
A Component Based Architecture for the
Reconfiguration of Hybrid Systems Using

Control Description

Ahmed Guadri ∗ Nathalie Dangoumau ∗∗ Etienne Craye ∗∗∗

∗ Ecole Centrale de Lille, Villeneuve d’Ascq, 59650 France
(e-mail : Ahmed.Guadri@ec-lille.fr)

∗∗ Ecole Centrale de Lille, Villeneuve d’Ascq, 59650 France
(e-mail : Nathalie.dangoumau@ec-lille.fr)

∗∗∗ Ecole Centrale de Lille, Villeneuve d’Ascq, 59650 France
(e-mail : Etienne.Craye@ec-lille.fr)

Abstract: Control systems are required to satisfy increasingly severe safety and performance
criteria (reliability, security· · ·) mainly in the case of large scale systems. Such systems have to
be described with a multiple abstraction levels paradigms such as hybrid systems (implementing
both discrete and continuous dynamics). We present and formalize a new strategy for the
reconfiguration of a hybrid system that relies on the specification of a region-based component-
oriented model which is updated whenever the system dynamics are modified. The standard
controller is modified whenever a fault is detected and identified by use of an objectives
automaton : Failing standard controls are replaced by a new sequence of controls chosen from
an input space. Finally, we illustrate this method in the case of a system of communicating
tanks.

Keywords: Active approaches to fault tolerant control, Hybrid systems modeling and control

1. INTRODUCTION

Today, fault tolerant control and design offers many chal-
lenges such as the analysis complexity which prevents
optimal exploitation of the dynamics of the analyzed sys-
tem. Therefore, abstraction approaches may be used in
order to allow the reconfiguration of a control system
depending on the system dynamics evolution and objec-
tives specifications. Such theories has been developed in
Manz and Gohner [2002] to describe qualitative models
of each component, so that a component-oriented model
could be built in order to solve monitoring problems. This
abstraction is made through a transition graph describing
the evolution of the qualitative state of each component.
An analog methodology is described in Su et al. [2003].
The use of supervisory theory for the control of hybrid
systems has been adopted in Koutsoukos et al. [2000] with
the adoption of an interface as a medium device between
the process and the controller (Stiver et al. [1995]). Analog
methodologies are exposed in Alur [2000], Aström et al.
[2001]. In contrast, it may be necessary to use a hierarchi-
cal modeling in order to simplify the task of control and
reconfiguration such as in Lorimier [2005] in the case of
large scale systems.

In this article we adopt a component-oriented hybrid
modeling for the description of a hybrid system where
each component is described with an hybrid formalism
(presenting both continuous and discrete evolutions). The
proposed architecture is depicted in Figure 1 and consists
of three main parts : The hybrid system, the control mod-
ules and the reconfiguration modules. This choice allows

the development of efficient reconfiguration strategies that
benefit from the exhaustive description of components
dynamics.

Fig. 1. The control and reconfiguration architecture

2. THE TWO TANKS PROBLEM

In order to illustrate this méthodology, we use a simple
example which is represented in Figure 2 and is composed

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6572 10.3182/20080706-5-KR-1001.3610

Fig. 2. Two tanks system

of two coupled tanks T1 and T3. T3 is a tank that is
dedicated to deliver a suitable flow of water to another
complex system which is not represented. In practice, this
flow could be provided if the fluid level in T3 is kept in a
medium interval (i.e. the level in T3 is between 0.09 m and
0.11 m). T3 is supplied by water flow from T1 through the
controlled valve V1, and T1 is filled by the controlled pump
P1. While V1 can only be completely opened or completely
closed, P1 is controlled through a PI regulator according
to an injected level. Also, a valve VL is used to simulate a
leakage in T1. Let h1 and h3 be the water levels in T1 and
T3, QP the water flow from the pump P1, Q13 the flow
from T1 to T3 and QL the flow of the lost water from T1

in case of leakage. Finally, QN is the water flow delivered
from T3 to the consumer.

3. HYBRID SYSTEM MODELLING

The hybrid system S is a complex hybrid system composed
of communicating components {c1, ..., c|S|}. Each compo-
nent ci is described with two automata : The behaviour
automaton (ci.A) and the fault automaton (ci.AFi).

