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Abstract: State estimation and estimator based predictive control of nonlinear autonomous hybrid 
systems poses a challenging problem as these systems involve discontinuities that are introduced by 
switching of the discrete variables. In this paper, we propose a state estimation scheme for an 
autonomous hybrid system using an ensemble Kalman filter (EnKF), which belongs to the class of 
particle filters and is a derivative free nonlinear state estimator. We then proceed to develop a novel 
nonlinear model predictive control scheme that inherits the approach used in EnKF formulation for 
future trajectory predictions. The efficacy of the proposed state estimation and control scheme is 
demonstrated by conducting simulation studies on a benchmark hybrid three-tank system. 
 
Keywords: Ensemble Kalman Filter, Autonomous Hybrid System, Nonlinear Model Predictive 
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1. INTRODUCTION 

 
Model predictive control (MPC) has become a major 
research area over the last few decades. It is generally 
accepted that the reason for this success are the ability of 
MPC to optimally control multivariable systems under 
various constraints. Unlike many other advanced techniques, 
it has been successfully applied in process industry for 
controlling complex unit operations in continuously operated 
plants. However, dynamic systems that involve continuous 
and discrete states, broadly classified as hybrid systems, are 
often encountered in engineering applications. Thus, model 
predictive control of hybrid system has gained increased 
attention in the recent years (Bemporad and Morari, 1999).  

 
The dynamic model used for state estimation and prediction 
is the key component of any MPC schemes. Conventional 
state observer based MPC formulations make use of the 
Kalman filter (KF) and extended Kalman filter (EKF) as a 
state estimator. For linear systems, Kalman filters generate 
optimal estimates of state from observations when 
uncertainties in state dynamics and measurement can be 
adequately modelled as Gaussian white noise processes. The 
Kalman filter has attracted widespread attention of 
engineering community because of the recursive nature of its 
computational scheme. For nonlinear systems, the EKF is a 
natural extension of the linear filter to the nonlinear domain 
through local linearization. In EKF formulations, the state 
covariance propagation is carried out using Taylor series 
expansion of the nonlinear state transition operator. This step 
requires analytical computation of Jacobians at each time 
step. This can prove to be prohibitively complex and 

computationally demanding for high dimensional systems. 
Moreover, this also implies that nonlinear function vectors 
F .⎡ ⎤⎦ H . and ⎡ ⎤⎣ ⎣ ⎦  should be smooth and at least once 
differentiable. However, the dynamic models for autonomous 
hybrid systems involve discontinuities, which are introduced 
by switching of the discrete variables. Therefore, the EKF 
cannot be used for state estimation of nonlinear autonomous 
hybrid systems particularly in the operating regimes where 
discrete variables undergo frequent transitions. Thus, state 
estimation and estimator based control of autonomous hybrid 
systems poses a challenging problem. In recent years, a 
number of derivative free nonlinear filtering techniques have 
been proposed in the literature (Patwardhan et al., 2007). For 
example, the unscented Kalman filter (UKF) has been 
proposed as an alternative to the EKF where the above 
limitations has been overcome using the concept of sample 
statistics (Julier and Uhlmann, 2004). Also, a new class of 
filtering technique, called particle filtering, can deal with 
state estimation problems arising from multimodal and non-
Gaussian distributions (Arulampalam et al., 2002). A particle 
filter (PF) approximates multi-dimensional integration 
involved in the propagation and update steps using Monte 
Carlo sampling. The Ensemble Kalman filter (EnKF), 
originally proposed by Evensen (Burger et al., 1998), belong 
to the class of particle filters. In the EnKF formulation, 
similar to the EKF or UKF, the observer gain is computed 
using second order moments of state error and innovations. 
However, the main difference is that the covariance 
information is generated using Monte Carlo sampling 
without making any assumption on the nature of underlying 
distributions of state estimation error. In addition, the EnKF 
formulation can deal with state and measurement 
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noise with non-Gaussian and multimodal distributions in 
contrast to UKF where the Gaussian assumption is implicit. 

