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Abstract: A semi-autonomous unmanned underwater vehicle (UUV), named VSOR, is being
developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The
vehicle has been designed to provide inspection and intervention capabilities in specific missions
in deep water oil fields. This work presents a methodology to identify the drag coefficients
and virtual mass/inertia of an open-frame underwater vehicle using the system identification
approach. Trials with the vehicle in a test tank have been performed. Using the vehicle on-
board sensor information, the methodology is based on the utilisation of an uncoupled 1-DOF
(degree of freedom) dynamic system equation of an underwater vehicle and the application of
the integral method, which is the classical least squares algorithm, applied to the integral form
of the system dynamic equations. An assessment of the feasibility of the method is presented.
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1. INTRODUCTION

A semi-autonomous unmanned underwater vehicle (UUV)
of type open-frame, named VSOR, is being developed at
the Laboratory of Sensors Actuators at the University
of Sao Paulo. The name VSOR is an acronym which
stands for Véıculo Submarino Operado Remotamente, or
translated into English, Remotely Operated Underwater
Vehicle. Despite of the use of the Remotely Operated term,
the VSOR has been conceived as having semi-autonomous
behaviour, i.e., the vehicle can be remotely operated but
have an autonomous mode that can be used to approach
the target. The vehicle has been initially conceived to
provide inspection and intervention capabilities in specific
missions in deep water oil fields.

Most open-frame underwater vehicles have the follow-
ing characteristics: two symmetry planes, low operation
velocities (< 1m/s), passively stable in roll and pitch
angular motions, and creeping and uncoupled motions.
For this type of underwater vehicle, the 6-DOF motion
dynamic equations might be simplified. As a result, an
approximate uncoupled scalar dynamic model is obtained
which is sufficiently precise for control system design. This
scalar dynamic equation have three hydrodynamic param-
eters which are considered to be independent of Reynolds
number: quadratic and linear drag coefficients, and virtual
mass/inertia.

The application of system identification techniques to
UUV’s is concerned with the estimation of hydrodynamic
coefficients that characterize the vehicle dynamics, using
the data collected from free running experimental trials.

1 Supported by a scholarship (Process no. 03/12807-4) of the Fun-
dacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP),
BRAZIL.

Since this dynamic equation of motion can be formulated
as an equation which is linear in the vector of parameters,
the least-squares (LS) algorithm is the commonly used
estimation algorithm. Caccia et al. [2000] and Ridao et al.
[2004] use the LS method based on the integral of the
system dynamic equation. This identification technique is
known as the integral method. The advantage of using
the integral method is that eliminates the need for accel-
eration measurements. An on-line adaptive identification
method that has been recently proposed (Smallwood and
Whitcomb [2003]) does not also requires acceleration mea-
surements but it is limited to scalar uncoupled models.
One drawback of the adaptive method is that it possesses
several gains that must be empirically tuned. Very few pre-
vious works have reported UUV’s parameter identification
studies. Caccia et al. [2000] and Smallwood and Whitcomb
[2003] report experimental trials and parameter valida-
tion. In this work, the integral method is adopted for the
identification of the VSOR yaw motion dynamic model.
The experimental results of the parameter estimation are
presented and discussed.

This paper is organized as follows. Next section sum-
marises the mechanical design of the VSOR and its
thruster system, including the presentation of modelling
and identification of a thruster dynamic model. Then it
follows with the presentation of the uncoupled, 1-DOF
lumped parameter model. Next section presents the VSOR
yaw controller design. Next, it is presented the chosen
parameter identification algorithm, the integral method.
The numerical results of the identification of the VSOR
yaw dynamic is presented and an assessment of the quality
of parameter estimates are realised by calculating the
error between the results of system model simulation and
logged experimental data. Discussions about the accuracy
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Fig. 1. Physical layout of the VSOR.

of parameter estimates and the choice of experimental
input excitation signals are presented. And finally, some
conclusions about the feasibility of the method are drawn.