Notations In this paragraph, we introduce some nota-
tions that are used in this section. First, the cardinality of
a set E or the number of lines in a vector v are respectively
|E| and |v|, whereas the absolute value function will be
noted by abs(x), x ∈ <. Also, we adopt the dot notation
in order to describe membership.

In addition, two different temporal scales are adopted :
The ordinary continuous time t and the step index n. n(t1)
is the step index when t = t1, and t[n1] is the moment
of transition from n1 − 1th to the nth

1 step. Recall that
∀t ∈ (t[n1], t[n1 + 1]), n[t] = n1

3.1 The behavior automaton

Each component dynamics is described through a variant
of hybrid automaton and possesses a number of algebraic
shared continuous variables with the other components.
Each state is associated with some dynamic continu-
ous variables specifications (through ordinary differential
equations) and shared variables (through algebraic con-
tinuous variables) evolution. Let ci.x be the continuous
dynamic variable and ci.y the internal shared variables of

ci. Also, notice that ci.y is composed of a non modifiable
read only variable ci.yread, modifiable read/write variables
ci.ywrite and control continuous inputs ci.u. In addition,
crossing a transition is detected when a guard function
h is strictly positive and a control event σ is triggered.
In that case, the shared read/write variables are updated
with a reset function. Let H be the set of all detected
hypersurfaces in the system components and Σ the set of
control events.

Furthermore, we adopt Zi = Xi × Yi as a phase space,

and zi =
(

x
y

)
as the relative variable. Also, σ(t[n]) is the

event which was detected at t[n] (When t[n] < t < t[n+1]
we have always σ(t) = ε). At n, ci.ywrite := reinit(zi).

Component behavior evolution At each step n and for
every component ci ∈ S we define the behavior evolution
as :
Definition 1. ∀t ∈]t[n], t[n+1]] and suppose q̃i[n] = q. The
continuous evolution of the internal dynamical variables of
ci is defined by :

ẋi(t) = fi,j(xi, yi) = fi(qj , xi, yi)
yi.write(t) = yi.write(t, n) = gi,j(xi, yi)

A transition from the state q to a state q′ is crossed
according to the definition 2.
Definition 2. Let q̃i[n] = qsrc. If ∃e ∈ Ei such as e =<
qsrc, qdest, h, σ, reinit > and ∃τ ≥ 0 such that :

• h(zi(t[n] + τ)) > 0,
• ∃η0 > 0/∀η < η0, n(t[n] + τ − η) = n
• σ(t[n]) + τ) = σ

then e is crossed :
t[n + 1] = t[n] + τ

zi(t[n + 1]) = reinit(zi(t[n] + τ))

Notice that a trajectory which is tangent to {h(z(t[n] +
τ)) = 0} without crossing it does not triggers the transi-
tion crossing. In practice

3.2 The fault automaton

The fault automaton is used in order to give the compo-
nent qualitative state regarding faults at each moment.
Definition 3. ∀ci ∈ S we define a fault automaton AFi =<
QFi,H, Fi,0, δFi, Fi > with QFi : Set of automaton states,
H : Set of symbols referring to detected hypersurfaces (see
next section), Fi,0 is the automaton initial mode (which is
the safe mode). δFi is the transition function. Moreover,
the variable Fi(t) = ci.F (t) is the current fault mode at
t. Also, if t[n] < t < n(t) + 1, then we can simply note
Fi(t) = F̃i[n]. Finally, F (t) = F̃ [n] =< F1(t), ..., F|S|(t) >,
QF = QF1 × ...×QFn

4. CONTROL ARCHITECTURE

The control architecture consists of the controller and the
interface (injector and generator). This modeling allows
logic differentiation between the controller which is a

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6573

discrete event system and the hybrid process thanks to
the interface (see Figure 1.

4.1 The Interface

This part is composed of two modules : The injector
that converts the controller symbols into a continuous
and event inputs to the hybrid process and the generator
which informs the controller about the qualitative changes
(deduced from the crossed hypersurfaces) of the system
components.