   
In this work, we propose a novel nonlinear model predictive 
control (NMPC) scheme for dealing with servo and 
regulatory control problems associated with nonlinear 
autonomous hybrid system. The salient features of the 
proposed NMPC scheme are as follows: (a) We propose to 
use the EnKF for state estimation of nonlinear autonomous 
hybrid system; and (b) for future trajectory predictions we 
develop a prediction scheme based on Monte Carlo 
simulation approach similar to the prediction step in the 
EnKF formulation. The efficacy of the proposed state 
estimation and control scheme is demonstrated by 
conducting simulation studies on the benchmark three-tank 
hybrid system. It may be noted that, while many approaches 
are now available in the literature for control of hybrid 
systems based on linear hybrid models, not much work has 
been reported based on state estimation and control of 
nonlinear hybrid models.  

 
The organization of the paper is as follows. Section 2 
discusses the details of state estimation in autonomous 
hybrid systems.  Section 3 presents the design of a nonlinear 
model predictive control scheme for autonomous hybrid 
systems. The process considered for simulation study is 
discussed in section 4. Simulation results are presented in 
section 4 followed by concluding remarks in section 5. 

 
2. STATE ESTIMATION OF AUTONOMOUS HYBRID 

SYSTEMS 
A particular class of discontinuous systems, namely 
autonomous hybrid systems, is of interest in this work. These 
systems can be represented by the following set of 
differential algebraic equations:   

kT

(k 1)T

(k) (k 1)

F[ ( ), (k 1), (k 1) (k 1), ( )]d (1)
−

= − +

τ − − + − τ τ∫

x x

x u d w z

[ ]( ) G ( ) (2)τ = τz x

(k) H[ (k), (k)] (3)=y x v  
In the above process model,  is the system state 
vector , u(k) is known system input , 

is the unknown system input, is the state 
noise ( ) with known distribution, is the 
measured state variable ( ) and is the 
measurement noise ( ) with known distribution. 
The parameter k represents the sampling instant, 

(k)x
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n( R )∈x
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(k)w
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]F . and [ ]H . are the nonlinear process model and nonlinear 
measurement model respectively. It may be noted that we are 
interested in the most general case whereby state and 
measurement noise processes may have arbitrary (but 
known) distributions. Also, they can influence the system 
dynamics and measurement map in a non-additive manner.  

 
In equation 2, represents discrete variables such that 
it can take only finite integer values, such as {-1, 0, 1} 

depending on some events, which are functions of continuous 
state variables in the case of autonomous hybrid systems. 
The function vector 

hR∈z
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can be expressed using a 
combination of Dirac delta functions and logical operators, 
such as AND, OR, XOR etc. The first step in the 
development of any NMPC scheme is the formulation of a 
scheme for the state estimation.  

 
State estimation in autonomous hybrid systems is a 
challenging problem due to the discontinuities introduced by 
switching of the discrete variables. In this work, we intend to 
use the derivative free nonlinear state estimation scheme, 
namely, the Ensemble Kalman filter (Gillijns et al. (2006)) 
for estimation of state variables in autonomous hybrid 
systems. The major advantage of using EnKF is that it avoids 
explicit computation of Jacobian matrices. The second order 
statistics necessary for estimation of observer gain is 
generated using sample points   (particles). The sample 
points straddle the discontinuity and, hence, can approximate 
the effect of discontinuity (Julier and Uhlmann, 2004). In the 
following section we present the EnKF algorithm for state 
estimation of autonomous hybrid systems in detail.  

 
2.1 Ensemble Kalman Filter 

 
The filter is initialized by drawing N 
particles{ ( from a suitable distribution. At each time 
step, N samples { (  for { } 
and { } are drawn randomly using the distributions of 
state noise and measurement noise. These sample points 
together with particles { ( are then 
propagated through the system dynamics to compute a cloud 
of transformed sample points (particles) as follows: 

These particles are then used to estimate sample mean and 
covariance as follows: 

N
(i) (i)

i 1

1 ˆ(k | k 1) (k | k 1) (5)
N =

− = −∑x x

N
(i) (i) (i)

i 1

1 ˆ(k | k 1) H (k | k 1), (k)
N =

⎡ ⎤− = −⎣ ⎦∑y x v          (6)              

N T(i) (i)
,

i 1

1P (k) (k) (k) (7)
N 1 =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦− ∑ε e ε e  

N T(i) (i)

i 1

1P (k) (k) (k) (8)
N 1 =

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦− ∑e,e e e  

Where, 
(i) (i) (i)ˆ(k) (k | k 1) (k | k 1) (9)= − − −ε x x
(i) (i) (i) (i)ˆ(k) H (k | k 1), (k) (k | k 1) (10)⎡ ⎤= − − −⎣ ⎦e x v y  