2. THE VSOR DESIGN

2.1 Mechanical Design and Thrusters Configuration

The vehicle configuration is composed of an aluminum
tubular structure, l = 1.4m × w = 1.2m × h = 0.9m,
equipped with three pressure vessels of the same dimen-
sions, l = 1.0m × d = 0.167m. Its weight in air is about
200Kg and the weight-buoyancy force is 35N positive. The
VSOR is divided for convenience in two parts: upper and
bottom. The upper part of the vehicle contains a layer
of PVC tubes for buoyancy properties, a pressure vessel
for the electronics and sensors, and the four horizontal
thrusters (see Fig. 1). The bottom part of the vehicle
consists in two pressure vessels that contain batteries and
four vertical thrusters. A small vessel l = 0.15m × d =
0.12m localised approximately in the vehicle mass center
carries an Inertial Measurement Unit. Modular structural
components allows that VSOR can be easily reconfigured
in agreement with specific tasks. The overall structure of
the vehicle is symmetric with respect to both the xz and
yz plane.

The VSOR sensor suite is composed by many different
sensors. Although not all of them have been used for the
experimental trials reported in this paper, we summarise
the sensor suite in Table 1.

2.2 Thruster System

The thruster system is composed of eight DC brushless
thrusters of Model 1021 of Tecnadyne Inc. Avila [2003]
determined that VSOR thruster step response has a time
constant of 0.1s. Omitting the dynamics of the VSOR
thrusters, the following thruster model is used to calculate
the axial force exerted by the propeller:

F = aV 2 + bV, (1)

where V is the control voltage, which is applied to the
thruster servo-amplifiers, a and b are force coefficients
which should be identified experimentally using the LS
method. The model (1) has been experimentally identified
putting the whole actuator in a water tank and measuring
the force as a function of a set of input voltages. The tests

Fig. 2. Sketched top view of the horizontal and vertical
thruster configuration.

have been executed in bollard-poll condition. The a and b
coefficients values referred to the thruster identified as one
are, respectively, a1 = 10.84N/V 2 and b1 = −5.019N/V
for positive thrust.

3. DYNAMIC MODELLING

In this work, we adopt the common practice of approx-
imating the 6-DOF dynamic equation by neglecting off-
diagonal entries, coupling terms and tether dynamics, to-
gether with the hypothesis of constant added inertia. The
simplifications are empirically justified due to slow veloci-
ties and relatively small attitude changes which are typical
of this class of vehicle. While adopting these hypothesis,
one might write a general decoupled 1-DOF equation with
the following form:

τi(t) = miẋi(t) + dLi
xi(t) + dQi

xi(t)|xi(t)| + bi, (2)

mi > 0; dLi
, dQi

> 0. (3)

Where, i represents one particular DOF, τi(t) is the
applied force/torque to the vehicle, mi is the virtual
inertia/mass, dLi

is the linear drag coefficient, dQi
is the

quadratic drag coefficient and bi is the disturbance model.
Equation (2) has been used to model the VSOR dynamics
in surge (i = 1), sway (i = 2), heave (i = 3), and yaw
(i = 4). Equation (2) can be written as:

ẋi(t) = αixi(t) + βixi(t)|xi(t)| + γiτi(t) + δi. (4)

The coefficients of (4) are defined in Table 2.

In order to execute experimental trials for the identifica-
tion of uncoupled hydrodynamic effects and of propeller
interactions, the thruster mapping listed in Table 3 has
been considered. The horizontal and vertical thrusters
are represented by HTj and VTj respectively, where the
index j relates one particular thruster. Figure 2 shows the
allocation of VSOR eight thrusters. For surge motion, front
thrusters HT1 and HT6 push the vehicle and rear thrusters
HT2 and HT7 are used for vehicle heading control. In the
same manner, for sway motion, front thrusters HT6 and
HT7 push the vehicle and rear thrusters HT1 and HT2 are
used for heading control. For heave motion, thrusters VT3,
VT4, VT5, and VT8 push the vehicle and thrusters HT1

and HT7 controls the heading.

For surge, sway, yaw but heave motion, thrusters are as-
sumed to work in open water without remarkable interac-
tions with the vehicle hull and other propellers. Therefore,
force/torque applied to the vehicle might be calculated as:
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Table 1. Sensorial system.