These hypersurfaces are chosen depending on physical
constraints (for example a hypersurface that separates
two different dynamics) or objectives requirements (for
example, if an objective is to maintain the water level in
T3 between 0.09 m and 0.11 m, the generator must detect
whether the water level is below or above these levels. So
the component behaviour states must differentiate these
regions).

The symbols returned by the generator describe the evo-
lution of the system behaviour and faulty modes. We
define a system state at t as q(t) =< c1.q(t), ..., c|S|.q(t),
c1.F (t), ..., c|S|.F (t) >. Let Q be the set of all system
modes and R = 2Q.

The injector converts the controller symbolic entries into
continuous and event inputs to the process. For each
component c, there is a finite basis c.W = {w1, ..., w|W |}
of continuous functions pondered by coefficients vector

c.A(π) =

(˜c.α1(π)
...

˜c.α|W |(π)

)
which are chosen according to

the controler current state π̃[n]. For each component,
we define the admissible continuous control u as the
combination of c.W that is pondered with A(π) such as
c.u(t) =

∑|c.W |
i=1 c.αi(π̃[n(t)])wi(t), N(c.u) ≤ 0. In addition

to continuous inputs, the injector delivers a control event
σ(π[n]) in the beginning of each step according to the
controller state π[n].

4.2 The controller

Definition 4. The controller is a deterministic finite au-
tomaton Π =< QΠ, R, δ, π0 > with QΠ : The set of
controller states, R : Set of regions of Q. δ is the transition
function and π0 is the initial controller state. π(t) (π̃[n])
is the controller state at t (respectively step n).

The controller automaton evolves according to the system
state which is returned by the generator at each step,
whereas the injector interprets the controller state to select
a hybrid control for the process. Thereafter, we admit
that the system process coupled with the standard control
architecture always meet the objectives specifications until
a fault is detected.

4.3 Controller and Injector for the Two Tanks System

We choose the continuous input base W = {1}, with 1
is the function returning 1 for all t. This input base is
relative to the water level reference for the PI regulator of
the tank T1. The continuous input must verify ‖w‖∞ =
max

t
|w(t)| = max

t
{A(t)×W (t)} < 0.6.

As P1 is controlled by a PI regulator, a constant input
through w causes an oscillation around the new level
reference. For example, if the tank T1 is initially empty,
injecting α = 0.5 causes an overflow in T1. So, we choose to
make an initial control reference to bring the water closer
to 0.5 (α = 0.35 until the end of the first oscillation). After
that, the control architecture starts by injecting a reference
level of 0.5 to the pump, while the valve V1 is closed. When
the tank T1 is sufficiently filled, V1 is opened. Finally, the
control architecture starts a loop (opening V1, closing V1

while maintaining the level reference as 0.5). The standard
controller and injector iare given by Figure 3

Fig. 3. The standard controller and injector for the two
tanks system

5. RECONFIGURATION ARCHITECTURE

We assume that the controlled hybrid system (control
architecture + hybrid process) will behave according to
the objectives specifications until a fault occurs and causes
a failure. In this case, the reconfiguration module uses the
description database in order to update the controller and
injector modules. In this section, we start by formalizing
the objectives specifications through a state transition
automaton. After that, we give the reconfiguration algo-
rithms intended to compute alternative controls sequence
whenever a failure is detected. This sequence is exploited in
order to update the controller so that the system achieves
its objectives.

5.1 Objectives automaton

At each step, the objectives automaton defines the accept-
able destination of the next system state transition thanks
to the automaton defined in Definition 5
Definition 5. the objectives automaton is a non determin-
istic finite automaton AO : < O,R, δO, o0, inv > with O :
The set of fault modes. δO is the transition function. o0 is
the initial state. Finally, inv is a function that associates
to each o ∈ O a region o.inv ∈ R.

R is the set of system modes (a system state is a com-
position of component behaviour and faulty modes). In
addition, o.Tmax is the maximal duration of activation for
each state o ∈ O(which could be +∞). Also, we define o(t)
(õ[n]) as the current state at the instant t (step n).

