28
7.93 xxxx 6.99 7.60
11.89 12.49 10.89 11.74

]

where “xxxx”s indicates failure of the algorithm in some
channels, due to its poor performance, we reconstruct the
delay matrix accordingly:

∆̂R =

[

9.65 10.34 8.70 9.37
7.92 8.60 6.96 7.64
11.89 12.58 10.93 11.61

]

this is very close to the true delays, with a mean absolute
error of 0.06s (around 0.6%) and max absolute error 0.12s
(around 1.2%).

We compare this result with Tabaru’s method, by carrying
out their algorithm channel by channel:

∆̂Tabaru =

[

9.80 10.48 8.62 9.75
7.28 7.96 6.10 7.22
11.52 12.20 10.34 11.46

]

whose mean and max absolute error are 0.39s(around
3.9%) and 0.81s(around 8.1%) respectively.

The conventional correlation method gives even worse
results, which is also indicated in fig. 1. It yields the mean
and max absolute error as 6.71s and 20.37s. The reason
is that some of the channels are estimated incorrectly and
can not be detected at all, so that the errors spread by
linear regression to all the channels.

The closed loop case is also studied under similar condi-
tions, where the process consists of a 3×3 system with
delays as:

∆c =

[

16.65 27.46 21.76
7.80 18.61 12.91
11.86 22.67 16.97

]

The feedback is given by a random state space model. The
delay matrix is estimated as:

∆̂c =

[

26.64 27.35 27.25
7.97 18.56 6.61
11.83 13.98 xxxx

]

while finally the reconstructed delay matrix is obtained:

∆̂R
c =

[

25.91 30.39 24.94
9.87 14.35 8.91
10.67 15.15 9.71

]

with mean and max absolute error as 4.62s(∼26%) and
9.26s(∼53%) respectively. Since the mutual correlation be-
tween channels is large due to the feedback , the estimated
delay matrix is not as good compared with the open loop
case.

5.2 Experimental data

We have also collected data from a four tank water level
system with two adjustable valves. The flow rate through
the valves to tanks are set as two inputs, while the outputs
are two of the four tank water levels. Data from this
equipment is sampled at T = 1s, and the experiment takes
25000s in total. Rectangle waves with random period are
given as the inputs. The system delays were estimated
in advance by other methods, and then manually set to
[72, 126]s for input delays and [225, 117]s for output delays.
Hence the true delay matrix is

∆ =

[

297 351
189 243

]

.

From the wavelet method, We get the following result:

∆̂R =

[

303 357
195 249

]

.

Each of the channel has an error of 6s (or around 2%),
larger than the true value. No closed loop data were
available from this experimental setup for the specified
delays and hence closed loop evaluation is not possible.
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6. CONCLUSION

A method to estimate the time delays of MIMO systems
has been discussed, based on the CWT and correlation
analysis. For the data with good excitation when the pro-
posed conditions are satisfied, delays of distinct channels in
MIMO systems can be separated and identified well. Under
ideal conditions based on the principle of the algorithm,
the estimation should converge to the true values.

We deal with the closed loop case in the same way, where
the simulation example has shown that the estimation
is not as good as in open loop case. Nevertheless, we
can separately examine the correlation of the wavelet
transform and obtain a better solution. The closed loop
time delay system still needs much improvement.

The main contributions of this paper are:

(1) CWT is used to decompose the signal spectrum and
separate the system dynamics and time delay, making
this TDE algorithm applicable to MIMO systems;

(2) Under closed loop systems, the algorithm works well,
although the results depend on how strong the feed-
back link is.

(3) A parametrization scheme of input and output delay
is used, reducing effectively the number of delays and
thus improving the precision;

(4) The mechanism of CWT giving the time delay esti-
mation, i.e. so called self similarity in Tabaru’s paper,
is resolved theoretically in this paper.

In summary, this TDE algorithm is a nontrivial synthesis
and improvement of existing theories and methods, in
order to get a effective TDE method for MIMO systems.
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Appendix A. DERIVATION OF EQN. (2)

From definition, the correlation

R̂uj ,yi
(τ) = lim

T→∞

1

2T

∫ T

−T

uj(t)yi(t − τ)dt

is given, as well as the output yi(t − τ) is generated by
inputs with delays:

yi(t− τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(s)uk(t−∆ik −s− τ)ds+vi(t− τ).

By substituting the second equation to the first one, and
changing the order of integration (definition integration
that belongs to commutative operations) and summation,
we have

R̂uj ,yi
(τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(s) lim

T→∞

1

2T

∫ T

−T

uj(t)uk(t − ∆ik

−s − τ)dtds + lim
T→∞

1

2T

∫ T

−T

uj(t)vi(t − τ)dt,

where the simplified expression becomes

R̂uj ,yi
(τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(s)R̂uj ,uk

(∆ij+s+τ)ds+R̂uj ,vi
(τ).

This is the result shown in eqn. (2).

Appendix B. DERIVATION OF EQN. (7)

For a specific scale a = a0, the correlation between the two
CWT coefficients of inputs and outputs is given by:

RW (uj , yi, τ) = lim
T→∞

1

2T

∫ T

−T

Wuj(t)(a0, b)Wyi(t−τ)(a0, b)dt.

The wavelet transform of yi(t) is substituted by the
definition:

RW (uj , yi, τ) = lim
T→∞

1

2T

∫ T

−T

{

Wuj(t)(a0, b) ·
1√
a0

∫

∞

−∞

yi(s − τ)ψ∗(
s − b

a0
)ds

}

dt.

Moreover, the item yi(s − τ) is also replaced by

yi(s−τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(r)uk(s−τ −r−∆ik)dr+vi(s−τ),

hence it can be derived that

RW (uj , yi, τ)

= lim
T→∞

1

2T

∫ T

−T

(

Wuj(t)(a0, b)

∫

∞

−∞

h0
ik(r)

q
∑

k=1

Wuk(t−τ−r−∆ik)(a0, b)ds + Wvi(t−τ)(a0, b)ds

)

dt

and finally,

RW (uj , yi, τ) =

q
∑

k=1

∫

∞

−∞

h0
ik(r)RW (uj , uk, r + τ + ∆ik)dr

+RW (uj , vi, τ).

Eqn. (7) is derived when noise term is ignored.
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