The Kalman gain and cloud of updated samples (particles) 
are then computed as follows: 
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1
L(k) P (k) P (k) (11)

−
⎡ ⎤= ⎣ ⎦ε,e e,e

{(i) (i) (i)ˆ(k | k 1) (k) H (k | k 1), (k) (12)⎡ϒ − = − −⎣y x v
(i) (i) (i)ˆ ˆ(k | k) (k | k 1) L(k) (k | k 1) (13)= − + ϒ −x x

{ }(i) (i) (i)ˆ(k | k) (k) H (k | k), (k) (14)⎡ ⎤ϒ = − ⎣ ⎦y x v

}⎤⎦

 

The updated state estimate is computed as the mean of the 
updated particles cloud, i.e. 

[ ]

N
(i)

i 1

1ˆ ˆ(k | k) (k | k)
N

ˆ ˆ(k | k) G (k | k)
=

=

=

∑x x

z x
        (15) 

 
The above equation gives an estimate of the discrete state 
variables { } at the sampling instant k. However, it 
may be noted that transition(s) of the discrete state variables 
can occur within a sampling interval, which is captured in 
the propagation step for each particle. The accuracy of the 
estimates depends on the number of data points (N). Gillijns 
et al. (2006) have indicated that ensemble size between 50 
and 100 suffices even for large dimensional systems. 

ˆ(k | k)z

 
3. NONLINEAR MPC FORMULATION FOR AN 

AUTONOMOUS HYBRID SYSTEM 
 
The first step in the development of NMPC formulation is 
generation of model based future predictions. At this stage, it 
becomes necessary to incorporate measures for dealing with 
plant-model mismatch.  There are two strategies available in 
the literature for dealing with plant-model mismatch. They 
are as follows:  
 
State Augmentation: By this approach, artificial states, 
say , equal to number of outputs are introduced in the 
state dynamics as follows  

(k)η

 

kT
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[ ]
(k) (k 1) (k 1) (16)

( ) G ( )
(k) H[ (k), (k)]

η= − + −

τ = τ

=

η η w

z x
y x v

  

 
Here represents zero mean Gaussian white noise 
process with covariance . The state observer is designed 
for the augmented system by treating entries in as tuning 
parameters. Typically is chosen as bias terms in the 
inputs or drift in some model parameters. The main difficulty 
with this approach is that the closed loop performance is a 
very complex function of  and the values have to be 
selected by trail and error. In addition, state augmentation 
implies that a large number of particles have to be used in 
EnKF formulation, thereby increasing the computational 
burden.   

(k)ηw

ηQ

(k)η
ηQ

ηQ

 

Innovation Based Correction: Recently, Srinivasrao et al. 
(2006) have proposed a plant-model mismatch compensation 
strategy, which is similar to the scheme developed by Ricker 
(1990). By this approach, filtered values of model residuals, 
which are defined as  
 
ϒ − = − −
ϒ = −

y y
y y

 

are directly used for correction of future state and output 
predictions without requiring any state augmentation. Note 
that these filters are identical to that of filters in the feedback 
path of the nonlinear internal model control scheme and 
provide extra degrees of freedom for achieving robustness 
against plant-model mismatch. Srinivasrao et al. (2006) have 
shown that it is relatively easy to tune these filters than 
choosing elements in ηQ for the artificial states. In this work 
we develop a nonlinear MPC scheme using the later 
approach.  
 
3.1 Multi-step ahead future Prediction using EnKF 
 
Consider the problem of generating multi-step ahead 
predictions over time horizon ⎡ pk 1,k N ,⎤+ +⎣ ⎦

p

 
where N represent the prediction horizon. The two sources 
of uncertainties that arise while performing such predictions 
are (a) uncertainty in initial state at the beginning of the 
horizon and (b) unknown disturbances { }pw(k j) : j 1, 2...N+ =

pu(k|k).......u(k 1| k).......u(k N -1|k),+ +

 that 
may occur in future. To overcome the difficulties arising 
from the uncertainties in the initial state, we propose to carry 
out predictions by propagating all particles over the 
prediction horizon. The effect of unknown disturbances on 
the future predictions can be estimated by drawing samples 
from the known distribution of {w(k)} at each prediction 
step. Thus, given future manipulated input moves 

 the future state predictions 
are generated as follows:  
 