According to Figure 4, the system must evolve into the
invariant of o1 in a finite duration, than it must oscil-
late around this region. o1.inv is the set of all system

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6574

Fig. 4. The objectives automaton

states such that T3 is in the state < qT32 >, with
qT32.inv = {0.9 ≤ h3 ≤ 0.11}, whereas o2.inv is the
system allowed states outside qT32.inv. We choose RI =<
qV LO, qT34, qT14 >, (qV LO corresponds to the valve VL

opened, whereas qT34 and qT14 respectively corresponds
to h3 > 0.3 and h1 > 0.55 (overflow risk)). Notice that the
control architecture of Figure 3 aims at keeping the system
state in < qT32 > (the water level h3 in [0.09, 0.11]) by a
loop increase/decrease that causes a very brief objectives
automaton transitions to o2.

Suppose that the objectives automaton state at n is o
(õ[n] = o). If the controlled hybrid process respects the
objectives specifications, the next system state must not
be in RI . Moreover, it must stay in its current state
or reach one of the following objectives automaton states
invariants. Formally, let Racc be the set of system states
where the system must evolve from its current state.
Definition 6. Racc(o) =

⋃
{o′.inv such that o ∈ O,∃r ∈

R/δO(o, r) = o′}

When a failure is detected, the first case is that the
system is not in a prohibited mode (q̃[n] /∈ RI), then the
reconfiguration control sequence must bring the system
into Racc without crossing RI . In the second case (q̃[n] ∈
RI), it may be impossible to reconfigure the system
architecture without crossing other prohibited regions (For
example, if we assume that the tank T3 must not be filled
more than 0.5 m, and if a failing control resulted in an
overflow, it is impossible to return to h3 < 0.11 without
crossing the prohibited region).

5.2 Failure detection

The reconfiguration is triggered whenever the system be-
haviour does not respect the objectives automaton evolu-
tion. In practice, such a condition is met when the system
does not evolve into the awaited modes in an acceptable
time, or when the system mode crosses a prohibited region.
Condition 1. The reconfiguration algorithm is triggered at
t if t−t[n(t)] ≥ õ[n(t)].Tmax is detected or the system state
q̃[n] is in a prohibited mode from RI

5.3 Input descriptions

This module contains informations about the qualitative
the system evolution according to the current input. Its
construction is performed by offline analysis of the whole

system. In practice, this analysis is achieved by partition-
ing the continuous input according of each component
according to its behavioural model and to its environment.
However, if some dynamics are not fully understood, then
we adopt a conservative description by describing only
the fully understood evolutions, or we making an approx-
imation of the system usual evolution. While allowing
more flexibility for controller modification with a much
simpler modeling, the latter option does not ensure the
system qualitative evolution as expected. Nonetheless, this
method could be acceptable if the nonlinearity degree is
high and the transitory phases are limited.

In order to achieve objectives specifications, these infor-
mations are stored in a database containing descriptions of
the components evolution depending on the hybrid entries
coefficients A and the environing components modes. In
practice, the description is given for each component c
with a function ∆(rsrc, rdest, rneighb, α, σ) that returns an
upper and lower bound (∆− and ∆+) for reaching rdest

from rsrc depending on the component environment state
rneighb. We assume that ∆− = +∞ means that using
the continuous input guarantees that the system does not
evolve to rdest. However ∆− = 0 describes an instanta-
neous evolution.

The offline analysis of each component may be achieved
through exhaustive simulation (because it is easier to
analyze a component behaviour rather than the whole
system evolution) or dynamic approximation.

The pump P1 descriptions The component P1 is rep-
resented in Figure 5. This component possesses a simple
descriptions as the automaton transitions are depending
on hypersurfaces that depends only on component contin-
uous control w. Thereafter, we adopt a partition PUT1 =
{U11 = [0, 0.3[, U12 = [0.3, 0.4[, U13 = [0.4, 0.55[, U14 =
[0.55,+∞[} be the P1 continuous input space partition.
The reason for introducing four states is that each one is
associated to an interval for the pump reference level which
enables some evolutions in the neighbour components.

For example, one of the descriptions of P1 is : ∆(< qP11 >
,< qP12 >,R, U12, ε) = (0, 0). This means that once the
pump P1 is in qP11 (w in [0, 0.3[), injecting w from U12 =
[0.3, 0.4[causes the component to move iummediately to
< qP12 > (w in [0.3, 0.4[), whatever the environing
components modes are. For P1, all the described evolutions
are instantaneous (∆ = (0, 0)) because the continuous
injected input is affected directly to w1.