Variable Sensor (Manufacturer) Precision Update Rate Output

Heading Compass TCM2 (PNI) ±1o 13Hz Digital

Roll and Pitch Tilt Series 757 (Applied Geomechanics) ±2o 20Hz Analog

Depth Pressure Sensors, MPX5100DP (Motorola) 3.5cm 20Hz Analog

Yaw Rate Fiber Optic Gyro, E-Core 2000 (KVH) Bias < 2o/h 10Hz Digital

Height Altimeter, PA200 (Tritech) 1mm 10Hz Digital

Linear Acceleration Inertial Measurement Unit, VG700A (Crossbow) Bias < ±12mg 100Hz Digital

Angular Velocity Inertial Measurement Unit, VG700A (Crossbow) Bias < ±20o/h 100Hz Digital

Linear velocity: x,y,z Doppler velocity log (NavQuest 600 Micro) 1mm/s 5Hz Digital

Table 2. Definition of the VSOR 1-DOF model
coefficients.

Coefficient Physical
Definition

Units for
Linear
Motion

Units for
Angular
Motion

αi −dLi
/mi [1/s] [1/s]

βi −dQi
/mi [1/m] [rad]

γi 1/mi [1/Kg] [rad/(Kgm2)]

δi −bi/mi [m/s2] [rad/s2]

Table 3. Thruster system mapping modes.

DOF Force/torque Control

Surge HTj HTj

j = 1, 6 j = 2, 7

Sway HTj HTj

j = 6, 7 j = 1, 2

Heave VTj HTj

j =
3, 4, 5, 8

j = 1, 7

Yaw HTj

j = 1, 7

τ1 =
[

(a1 + a6)V
2 + (b1 + b6)V

]

cos(β),

τ2 =
[

(a6 + a7)V
2 + (b6 + b7)V

]

sin(β),

τ3 = η
[

(a3 + a4 + a5 + a8)V
2 + (b3 + b4 + b5 + b8)V

]

,

τ4 =
[

(a1 + a7)V
2 + (b1 + b7)V

]

R. (5)

which is obtained by the use of (1). In the adopted nota-
tion, β is the module of the angle between the horizontal
thrusters and the vehicle longitudinal axis. For τ4, R is
the moment arm of the respective horizontal trusters. R
is measured in relation to the VSOR mass center from a
top view. For τ3, η is the thruster installation coefficient
which takes into account the overall reduction in thruster
efficiency while applying the desired 1-D force/torque.

4. YAW CONTROL SYSTEM DESIGN

During experimental trials the vehicle heading must be
kept constant by the action of a heading autopilot. A con-
ventional proportional-derivative (PD) heading controller
based on the vehicle dynamic model, described by (2), has
been designed. Neglecting any interaction between the yaw
motion and other motions, the dynamics of the yaw motion
is of the form:

ψ̈(t) = −
c1
I
ψ̇(t) −

c2
I
ψ̇(t)|ψ̇(t)| +

1

I
φ(t), (6)

where ψ(t), ψ̇, and ψ̈ are, respectively, the angular posi-
tion, velocity, and acceleration; φ(t) is the external torque
applied to the vehicle; c1 and c2 are the linear and
quadratic rotational drag coefficients, and I is the yaw
virtual inertia of the vehicle.

The state error coordinates are defined as:

∆ψ(t) = ψd(t) − ψ(t),

∆ψ̇(t) = ψ̇d(t) − ψ̇(t),

∆ψ̈(t) = ψ̈d(t) − ψ̈(t), (7)

where ψd and ψ̇d are the desired yaw angular position and
velocity.

Given a reference angular position ψd, the controller must
allow null steady-state error. The nonlinear state equation
(6) is linearised around ψ̇d = 0, obtaining the following
linear model:

∆ψ̈(t) = −
c1
I

∆ψ̇(t) +
1

I
φδ(t). (8)

where φδ(t) is the feedback control action. φδ(t) is defined
as:

φδ(t) = −kp∆ψ(t) − kd∆ψ̇(t), (9)

where kp and kd are error feedback gains.

Substituting (9) into (8), the resulting closed loop dynam-
ical system is given by:

I∆ψ̈(t) + (c1 + kd)∆ψ̇(t)| + kp∆ψ(t) = 0 (10)

which is a linear system that is time invariant in the error
coordinates.

As defined, c1, kp, and kd are positive constants, there-
fore the closed loop dynamic system (10) has a globally
asymptotically stable equilibrium point at the origin, i.e,
∆ψ(t) = ∆ψ̇(t) = 0.