[ ]
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where { } represent the samples are drawn from 
the distribution of the state noise. The predicted mean 
trajectory is then computed as follows  

N
(i) (i)

f
i 1
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x v

(i)
f (k | k 1)

 

 
ϒIt may be noted that − (i)

f (k | k)ϒ
(i) (k | k 1)

and  are filtered 
values of signals ϒ − (i) (k | k)ϒ and , respectively, 
which are defined by equation (12) and equation (14). These 
filtered signals are computed as follows: 
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[ ](i) (i) (i)
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dΦ and  are diagonal matrices of the form  eΦ

[ ]d 1 2diag ...Φ = λ λ . λn  

[ ]e 1 2diag ...Φ = α α . αn

1
 

i i0 1 and 0≤ λ < ≤ α <  
where, and  are tuning parameters.  iλ iα
 
3.2 NMPC Formulation 
 
At any sampling instant k, the NMPC is formulated as a 
constrained nonlinear optimization problem where the future 
manipulated inputs are determined by minimizing the 
following objective function 

P

C

Nmin
T

p E
j = 1

N 1
T

U
j=0

u(k|k).......u(k+N -1|k) E(k+j|k) W  E(k+j|k)

+ Δu(k+j|k) W Δu(k+j|k) (24)
−

∑

∑
 

Subject to the 
 
Prediction given by equations (19)-(23) 
 

c c pu(k N / k) u(k N 1/ k) u(k N -1/k)+ = + + = +  

cu(k N -1/k)= +                (25) 
L U

Pˆx x(k j|k) x (j 1.....N )≤ + ≤ =             (26) 

L U
Pˆy y(k j|k) y (j 1.....N )≤ + ≤ =    (27) 

L U
cu u(k j|k) u (j 0....N -1)≤ + ≤ =  (28) 

L U
CΔu Δu(k j|k) Δu (j 0....N -1)≤ + ≤ =  (29) 

Where, 

r ˆE(k j|k) y (k j|k) - y(k j|k)+ = + +    (30) 
Δu(k j|k) u(k j|k) - u(k j -1|k)+ = + +  (31) 

 
where r  in equation (30) represents future 
setpoint trajectory.  The cost function is minimized subject to 
constraints on the state variables, output variables, 
manipulated variables and change in manipulated variables. 
Equation 25 together with equation 31 states that no future 
control moves are planned beyond the control horizon of 

y (k j | k),+

cN  
steps. The desired closed loop performance of the proposed 
NMPC scheme can be achieved by appropriately selecting 
the prediction horizon PN , control horizon cN , the error 
weighting matrix ( E ), input move weight matrix ( ) and 
filter matrices ( d , e ). Further, the NMPC scheme is 
implemented in a moving horizon framework i.e. only the 
first move  is implemented on the plant and the 
constrained optimization problem is reformulated at the next 

sampling instant based on the updated information from the 
plant. 

W
Φ

u(k|k)

UW
Φ

4. SIMULATION STUDIES 
The system considered for simulation study has three tanks 
(Blank et al. 2003), which are connected through the valves 
u1 to u7.  The governing equations of the three-tank hybrid 
system are as follows:  

1
max 1 2 3 6

2
2 3 4 7 5

3
max 5 4 7

dh
A q u q q q (32)

dt
dh

A q q q q q (33)
dt

dh
A q u q q (34)

dt

= − − −

= + − + −

= + +

        

       3 3 1 2 1 2 3q k sgn(h h ) | h h | u= − −          (35) 

       4 4 2 3 2 3 4q k sgn(h h ) | h h | u= − −          (36) 

       6 6 1 d 6q k h h u= +                         (37) 

       5 5 2 zq k h h= +           (38) 
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For the three tank hybrid system z1 and z2 represent discrete 
variables and they can take only finite integer values, such as 
{-1,0,1} depending on the level of fluids in the tanks. For 
example   
• If the discrete variable (z1) value is zero, it implies that 

the level in the first tank and second tank are below the 
predefined threshold value ( Th ).  
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• If the discrete variable (z1) value is +1, it denotes that 
either level in the first tank alone is above the threshold 
value or levels in the first tank and second tank are 
above the threshold value, with level in the first tank 
greater than level in the second tank causing flow in the 
pipe. 

• If the discrete variable (z1) value is -1, it indicates that 
either level in the second tank alone is above the 
threshold value or levels in the first tank and second tank 
are above the threshold value, with level in the second 
tank greater than level in the first tank causing flow in 
the pipe. 
 