5.4 Reconfiguration strategy

Whenever the controlled hybrid process fails to meet
the system objectives (If the control architecture is well
defined, this can not be possible unless a fault occurs) The
reconfiguration module starts the reconfiguration task by
trying to replace the associated hybrid control by a new
hybrid controls sequence in order to reach one of the next
objectives invariants or to return to the current objective
invariant.

Computation of a new controls sequence Assume that
at the step n, a fault in component cithat caused a failure
is detected (The fault automaton of ci has evolved into

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6575

Fig. 5. bahaviour automaton of P1

a non safe state). Let π̃[n], q̃[n], õ[n] be respectively the
current states of the controller automaton, the objectives
automaton and the hybrid process at n.
Definition 7. A sequence of hybrid controls sequence γ is
defined as :

γ =

 V1 σ1 h1

V2 σ2 h2

...
Vm σm hm


with Vj ∈ PU a set from the functional continuous input
space, σj ∈ Σ and hj ∈ H an hyperpsurface from Z.

The signification of injecting the hybrid sequence γ at n
is : At step n + j, the injector uses a continuous control
from Vj until the hypersurface {hj = 0} is crossed in the
increasing direction. At that instant, the control event σj

is delivered.

The computation of the new control sequence aims at
finding the qualitative continuous inputs Vj and control
events σj , whereas the effective controls are computed
progressively with the system evolution. The idea of the
hybrid control sequence generation is to find, thanks to
the description database, the admissible evolutions from
the current system mode to reach one of the following
objective modes invariants, or to return to the current
objective mode invariant within the specified duration.
An important criterion for the sequence generation is the
respect of the temporal evolution specification given by
the objectives automaton. Controls sequence generation is
achieved according to the algorithm 1.
Algorithm 1. (1) Starting from the current system mode

q̃[n] and objective mode õ[n], let index = 0 and the
initial reached state q̃[n] (The current system mode).
Go to 2.

(2) make an inventory of all possible evolutions in step
n + index + 1 according to the temporal description
database from the last reached system states. Go to
3.

(3) • If there is a reached region that intersects with
Racc or õ[n].inv within an acceptable duration,
then the associated hybrid control sequence is
adopted. Algorithm stopped.

• If all the last reached regions require temporal du-
ration higher than the maximal allowed duration
associated to the current objective mode, than
choose the hybrid control sequence that mini-
mizes the described duration in order to reach
Racc. If such a sequence exists, the algorithm is
stopped. Else, go to 2.

(4) index=index+1

A component c evolution from a state r1 to state r2 is
interpreted as possible if there is a control set from Û ∈
PU and a region r such that the neighborhood components
remains in r thanks to Û (with a description ∆− = +∞)
and ∃Û ′, σ such that ∆(r1, r2, r, hatU ′, σ) < +∞.

Global reconfiguration algorithm The generation of the
hybrid control sequence is incorporated in a more general
control and reconfiguration algorithme (algorithm 2).
Algorithm 2. Assume that a well defined control architec-
ture and continuous input partition is available for the
hybrid process S according to the objectives automaton
AO.

(1) Use the standard control architecture until step n
when a fault is detected. Then move to 2.

(2) According to the algorithm 1, generate a new hybrid

control sequence γ∗ =

 V ∗
1 σ∗1 h∗1

V ∗
2 σ∗2 h∗2

...
V ∗

m σ∗m h∗m

. Go to 3.

(3) update the controller automaton and the injector
in order to incorporate hybrid controls according to
γ∗ as the system mode evolves. This is done by
associating to each hybrid control (V ∗

j , σ∗j , h∗j) a new
control state that is interpreted by the injector by
injecting a continuous input from V ∗

j and a control
event σ∗j when h∗j > 0 is detected.

In order that the reconfiguration task succeeds, the system
dynamics must not be radically affected by the fault. In
fact, updating the controller and the interface modules
could be very fast when only some components are faulty
: The initial controller is modified in order to respect the
objectives automaton without modifying the global control
architecture. However, a radical change of system structure
and behaviour may need a new controller synthesis.