The PD controller output given by (9) is updated with
a frequency of 13Hz that corresponds to the compass
sampling rate.

For the heave motion, the required torque by the con-
troller, Y , which should be applied by thrusters HT1 and
HT7, in order to correct heading error, is calculated using
the following expression:

Y =
[

(a1 + a7)V
2 + (b1 + b7)V

]

cos(β)R. (11)

The implementation of the vehicle heading controller con-
siders the solution in each discrete time instant of the
following second degree polynomial equation:

(a1 + a7)V
2 + (b1 + b7)V −

Y

cos(β)R
= 0. (12)

The solution of (12) determines the voltage, V , that should
be applied to the vehicle thrusters in order to correct
heading error. The parameter tuning of the controller has
been done experimentally, kp = 300 and kd = 150 has been
obtained.
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5. PARAMETER IDENTIFICATION METHOD

In this section, the parameter identification method,
named integral method, is presented. The method is basi-
cally equivalent to the classical least squares algorithm ap-
plied to the integral form of the system dynamic equations.
We rely on the work of Ridao et al. [2004] but develop
expressions for only one DOF.

Equation (4) might be expressed for the i-th DOF in the
following form:

ẋi(t) = φ(xi(t), τi(t))θ, (13)

yi(tk) = xi(tk) + ei(tk), (14)

where, φ(xi(t), τi(t)) is a vector valued function defined by,

φ = [ xi(t) xi(t)|xi(t)| τi(t) 1 ] , (15)

θ is the parameter vector defined by:

θ = [ αi βi γi δi ]
T
, (16)

yi(tk) is the observable output and ei(tk) is the measure-
ment error.

The estimation of the parameter vector θ is equivalent to
the minimisation of the scalar cost function given by:

J(θ) =
1

N

N
∑

k=1

ǫTi (tk)W−1(tk)ǫi(tk). (17)

The cost function is a weighted sum of squared prediction
errors ǫi(tk), which is defined by:

ǫi(tk) = yi(tk) − ŷi(tk). (18)

The sequence of positive scalars
{

W−1(tk)
}N

k=1
are weights

related to the reliability of measurements at each time
instant. If the measurement noise ei(tk) has zero mean,
then the expected value of (14) is given by:

ŷi(tk) = x̂i(tk), (19)

where x̂i(tk) is the estimate of the expected state at time
tk. The minimisation of the cost function given by (17)
requires the availability of an estimate of the one-step
ahead prediction of the output ŷ(tk). A possible way of
obtaining an estimate of ŷ(tk) is described in the following:

At first, consider (13) in two consecutive time instants,
subtract them and integrate:

xi(tk) − xi(tk−1) =

[

∫ tk

tk−1

φ(xi(s), τi(s))ds

]

θ. (20)

We assume that,

xi(tk−1) = ỹi(tk−1), (21)

where ỹi(tk−1) is a filtered version of the output vector
yi(tk−1). Therefore, it is possible to write:

x̂i(tk) = ỹi(tk−1) + Hkθ, (22)

where,

Hk =

∫ tk

tk−1

φ(x̂i(s), τi(s))ds. (23)

In this way, it is possible to compute the one-step ahead
prediction error of (18) by:

ǫi(tk) = ỹi(tk) − ỹi(tk−1) − Hkθ. (24)

Reordering (24), we might write:

ỹi(tk) − ỹi(tk−1) = Hkθ + ǫi(tk). (25)

It is possible to equally write:

x̃i(tk) − x̃i(tk−1) = Hkθ + ǫi(tk). (26)

Now, writing (26) for k = 1, . . . , N the following matrix
equation is obtained:

Y = Hθ + ǫ. (27)

Where:

Y =















x̃i(t1) − x̃i(t0)
x̃i(t2) − x̃i(t1)

· · ·
x̃i(tk) − x̃i(tk−1)

· · ·
x̃i(tN ) − x̃i(tN−1)















, (28)

H = [ H1 H2 H3 H4 ] , (29)

where,

H1 =















(t1 − t0)x̃i(t0)
(t2 − t1)x̃i(t1)

· · ·
(tk − tk−1)x̃i(tk−1)

· · ·
(tN − tN−1)x̃i(tN−1)















, (30)