In all the simulation runs, the process is simulated using the 
nonlinear first principles model (32 -34) and the true state 
variables are computed by solving the nonlinear differential 
equations using differential equation solver in Matlab 6.5. 
The control problem is to track levels h1 and h2 by 
manipulating valves u1 and u5. The NMPC scheme (EnKF 
based NMPC ) for the three-tank system has been developed 
with the prediction horizon of PN 10,=  and control horizon 
of cN 1.=

1 0
0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

The error weighting matrix and the controller 
weighting matrix used in the NMPC formulations  are  

EW Uand W 0.= The following constraints on the 

manipulated inputs are imposed 10 u 1≤ ≤  and . 50 u 1≤ ≤
 
4.1 Servo response of Three-tank System with EnKF based 
NMPC Scheme: 
 
In order to assess the tracking capability of the proposed 
EnKF based NMPC scheme setpoint variations in  and  
as shown in Figures 1(a) and 1(b) are introduced. The sample 
points used to estimate the statistics of the estimated state of 
the model in EnKF is 10.  The covariance matrices of 
measurement noise and state noise are assumed as  

1h 2h

6.2e 5 0 0 3.1e 4 0 0
R 0 4.8e-5 0 and Q 0 2.4e-4 0

0 0 5.4e-5 0 0 2.7e 4

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢

⎤
⎥
⎥
⎥−⎣ ⎦ ⎣ ⎦

5

 

 
The initial value of the error covariance matrix in 
EnKF is assumed equal to that of covariance matrix of state 
noise. The closed loop performances of EnKF based NMPC 
scheme is shown in Figures 1(a) & 1(b). From Figure 1, it is 
inferred that EnKF based NMPC formulation is able to track 
the setpoint variations effectively. For the case of setpoint 
tracking we observed that the estimated state variables and 
true state variables are found to be close (see Figure 2). The 
controller outputs are shown in Figure 1(c). The evolution of 
true and estimated value of discrete variables (  and ) of 
three-tank hybrid system with EnKF based NMPC scheme is 
shown in figure 3.  

P(0 / 0)

2z1z

 
 4.2 Performance of EnKF based NMPC Scheme in the  
 presence of Plant-model mismatch 
 
In order to assess the performance of the proposed EnKF 
based control scheme, in the presence of plant-model 

mismatch, we performed simulation studies, by deliberately 
changing the process parameter k  (see equation 38). The 
closed loop response (EnKF based NMPC scheme) is shown 
in figures 4a and 4b. The manipulated variable profiles of 
EnKF based NMPC scheme is shown in figure 4c. The 
following observation can be drawn from the simulation 
studies: 
• a step change in the setpoint has been introduced at the 

25th sampling instant and it can be noted that the 
controller is  able to maintain the process variables 
( 1h and 2h ) at the desired setpoint, as evident from 50th 
sampling instant to 60th sampling instant in figures 4a 
and 4b 

• With the setpoint values being persistent, the process 
parameter value 5k  is changed from 2e-4 to 1.75e-4 at 
the 60th sampling instant and it can be seen that the 
EnKF based MPC control scheme is still able to 
maintain the process variables at the desired setpoint 
values, as evident from the 80th sampling instant to 100th 
sampling instant in figures 4a and 4b. 

 
5. CONCLUSION 

 
In this paper, we have proposed a state estimation scheme for 
an autonomous hybrid system using derivative free nonlinear 
state estimator. Further, state estimation based nonlinear 
model predictive control scheme for an autonomous hybrid 
system has been proposed. The efficacy of the proposed state 
estimation and control scheme has been demonstrated on the 
three-tank hybrid benchmark system. From the extensive 
simulation studies on the three-tank hybrid system, it can be 
concluded that the proposed nonlinear state estimation based 
NMPC scheme has good setpoint tracking and disturbance 
rejection capabilities. 
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             Figure 1: Servo response of three-tank hybrid system 
             (a) Process output (h1) (b) Process output (h2) 
             (c) Controller outputs 

 
             Figure 2: Evolution of true and estimated states  
             of Three-tank hybrid system (a) Level in Tank1  
             (b) Level in Tank2 (c) Level in Tank3 
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      Figure 4: Closed loop response in the Presence of 
      Plant model mismatch (a) Process output (h1) 
     (b) Process output (h2) (c) Controller outputs 
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