6. APPLICATION TO THE 2 TANKS SYSTEM

Suppose the following scenario : The control architecture
performs its mission until reaching π1. Assume now that
the valve V1 is blocked opened at this step. Triggering
V 1F fails to close the valve V1. Then, a failure will be
detected after some duration. Let n be the step of failure
detection, and the controller and objectives automata are
respectively π̃[n] = π3 and õ[n] = o2.

Depending on the available descriptions of the compo-
nents evolution, the reconfiguration module explores the
reachable system modes. In fact, when valve V1 is blocked

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6576

Fig. 6. A part from the controls sequence generation

opened, the control events V1O and V1F does not af-
fect the system evolution. Then the only controls that
could be used are the continuous inputs from PUT1 =
{U11 = [0, 0.3[, U12 = [0.3, 0.4[, U13 = [0.4, 0.55[, U14 =
[0.55,+∞[}. As the current objective mode is õ[n] = o2,
then the acceptation set is Racc = o1.inv =< qT32 > −RI .

Figure 6 gives a part of the modes exploration graph that
is the result of the algorithm 1. An acceptable sequence
that leads to Racc is to use a level refernce for P1 such
that α × 1 ∈ [0, 0.3[(with 1 the basis element defined
in the section 4.3, and α the relative coefficient). As the
evolution description does not depend on the coefficient α,
then we could choose an arbitrary level reference α∗ = 0.2.
It may be possible to take a precise input coefficient if we
add other restrictions to the objectives specifications. It is
important to remark that returning to the invariant of o2

because it is impossible the specified duration for staying
in o2 has been violated.

The generated hybrid control sequence is then used to up-
date the controller automaton and the injector according
to the algorithm 2. The injector is updated by assigning a
continuous input w = α ∗ 1 = 0.2. The resulting controller
and interface are depicted in Figure 7. Notice that the
main difference with the original control architecture is
the interpretation of controller states in order to regulate
the process.

7. CONCLUSION AND FUTURE WORK

Although this approach succeeds in reconfiguring the hy-
brid control strategy, we notice that it’s efficiency hugely
depends on the initial modeling. Also, reconfiguring the
system requires the handling of each component state at
each step. This leads to a great increase of the algorithm
complexity in the case of large scale complex systems.
Therefore, a next step is to extend our methodology to ex-
ploit the uncertain informations that are delivered by the
FDI modules. Also, we plan to formalize a methodology
of abstracting sets of components into a single subsystem

Fig. 7. The updated controller and Injector

that could be treated like an elementary component by the
reconfiguration module. This would allow the construction
of fault tolerant and hierarchical large scale hybrid sys-
tems.

REFERENCES

Rajeev Alur. Discrete abstractions of hybrid systems.
Proceedings of the IEEE, 88(7):971–984, 2000.

Karl Aström, Pedro Albertos, Morgens Blanke, Alberto
Isidori, Walter Schaulelberger, and Ricardo Sanz. Con-
trol of Complex systems. Springer - Verlag, 2001.

X.D. Koutsoukos, P. J. Antsaklis, J.A. Stiver, and M.D.
Lemmon. Supervisory control of hybrid systems. Pro-
ceedings of the IEEE, 88:1026–1049, July 2000.

Lionel Lorimier. La caractérisation dynamique des défail-
lances, Une nouvelle approche pour la gestion active des
défaillances au sein des systèmes physiques industriels
complexes. PhD thesis, Ecole Centrale de Lille et Uni-
versité des Sciences et Technologies de Lille, 2005.

Suzanne Manz and Peter Gohner. Development of Hybrid
Component Models for Online Monitoring of Complex
Dynamic Systems, volume 279/2002, chapter 22, pages
391–418. Springer Berlin/Heidelberg, 2002.

James A. Stiver, Panos J. Antsaklis, and Michael D.
Lemmon. Interface and controller design for hybrid
control systems. In Hybrid Systems II, pages 462–492,
London, UK, 1995. Springer-Verlag. ISBN 3-540-60472-
3.

Rong Su, Sherif Abdelwahed, Gabor Karsai, and Gautam
Biswas. Discrete abstractions and supervisory control
of switching systems. IEEE International Conference
on Systems, Man and Cybernetics, 1:415–421, October
2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6577