H2 =















(t1 − t0)x̃i(t0)|x̃i(t0)|
(t2 − t1)x̃i(t1)|x̃i(t1)|

· · ·
(tk − tk−1)x̃i(tk−1)|x̃i(tk−1)|

· · ·
(tN − tN−1)x̃i(tN−1)|x̃i(tN−1)|















, (31)

H3 =















(t1 − t0)τi(t0)
(t2 − t1)τi(t1)

· · ·
(tk − tk−1)τi(tk−1)

· · ·
(tN − tN−1)τi(tN−1)















, (32)

H4 =















(t1 − t0)
(t2 − t1)

· · ·
(tk − tk−1)

· · ·
(tN − tN−1)















, (33)

and
ǫ = [ ǫi(t1) ǫi(t2) · · · ǫi(tN ) ]

T
. (34)

Equation (27) is linear in the vector of parameters θ, there-
fore, the parameters might be estimated by the classical
Least-Squares algorithm:

θLS = (HT
W

−1
H)−1

H
T
W

−1
Y . (35)

where W
−1 is a diagonal matrix with the principal diag-

onal given by:
[

W−1(t1) . . . W
−1(tk) . . . W−1(tN )

]

. (36)

6. TEST TANK EXPERIMENTS

Trials have been conducted in the Naval and Oceanic Engi-
neering Department test tank. Free running experiments
in surge, sway, heave and yaw motions have been done.
Multiple trials in each DOF, one DOF at a time, have
been executed with sinusoidal thrust profiles of varying
magnitude and frequency. In this work, it is reported
only results for yaw motion. The identification experi-
ments have been performed by applying input torque with
thruster mapping having unit efficiency, i.e., thrusters HT1

and HT7 have been used for positive torque (clockwise
movements), see Fig. 2. Thruster have unit efficiency when
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Table 4. Sinusoidal voltage profiles applied to
thrusters 1 and 7.

Group Amplitude
A

Voltage
Offset V0

Periods (s)

(V) (V)

YAW1 0.8 1.6 2, 4, 8, 16, 24 and 30

YAW2 1.3 2.1 2, 4, 8, 16, 24 and 30

YAW3 1.8 2.6 2, 4, 8, 16, 24 and 30

their produced torque during the experiment is considered
to be the same as that produced in test tank bollard-pull
conditions.

Three types of experiments named YAW1, YAW2, and
YAW3 have been executed and their respective sinusoidal
control voltages applied to thrusters are presented in the
Table 4. The input torque is calculated according to (5).

6.1 Numerical Results

This section reports numerical results of the experimental
parameter identification of the vehicle yaw motion dynam-
ics using the integral method outlined above. An evalua-
tion assessment of the quality of parameter estimates are
realised using two procedures:

(1) Comparing experimental logged data sets with simu-
lation models based on parameter estimates derived
from the same experimental data set, and

(2) comparing the dynamics of a simulation model using
other experimental data sets that are different from
the one used for parameter estimation.

The integral parameter identification method has been
applied to experimental data sets that corresponds to
YAW1, YAW2 and YAW3 (see Table 4). Subsequently,
numerical simulations have been run using a Fourth Order
Runge-Kutta ODE integration algorithm. The simulations
have been run using actual logged torque profiles and the
simulation system output is yaw angular velocity, νmodel,
which has been compared to the experimental logged yaw
angular velocity νmeasure. The adopted error performance
measure is the absolute mean error:

e = mean(|νmodel − νmeasure|). (37)

The parameter estimates with best performance are listed
in Table 5 which corresponds to the experimental data
set of YAW2, more specifically, this corresponds with
the following voltage profile: amplitude A = 1.3V, offset
V0 = 2.1V, and Period = 30s .

Fig. 3 illustrates the experimental data set used for the
dynamic model identification of the yaw motion. Top plot
shows the input torque profile used to excite the vehicle.
The middle plot shows the vehicle logged heading with
measurements provided by the electronic compass and the
bottom plot shows the estimated vehicle yaw rate. The
yaw rate has been obtained by numerically differentiating
the heading signal and then filtering it with a 2nd order
Butterworth low pass filter. Plots of the simulated yaw rate
νmodel, experimental yaw rate νmeasured and the yaw rate
error νmodel − νmeasured are shown in Fig. 4. It shows that
the simulated yaw rate, based on the estimated dynamic
model, see Table 5, agrees closely with the experimental
yaw rate.
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Fig. 3. Experimental data set for the identification of the
VSOR yaw dynamic model. Top: Applied nominal
torque. Middle: Logged heading with 13Hz sampling
rate. Bottom: yaw rate (angular velocity).
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Fig. 4. Comparison of simulation results and experimental
data of yaw motion. Top: Applied nominal torque.
Middle: yaw rate (angular velocity). Bottom: velocity
error.

As parameter estimates are obtained from one experimen-
tal data set, it is reasonable to expect that the simulation
results will fit closely this particular experimental data set.
An important issue which arises in experimental model
identification is whether or not the system model with pa-
rameters estimated from one particular experimental data
set can accurately generalise under different experimental
conditions. In this section, numerical simulations have
been run on the identified system model using different
input torque profiles.

Fig. 5 shows simulation results using different input torque
profile. Plot indicates some phase-shift problem.

We have observed that a system model with parameters es-
timated with half-magnitude torque profiles (YAW2) and
larger period of excitation, performed uniformly well - the
single model accurately predicts experimentally observed
dynamics at all thrust levels (YAW1, YAW2, and YAW3).
In contrast, a system model with parameters estimated
using low magnitude torque profile have performed poorly
- the single model has good performance in predicting
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Table 5. VSOR yaw dynamic model: Hydrodynamic parameters.

α [1/s] β [rad] γ [rad/(kg.m2)] δ [rad/s2] Error
e [rad/s]

−0.5478 −4.9945 0.007317 0.068256 0.01555

dL [kg.m2/(rad.s)] dQ [kg.m2] m [kg.m2/rad] b [N.m]

74.867 682.57 136.66 −9.3282

30 40 50 60 70 80
0

20

40

60

y
a
w

 t
o
rq

u
e

 [
N

m
]

30 40 50 60 70 80
0

10

20

y
a
w

 r
a
te

  
  
  
  
  
[d

e
g
/s

] 
  
  
  
  
  

30 40 50 60 70 80

−5

0

5

e
rr

o
r 

[d
e
g
/s

]

Time [s]

Simulated

Experimental

Fig. 5. Comparison of simulation results and experimen-
tal data corresponding to YAW1. Sinusoidal voltage
profile: Amplitude A = 0.8V, Offset V0 = 1.6V and
Period = 30s.

experimentally observed dynamics only for thrust profiles
similar to the ones that occurred in the data set used
for its own parameter estimates. In summary, the system
excitation with half-magnitude torque profiles and larger
period = 30s is sufficient to provide accurate and fast pa-
rameter estimation in the presence of measurement noise
and actuator disturbances.

7. DISCUSSIONS

The VSOR virtual inertia m, can be assumed to be equal
to the inertia in air mair plus 100% of mair that models
the added inertia, see Caccia et al. [2000]. Considering
that, mair = 60Kgm2 (obtained with the AUTOCAD
software), then m = 120Kgm2 . This last value is in
agreement with the experimental parameter estimate of
mi = 136.66Kgm2 (see Table 5). Therefore, the parameter
estimate for the virtual mass mi is consistent with our
physical understanding of the vehicle design.

It has also been observed that for larger values of am-
plitude and period of the input torque profile, the ve-
hicle experiences larger variations in position, velocity,
and acceleration improving the signal-to-noise ratio of the
experimental data and, as a consequence, provides more
accurate model parameter estimation.

8. CONCLUSIONS

In this work a methodology for the experimental identifica-
tion of hydrodynamic parameters of yaw motion dynamics
of an open-frame underwater vehicle has been presented.
The methodology is based on the utilization of an uncou-
pled 1-DOF dynamic system equation of an underwater
vehicle and the application of the integral method which is

the classical least squares algorithm applied to the integral
form of the system dynamic equations.

Experimental trials have been performed in a test tank.
The effects of different thrust profiles on model parame-
ter identification have been investigated, confirming that,
simulation models have better performance when their
parameters are estimated with experimental data sets with
sinusoidal thrust profiles of relatively larger magnitude and
period. When hydrodynamic nonlinear dynamic system
models of open-frame underwater vehicles, that might
be represented by (4), are properly identified, they ex-
hibit both steady-state and dynamic response that closely
agrees with the experimentally observed response over a
wide range of operating conditions.
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